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Abstract

In recent years, the enormous investments in Automated Driving Systems (ADSs) have distinctly advanced ADS technologies.
Despite promises made by several high profile auto-makers, it has however become clear that the challenges involved for deploying
ADS have been drastically underestimated. This paper focuses on the challenge of providing sufficient evidence to support the
safety claims of ADSs. The provisioning of such evidence clearly relates both to technical maturity of ADS systems (including
actual experiences from deploying such systems), and on the development of methodologies for reasoning about ADS safety
claims. Contrary to previous generations of automotive systems, common design, development, verification and validation
methods for safety critical systems do not suffice to cope with the increased complexity and operational uncertainties of an
ADS. Therefore, the aim of this paper is to provide an understanding of existing methods focusing on the development of a safe
ADS and, most importantly, identifying the associated challenges and gaps.

We present eight challenges, collectively distinguishing ADSs from safety critical systems in general, and discuss the existing

methods in the light of these eight challenges. Based on this discussion, a set of research gaps are identified.
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Abstract—In recent years, the enormous investments in Au-
tomated Driving Systems (ADSs) have distinctly advanced ADS
technologies. Despite promises made by several high profile auto-
makers, it has however become clear that the challenges involved
for deploying ADS have been drastically underestimated. This
paper focuses on the challenge of providing sufficient evidence
to support the safety claims of ADSs. The provisioning of such
evidence clearly relates both to technical maturity of ADS systems
(including actual experiences from deploying such systems), and
on the development of methodologies for reasoning about ADS
safety claims. Contrary to previous generations of automotive
systems, common design, development, verification and validation
methods for safety critical systems do not suffice to cope with the
increased complexity and operational uncertainties of an ADS.
Therefore, the aim of this paper is to provide an understanding of
existing methods focusing on the development of a safe ADS and,
most importantly, identifying the associated challenges and gaps.
We present eight challenges, collectively distinguishing ADSs
from safety critical systems in general, and discuss the existing
methods in the light of these eight challenges. Based on this
discussion, a set of research gaps are identified.

Index Terms—Automated driving system, safety, safety assur-
ance, holistic safety, evidence provision, research gaps

I. INTRODUCTION

AUTOMATED DRIVING SYSTEMS (ADSs) promise
enormous benefits to society in terms of increased com-

fort, safety and efficiency of the transportation systems. To
achieve such benefits, it is essential to provide evidence that
adequately supports the safety claims of the system, not least
to ensure public acceptance. However, such evidence has, so
far, proven difficult to compile, especially due to: (a) the
uncertainties imposed by the operating environment and the
ADS’s interactions with other road users; (b) the fact that
the ADS itself tends to require a complex set of interwoven
functions and subsystems in order to take on the entire
strategic, tactical and operational responsibilities of the driving
task; and (c) the diversity and rareness of road accidents,
resulting in high dependability requirements on the system
to perform better than, or on par with, human drivers. These
three aspects complicate the construction of a complete and
predictive safety case.
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Of course, safety cases were always required to be both
complete and predictive. The differences for ADSs, however,
are: (i) the practical infeasibility of collecting sufficient evi-
dence from in-traffic testing alone [1, 2, 3]; (ii) the vastness
of scenarios arising from (a) and (b); (iii) the reliance on
machine learning in some safety critical parts of the system;
and (iv) the industrial shift into agile development processes
with frequent releases, in order to accommodate for shifting
operational conditions (e.g. corresponding to more data being
available on (ii)) and user needs.

There already exist several well established methods to
design, develop, verify and validate dependable and safety
critical systems in general. Notably, in the automotive industry,
ISO 26262 [4] outlines a set of processes agreed to ensure
sufficient functional safety of the Electrical and Electronic
(E/E) systems of the vehicle. However, the ability of these
methods and processes to provide sufficient safety evidence in
relation to aspects (a) – (c) and (i) – (iv) remains to be shown.
Below, examples of the plethora of methods available for
providing safety evidence for ADSs are listed. Note, however,
that this list is neither complete nor exhaustive, but represents
a selection of particular pertinent topics for the benefit of our
argument:

• scenario-based testing, verification and validation,
addressing (i) and (ii), have been proposed to solve the
validation and testing challenges [5, 6, 7, 8, 9, 10], where
the scenario models can also be derived from naturalistic
data or field tests;

• statistical extrapolations of non-crash scenarios, also
denoted near misses, derived from collected data, ad-
dressing (i), can provide a means for leveraging field data
to argument the safety of the system at higher integrity
levels [11];

• precautionary safety [12, 13], ameliorating (a), is pro-
posed for ensuring safe tactical decision-making despite
uncertainty of adverse events;

• formal methods and rules [14, 15, 16], mitigating (ii)
and potentially (iii) as well as (iv), have been suggested
to solve the problem of safe decision-making;

• Machine learning (ML) or Artificial Intelligence (AI)-
based components, i.e. (iii), the safety of which have
been discussed in [17, 18, 19, 20, 21];

• dynamic assurance cases [19, 22, 23, 24], ameliorating
the impact of unknowns from (a) and (b) in order to
reduce the gaps in (i), (ii) and (iv), have been suggested
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to cope with changes in the operational environment
of autonomous systems and as a means to reduce the
residual risk of operating the system through monitoring;

• shifting portions of the assurance task from design-
time to run-time, addressing (ii) and coping with (a)
as well as (b), has been proposed as an effective means
to maintain assurance of the system while allowing for
improved performance. Supportive concepts including
ConSerts [25, 26], and Digital Dependability Identities
(DDIs) [27, 28, 29]; and

• Dynamic Safety Management (DSM) and Dynamic
Risk Assessment (DRA), allowing the system to dy-
namically address (a) – (c) and support solving (i) and
(ii), have been suggested as a means to allow the tactical
decisions of the ADS to be made using appropriate run-
time measures of risk [26, 30, 31].

It is important to highlight that none of the methods above is
able to simultaneously address all of (a) – (c) and (i) – (iv).
This makes it difficult to grasp the current progress towards
a safe ADS and what gaps remain to be filled. Therefore,
we aim to elucidate the abilities and shortcomings of existing
methods in the state-of-the-art with respect to the particular
challenges encountered when providing evidence for safety of
an ADS. To support this discussion, eight challenges have been
identified, in the light of which the aforementioned selection of
methods, among others, are discussed. For the sake of clarity,
the methods are separated into four main categories: design
techniques, verification and validation methods, run-time risk
assessment and run-time (self-)adaptation, as illustrated in the
mind-map in Fig. 2.

The paper lays a foundation for a holistic perspective
of safety of ADSs, highlighting what areas are presently
addressed in the literature as well as what challenges remain
to be solved. Furthermore, we discuss which methods can help
to reduce the gap with respect to each of the eight identified
challenges.

The contributions of our paper can be summarised as
follows:

• A holistic perspective of methods contributing with
safety evidence of ADSs;

• Eight challenges for providing safety evidence for ADSs;
• A state-of-the-art review of existing methods, in the

light of the aforementioned challenges; and
• Research gaps, based on the three contributions above.

The layout of the paper is illustrated in Fig. 1. We start by
defining the addressed research questions in Sec. II, followed
by the delimitation of this paper in Sec. II-B, and the presen-
tation of preliminaries and definitions in Sec. II-D. Sec. III,
presents the challenges in providing safety evidence for ADSs.
Design techniques are discussed in Sec. IV, and verification
and validation methods are presented in Sec. V. These sections
are followed by Sec. VI, where run-time risk assessment
concepts are outlined, while Sec. VII covers methods for run-
time (self-)adaptation. The results are presented in Sec. VIII,
where promising methods to address each of the presented
challenges are discussed. Each method’s ability to address
the challenges, or lack thereof, is collected in TABLE I.

I Introduction

Fig. 2 Mind-map

II Research questions and preliminaries

Research questions II-B Delimitation II-D Preliminaries

III Challenges (C1) – (C8)

Design-time methods

IV Design techniques V V&V methods

Run-time methods

VI Risk assessment VII (Self-)adaptation

VIII Results and discussion

VIII-A Addressing challengesTABLE I: Review results VIII-B Research gaps

IX Conclusions

Fig. 1. The layout of the paper. Sections are illustrated in blue and subsections
and visuals/contributions in pink. The yellow boxes group the different
sections corresponding to the four method categories: design techniques and
verification and validation methods and run-time risk assessment and (self-
)adaptation respectively.

Future research avenues are given in Sec, VIII-D, while some
concluding remarks are provided in Sec. IX.

II. RESEARCH QUESTIONS AND PRELIMINARIES

This paper aims at providing a foundation for a holistic
perspective on safety of ADS. In order to provide a state-
of-the-art review on existing methods, and identify pertinent
technical challenges and research gaps on this topic, the paper
is articulated around the following research questions:

RQ1: What are the present challenges for providing safety
evidence for an ADS?

RQ2: What methods exist in the literature that support such
evidence provision?

RQ3: How do these methods address, and how are they
affected by, the challenges from RQ1?

RQ4: Based on the results from RQ3, what are the gaps in
the state-of-the-art of RQ2 considering the challenges
of RQ1?

The answer to the first research question, RQ1, is given
in Sec. III. Methods present in the literature are presented
throughout sections IV – VII, addressing question RQ2. To
answer RQ3, TABLE I collects our assessment of each con-
sidered method’s ability to address the challenges of Sec. III.
Lastly, the research gaps, answering RQ4, are presented in
Sec. VIII-B.

A. A Note on the Structure and Content of the Paper

The mind-map in Fig. 2 is provided as a means to structure
the content of and guide the reader through the discussions
of this paper. It should be noted that the categories and the
provided mind-map are not claimed to be exhaustive nor com-
plete. Rather, it provides one way of organising the methods
discussed and their interconnections. The methods depicted are
collected under four main categories: design techniques, V&V
methods, run-time risk assessment and run-time adaptation,
each represented with its own section in this paper (Sections
IV – VII). In more detail, the first two categories correspond to
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V-A
Field
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V-B
Extreme

value theory
V-C

Operational
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V-D
Scenario-

based V&V
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V-E
Formal

methods

VI
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VI-A
Threat

assessment

VI-B
Out-of-

distribution
detection

VI-C
Dynamic

risk
assessment

VII
Run-time (self)

adaptation

VII-A
Degradation

strategies

VII-B
Run-time

certification

VII-C
Dynamic

safety
management

VII-D
Precautionary

safety

Fig. 2. A mind-map of the concepts discussed in this paper, grouped into four major themes, each supplying methods or evidence to the assurance case of
an ADS. Note that this mind-map neither claims to be complete nor exhaustive, but represents a visual illustration of the concepts discussed in the paper and
their interconnections.

activities and methods commonly included before deployment
of the system. For example, one can see the design techniques
as collecting the activities on the left side of the V-model (c.f.
Fig 4), whereas the V&V methods correspond to the activities
in the right leg. The run-time concepts do, however, not strictly
fit within a classic ”waterfall” development cycle and are not
covered by the activities depicted in the V-model. The two
run-time categories instead aim to collect methods supporting
evaluation, evidence provision as well as adaptation of the
ADS in run-time.

Comparing to the Cyber-Physical Systems (CPS) frame-
work by the National Institute of Standards and Technologies
(NIST) [32, Fig. 4], the scope of this paper covers methods
both within the conceptualisation and realisation facets. The
design techniques covered in this paper fit nicely into the
conceptualisation facet and the V&V methods are situated
in the realisation facet, as are the run-time concepts (corre-
sponding to operating the CPS/ADS). The aim of this paper
is to elucidate the evidence that each method provides toward
the assurance of the ADS, thus effectively providing a link
between the first two facets, conceptualisation and realisation,
and the third facet, assurance, of the CPS framework [32,
Fig. 4].

It is worthwhile pointing out that several of the methods
discussed in this paper could be positioned into two or even
four of the categories, and a judgement of the the authors
have been exercised in order to position each method in the
section where the most relevant aspects for provisioning of
safety evidence can be appropriately highlighted. For example,
supervisor architectures are allocated to design techniques to
highlight architectural aspects even though such architectural
considerations are integral for both effective monitoring (per-
taining to methods of run-time risk assessment) as well as
run-time adaptation. Further, the application of supervisors is
a design decision but also strongly supports the validation of
the system.

B. Delimitation

The research and development efforts for the successful
introduction and productification of ADSs are immense and
include a wide variety of obstacles [33]. Nevertheless, in this
paper we limit ourselves to the challenges pertaining to safety
in the sense of functional safety (as per, e.g. ISO 26262 [4])
and nominal safety (e.g.Safety Of The Intended Functional-
ity (SOTIF) [34]). We highlight technical areas and methods
that provide evidence supporting the safety claims of an ADS.

In the interest of length and clarity of this paper and its
contributions, we consider the following areas as out of scope:

• collaborative and communicating systems, for example:
vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I)
and vehicle-to-everything (V2X) communications, de-
spite the indicated importance for safe deployment of
ADSs, e.g., [35],

• cyber-security,
• human-machine interface and interaction, including

safety considerations on hand-over procedures and mode
confusion, as analysed in, e.g., [36],

• the physical platform, on which the ADS operates, is
assumed to be reliable (note however, that architectural
patterns for e.g. fault tolerance are discussed),

• safety issues of automation complacency [37, 38],
• the question whether an advanced-driver-assistance-

system can be scaled into a full ADS, and
• the impact of safety culture and the way the developing

organisation is organised, as, for example, in the case of
the Boeing 737 Max accidents [39].

Furthermore, aspects pertaining to tracking, organisation, and
traceability of arguments and evidence of the safety case will
also be excluded of the discussion of this work.

The delimitation of this paper could also be seen in the
light of the levels provided in the CPS framework [32, Fig. 1],
where we cover the innermost levels: device and system, but
consider systems-of-systems and human interaction (at least in
terms of the human being the user of the system, human traffic
participants would naturally be in scope) as out of scope.
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Note that the methods and references included in our
work have been collected through exploratory search across
multiple domains, stemming from the authors’ own areas of
expertise. Considering the high volume of research in this
topic, the studied reference list could naturally be extended
and complemented. The presented selection is nevertheless
considered to be pertinent and representative of the existing
solutions, and the arguments and conclusions made in this
paper believed to be valid.

C. Related Work

Our paper focuses on a holistic perspective on technical
methods providing safety evidence for ADSs. While au-
tonomous vehicle technology and safety (assurance), in partic-
ular, have been approached in many different research works,
no other work, to the best of the authors’ knowledge, has
conducted a holistic analysis of the existing methods providing
safety evidence.

There are, however, several works pertinent to the topic of
our work and worth mentioning here.

For instance, Nair et al. [40] review the state-of-the-art
of safety evidence provision for safety certification across
multiple application domains. While Nair et al. [40] use the
term evidence provision to cover the following three different
aspects: the information constituting evidence, how to structure
the evidence as well as how to assess the evidence; we in our
paper focus our discussions on the first and last aspect and,
at least partly, leave the discussion of how to structure the
evidence for future work. Further, whereas our paper aims to
elucidate and discuss the contributions of different concrete
methods towards the safety of ADSs, [40] gives an overview
and classification of what information and artefacts that could
be considered as evidence when fulfilling different safety
standards. There are, nevertheless, some bridges between our
paper and [40]. More precisely, the provided taxonomy of [40]
relates to the four main categories of our work, which are
nicely covered by the four leaf nodes of the System Lifecycle
Plan category in the taxonomy of [40, Figure 2]. However,
the methods covered in our paper are not only discussed in
the light of what Process Information they provide, but also
what Product Information that can be supplied.

Similar to our paper, Burton et al. [41] also discuss the
importance of a holistic perspective for safety assurance for
ADSs. However, the framework presented in [41] provides a
complementary view on the problem to the one discussed in
our paper. In particular, while our paper focuses on methods
for providing safety evidence, Burton et al. address the causes
for system complexity and exacerbating factors worsening the
consequences of such complexity. For that discussion, Burton
et al. include business context, development context and or-
ganisational aspects, while we restrict our analysis of technical
methods for safety evidence provision.

Complexity of systems such as an ADS has also been
acknowledged as a key challenge in [33]. The factors of CPSs
complexity, in general, are discussed in [42]. We partly take
support from the considerations presented therein, but restrict
ourselves to ADSs and methods for safety evidence provision.

In the rest of our paper we draw upon a set of surveys
to support our discussions of each of the included methods.
While many surveys provide invaluable insight into their own
respective domains and scopes, none cover the same holistic
perspectives as are covered in our paper. In Sec. VIII-C a
summary of which surveys we draw upon in each section of
the paper is given.

D. Preliminaries and Definitions

The following subsections introduce the definitions of some
central terms used throughout the paper.

1) ADS: An ADS is a system that performs on an SAE
automation level 3–5 [43]. This entails that the ADS is
completely responsible for the dynamic driving task, at least
within a confined operational design domain (applicable for
levels 3–4). Without venturing too far down the path of
different architectural patterns and proposals for an ADS, it
is worth noting that it is common to break down the system
into sub-components. To have a common reference frame for
further discussions, we consider the breakdown illustrated in
Fig. 3. The decision and path planning is considered to be
made in the Decision making block, that receives as input
the perceived surroundings of the vehicle and the available
capabilities of the platform. The output path is then used
within the vehicle control block and ultimately executed on the
vehicle platform. Note that this breakdown does not include
monitoring or redundancy aspects, but merely represents the
purely functional view of the system.

ADS

Operational environment

Environment 
Perception 

(EP)
Decision 

Making (DM)
Vehicle 

Control (VC)

Interaction

Fig. 3. A common breakdown of subsystems constituting an ADS. The
Environment Perception (EP) block provides inputs to the Decision Making
(DM) block, which requests a path to be enacted by the Vehicle Control (VC)
block.

2) Safety and Risk: Safety is commonly defined as the
absence of unreasonable risk [4, §3.132], where risk is un-
derstood as

R(x) = P (x) S(x),

i.e., the product of the probability P (x) of an event x times
the severity or consequence S(x) should the event occur. If
we split S(x) into different levels, for example following
the severity classification underpinning the Automotive Safety
Integrity Levels (ASILs) of ISO 26262 [4], we can understand
the requirement of unreasonable risk as a quantitative number
representing the probability of occurrence of an accident with
a given severity.

The acceptable levels of safety can be considered in relation
to a positive risk-balance [44], or in relation to the driving
performance of human drivers [1, 2, 45]. Junietz et al. [46]
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provide an overview of quantitative risk levels from different
industries and discuss these in relation to ADSs. Further,
Warg et al. [47] propose the concept of a Quantitative Risk
Norm (QRN), collecting quantitative safety requirements for
an ADS. For the purpose of the discussions in our paper, we
assume that quantitative requirements differentiating reason-
able and unreasonable risks are present. It should be noted
that quantitative risk metrics are a research topic on its own,
but considered out of scope for our paper. Furthermore, we
broadly interpret the term safety such as to encompass not
only functional safety (e.g. ISO26262) but also Safety Of The
Intended Functionality (SOTIF) [34].

3) Dependability: In a wider context, safety is just one
attribute of the system’s dependability [48], along with: Avail-
ability, Reliability, Confidentiality, Integrity, and Maintain-
ability. While all dependability aspects are not considered in
our paper we note that availability, reliability, and maintain-
ability are attributes tightly linked to safety.

4) Fault Tolerance: In [48], four means to achieve a
dependable system is detailed: fault prevention, fault toler-
ance, fault removal and fault forecasting. For the continued
discussion of our paper we will consider fault-tolerance in
particular. Such methods focus on increasing the reliability
of the system, and in particular the ability of the system to
tolerate certain types and frequency of faults. Following the
dependability terminology of Avizienis et al. [48], a fault in the
system (e.g. a software bug or inherent performance limitation
of the system) might cause an error (an incorrect state in e.g.
a software variable) which, in turn, might lead to a failure (at
some level of the system, then with a potential continued fault
propagation). The faults considered do not necessarily result
in safety critical failures.

Further, for the discussions of our paper, we define a Fault-
Containment Unit (FCU) as a unit, within which a fault is be-
ing contained [49, p. 155]. Such a unit (i.e. subsystem) should
exhibit a defined failure at the boundary to its environment,
and have its own software and hardware to contain the direct
effects of an internal fault. Clearly the value of FCUs are
higher if the separated units are ensured to fail independently.

5) Safety/Assurance Case: A safety case, an important
concept for safety argumentation, is defined as ”a structured
argument, supported by a body of evidence that provides a
compelling, comprehensible and valid case that a system is,
or will be, adequately safe [...]”, see [50]. In the context
of functional safety in the automotive domain, one could
instead consider the definition of ISO 26262, defining it as
”[...] argument that functional safety is achieved for items,
or elements, and satisfied by evidence compiled from work
products of activities during development” [4]. Yet another
view of a safety case is to require the safety arguments (i.e.
safety case) to provide justified belief in the safety of the
system (e.g. [29]). Close to the latter, we instead refer to
providing sufficient and appropriate evidence to support the
safety claims of the system. For the sake of our discussions,
the first definition would also be appropriate, particularly as
it is gives a broader scope compared to the definition of
ISO 26262, not limiting the evidence to be rendered during
the development stages only.

Similar to a safety case an assurance case instead considers
any requirement placed on the system, including dependability,
safety and quality.

6) Design-time Activities: Traditionally, the activity of
compiling safety evidence has been carried out and completed
before the deployment of the system. In such context, all
needed evidence to support the safety claim is collected
throughout the specification, analysis, design, development,
verification and validation of the system. For example, in the
V-model, depicted in Fig. 4: the system is specified (Item
Definition); a Hazard Analysis and Risk Assessment (HARA)
conducted; the Functional and Technical Safety Concepts
(FSC/TSCs) devised; and requirements further refined. The
system is then designed, implemented, verified and validated.
Following this process, which for example is prescribed by
ISO 26262 [4], has proven to yield sufficient safety to most
automotive Electrical and Electronic (E/E) systems operating
today.

V
Item definition

FSC/
TSC

Architecture

HW and SW 
realisation

Unit IVT

Component IVT

System IVT

Validation

Verification of refinem
ent

Verification of implementation

HARA

Fig. 4. The V-model as considered in the ISO 26262 [4] standard. The
left-hand-side depicts the specification, design and implementation process,
while the right shows the Integration, Verification and Testing (IVT) of the
corresponding abstraction levels of the system.

III. THE CHALLENGES FOR SAFETY EVIDENCE PROVISION

There are several traditional safety processes and concepts
that have proven highly valuable and useful in the past, but that
do not suffice in providing safety evidence for ADSs. This is
partly due to (a) – (c) and (i) – (iv) discussed in Sec. I. Below
we reformulate and elaborate on these aspects, presented as
a list of eight challenges for providing safety evidence for
ADSs:

Uncertainties:

(C1) Uncertainties associated with the operational environ-
ment of the ADS,
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(C2) Uncertainties originating from the interaction of the
ADS with other traffic participants,

Behavioural and structural complexity:
(C3) ADS’s responsibility for all strategic, tactical and oper-

ational decisions of the driving task,
(C4) Complex set of interwoven functions and sub-systems

required to realise an ADS,
(C5) Self-adaptation capabilities of the ADS, in particular,

to cope with (temporary) degradations of the system,
Dependability requirements:
(C6) High dependability requirements imposed on the sys-

tem, originating from comparison with human perfor-
mance, highlighting the contribution of corner and edge
cases to the overall safety,

AI and ML components
(C7) Validation of (black box) components relying on

Artificial Intelligence (AI) and Machine Learning (ML),
Agile development and continuous deployment
(C8) Frequent releases and continuous learning, due to

a shift from a sequential development process into an
iterative and agile one including software upgrades,
requiring reduction of safety/assurance case compilation
efforts (or re-certification of the system).

While most of the challenges are pertinent also to safety
critical systems in general (namely challenges {(CI)}I6=3),
challenge (C3) stands out as a challenge particular to an ADS.
Further, the challenges (C1) – (C8) collectively distinguish
a representative view of the challenge for providing safety
evidence for a class of highly automated CPS, acting in open
environments, such as an ADS, compared to other safety
critical systems.

IV. DESIGN-TIME DESIGN TECHNIQUES

The way a system is specified, analysed, designed and
implemented greatly contributes to safety evidence provision.
In the following subsections we discuss some common design
techniques and methods, as well as their limitations in relation
to challenges (C1) – (C8) listed above. The reader can also
refer to Fig. 2 for an articulation of the different methods and
the corresponding domain areas.

A. Operational Design Domain (ODD)

According to [43], an ODD is defined as ”Operating
conditions under which a given driving automation system
or feature thereof is specifically designed to function[...]”.
It therefore provides the scope for the design intent of the
system, and delimits the design-time activities. Specifically,
it provides the context for the Hazard Analysis and Risk
Assessment (HARA) and the conditions to consider when
verifying and validating the ADS. In [51], the concept of the
ODD is further elaborated in relation to its ability to support
the safety argumentation of an ADS. [51] also presents four
generic strategies able to ensure that the ADS remains inside
its ODD while operating: inherent in ADS feature definition;
checking mission when accepting strategic task; statistically

defined spatial and temporal triggering conditions; and run-
time measurable triggering conditions related to operating
conditions. The first three strategies pertain to the relationship
between the strategic mission and how it is accepted by the
ADS. The third additionally, together with the fourth strategy,
imply the need for run-time monitors of relevant triggering
conditions. Note that the former aspect is tightly linked to
the concept of Minimal Risk Condition (MRC) and Restricted
Operational Domains (RODs), which are further discussed
later in this paper in Sec. VII-A.

While the ODD defines the design intent and the scope of
the V&V activities, thus specifying what can be called as the
problem domain, it is difficult to ensure that this design intent
adequately captures all operational uncertainties of challenges
(C1) and (C2). However, an appropriate specification of the
problem domain, provided by the ODD, can simultaneously
help avoid certain aspects of the same challenges by explicitly
avoiding or limiting certain uncertainties. Furthermore, it helps
alleviate some of the difficulties related to challenges (C3),
(C4) and (C6). As the ODD explicitly define the operating
conditions, for which the ADS is designed and verified, it
can be matched to the operating conditions required by the
intended real world use cases, as suggested in [51]. Conse-
quently, the use of the ODD could help facilitate incremental
improvements (part of challenge (C8)) as well as to cope with
restricted capabilities of the ADS (formulated in challenge
(C5)). The latter aspect, referring once again to the concept of
RODs, is later discussed in Sec. VII-A. One major challenge
in the use of an ODD is how to ensure that the information is
distributed and appropriately manifested throughout the system
and the development cycle, in order to strengthen the evidence
for completeness of the V&V activities and assurance of the
system. Rather than addressing this challenge, many research
works have focused on monitoring of the functional boundaries
of the ADS, i.e. the limits within which the function is
intended to operate (as defined by e.g. its ODD), e.g. [52, 53];
the definition of an ODD for the ADS, e.g. [54]; and what
dimensions to consider in such a definition, e.g. [55, 56, 57].
Recently, BSI [57] published a set of considerations and
taxonomies for the construction of an ODD. When it comes
to relying on ML-based AI components (related to challenge
(C7)), the ODD might ameliorate some of the issues by
concretely defining what is inside the operational domain and
what is not. This entails giving a formalised means for out-
of-distribution detection, a concept elaborated upon later in
Sec. VI-B.

B. Hazard Analysis and Risk Assessment

When combined, the challenges presented in Sec. III make
the process arguments of ISO 26262 insufficient [4]. The
Hazard Analysis and Risk Assessment (HARA) is traditionally
made through a manual effort, where all hazards and the
associated risks are identified. Regarding (future) ADS, this
is, however, no longer tractable considering challenges (C1)
– (C4). Indeed, challenges (C1), (C2) and (C4) [58] make
the enumeration of all hazards difficult (if not impossible).
Furthermore, challenge (C3) highlights the ADS responsibility,
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where the autonomous system should have the ability to
mitigate hazards it might face even before they occur, therefore
impacting the applicable hazards as well as the associated
risks. The complexity of the ADS (related to challenge (C4))
also impose an obstacle to the safety-goal breakdown follow-
ing the HARA activities.

The effectiveness of a safety or risk analysis technique is not
clearly quantified, as discussed in e.g. [59, 60], also implicitly
suggesting a correlation between the results of the analysis
with the availability of experts with appropriate domain knowl-
edge. For a novel system, such as the ADS, it is obviously
difficult to gather such a collection of experts. Further, even for
relatively simple systems, such as an Autonomous Emergency
Braking (AEB) system, the two different hazard analysis
techniques, System Theoretic Process Analysis (STPA) [61]
and Failure Modes and Effects Analysis (FMEA) [62], have
been shown to be insufficient for identifying all hazards [63].

There has, however, been several suggestions on how to
bridge these gaps. For instance, Kramer et al. [64] suggest a
method for iterative and data-driven identification of hazards
for ADSs. This said, such a method still falls short with
respect to achieving completeness of the set of hazards. In
another work, Khastgir et al. [65] suggest a run-time alteration
of the Automotive Safety Integrity Levels (ASILs) associated
with each hazard, in the light of the tactical decisions made
by the ADS, providing also as a method to guide those
tactical decisions. This method relies on a high integrity
hazard detection system, and consequently it does not address
the completeness of the hazards. In [47], a tailoring of the
HARA process is suggested by using a Quantitative Risk Norm
(QRN) with consequence classes, and thus relieving some of
the burden of achieving a complete enumeration of hazards.
The question of how to collect ”sufficient” evidence to support
the ADS’s fulfilment of such a QRN, however, is still under
debate.

For the purpose of the HARA, ML-based components
(related to challenge (C7)) could be considered as any other
subsystem [66]. However, some particular challenges arise in
relation to classification accuracy and adversarial attacks, and
that is why Salay et al. [66] suggest an alternative analysis
method called Classification Failure Mode Effects Analysis
(CFMEA).

As the current HARA process relies on manual intervention,
it would be challenging to match with high cadence releases
within an agile development process and the impact from
incorporation of new evidence through continuous learning
is also unclear (i.e. challenge (C8)). However, the process
itself does not need to be manual, but a solution to overcome
that is yet to be defined. As for challenge (C6), regarding
the high dependability requirements, it is currently difficult to
assess how the HARA will be able to ameliorate this aspect
considering the diversity of relevant events to consider. After
the first successful deployment of an ADS, and once sufficient
operational data becomes available, this might, however, no
longer present itself as a challenge, as the completeness of
scenarios and events underpinning the HARA could then be
deduced from the collected data itself, e.g. following the
approach of [64].

C. (Qualitative) Process Arguments

The outcome of the HARA and FSC/TSC steps in the V-
model, e.g. of ISO 26262 [4] as depicted in Fig. 4, is a set
of ASIL requirements allocated to a collection of subsystems
or components. In the ISO 26262 [4], a set of require-
ments including qualitative process arguments are prescribed
to ensure the fulfilment of the ASILs. Even though such
qualitative processes seem to jointly work for less complex
systems, the exact quantitative contributions from each risk
reduction method are not fully known. In fact, this holds true
for the entire safety case approach, for which it is hard to
prove its overall effectiveness and quantitative contributions
to safety, as discussed in [60]. Regarding challenge (C4), as
the complexity of the system grows, so does the number of
process arguments. Hence, if all proposed processes leave
a shard of residual risk, this might eventually amount to a
considerable contribution when compiling the entire complex
ADS. One way to circumvent this would be to transition from
a focus on qualitative processes into a focus on quantitative
ones. If one is to consider safety in a quantitative sense,
however, there is also the need for the top-level claims to be
prescribed as quantitative targets, for example according to a
QRN [47]. Similar to the HARA, process arguments struggle
with encapsulating the uncertainties imposed on the ADS
through challenges (C1) and (C2). Further, challenges (C3) –
(C6) could, in principle, be supported by process arguments,
though the quantitative contributions would then need to be
better understood.

Traditional development processes also do not suffice for
tackling challenge (C7) related to integration of ML-based
components, even if some steps towards this direction have
been done recently, as surveyed in Rabe et al. [67]. Notably, a
W-model for learning assurance is suggested in [68, Fig. 6.1,
p. 43], which might provide a stepping stone towards a design
process for learning-based components. Assurance of Machine
Learning for use in Autonomous Systems (AMLAS) [20] also
provides guidance for how to incorporate ML-based compo-
nents, by providing safety case patterns and adjoined processes
for systematic integration of safety when developing such
components. Nevertheless, how to merge process arguments
and traditional development processes with agile development
(so to address challenge (C8)), especially in relation to safety-
critical systems, is still an open challenge [69].

D. Contract-Based Design

Similar to the Hoare triple [70], Contract-Based Design
(CBD) suggests expressing the interactions between elements
(systems and components) in terms of contracts, expressing
the preconditions that each element expects and, under which,
the element can provide the postconditions. Given a suitable
formalism, these contracts can be implemented and monitored
at compilation, configuration or execution time, where a failed
assertion of the contract would result in an exception. In [71],
Benveniste et al. provide a formalisation of Assume-Guarantee
(A/G) contracts for system design, describing the precondi-
tions (assumes) and postconditions (guarantees) for the system
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elements. A simple example of such contracts, allocated on
component level, is depicted in Fig. 5.

CBD for safety critical properties, also termed safety con-
tracts (i.e. contracts to encode safety-critical properties of
the system), has been proposed, e.g. [72, 73]. Also highly
configurable systems have been considered, where in [74]
the use of CBD to assure an entire product-line is explored.
A/G-like contracts is notably also the approach of Digital
Dependability Identities (DDIs) [27] and ConSerts [25], which
we discuss further in Sec. VII-B. Furthermore, Warg et al. [75]
suggest using contracts in all abstraction levels of the ADS in
order to achieve a continuous assurance case, thus mitigating
challenge (C8). The interested reader is referred to [76], where
these methods are discussed more in detail with respect to
their potential contributions to safety assurance in the scope
of ADSs.

Component (I)

Component (i)

Contract for 
component (i)

A

A

G

Component (ii)

Contract for 
component 

(ii)

A G

From other 
contract

Contract for component (I)

A

A

G

From other 
contract

To other 
contract

Fig. 5. A simplified example of contracts allocated to components (I), (i)
and (ii). If the assumes of the components are fulfilled they can guarantee
the output.

As CBD provides a clear interface between system el-
ements, it effectively supports modularity of the elements
and consequently ameliorates challenge (C8), pertaining to
frequent releases and continuous learning. However, the com-
plexity of the ADS (formulated in challenge (C4)) raises
the question of the scalability of the approach for highly
interwoven functionalities and complex systems. Further, the
defined contracts require formalised specification of the as-
sumes and guarantees, which, considering challenges (C1) and
(C2), might be difficult to achieve on the boundary of the ADS
towards its environment. When using machine learning-based
black-box components (e.g., challenge (C7)), the difficulty of
applying contracts is even greater, as small perturbations to
the inputs might lead to large perturbations in the output [77],
which requires highly dependable systems for monitoring
and out-of-distribution detection. Finally, encoding formalised
contracts for the tactical decisions of the ADS (related to
challenge (C3)), such that they fulfil the safety requirements,
will be a considerable challenge.

E. Supervisor Architectures

The architecture of an ADS is crucial for reaching de-
pendability targets (e.g. [78]). The generic and general layout
presented in Fig. 3 provides a basis for common functionalities
that need to be realised in an ADS. This generic view can also
be deduced from more complex approaches, such as the ones
analysed in [79] or the functional architecture proposed in [44,
p. 68, Figure 27]. Common to the discussion of ADS archi-
tectures seem to be the usage of monitoring or surveillance

capabilities for reliability [44, 78, 79, 80, 81, 82, 83]. Such
capabilities are further discussed in this section. Discussions
on particular metrics and ways to assess the risk incurred by
the system during run-time are, however, deferred to Sec. VI.
Similarly, detailed discussions on how detected limitations and
faults should be handled through degradations are postponed
for Sec. VII.

The ISO 42010 standard [84] defines ”architecture” as ”fun-
damental concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles
of its design and evolution”. Architecture design involves
deciding on these principles and the mapping of behaviours
to the components and their organisation, with the purpose to
meet requirements posed on the system and dealing with the
involved trade-offs [85].

For an ADS, architectural design can be seen to have
the goal to realise sufficient dependability while reaching
performance, cost and scalability targets, subject to further
constraints such as energy consumption, space, etc. (recall
Fig. 4 for the position of the architecture design as part of
the development process).

An ADS (its functions, software and hardware), will be
subject to failures and unintended behaviours in several ways
(related to challenges (C1), (C2) and (C5)), relating to func-
tional safety (faults in HW and SW), safety of the intended
functionality (performance limitations and an incomplete un-
derstanding of the environment and how it interacts with the
ADS). Moreover, the high dependability requirements (i.e.
challenge (C6)), and the fact that an ADS in general does
not have a fail-safe state, see e.g. [78, 81], leads to the
question what an appropriate highly dependable, yet cost-
effective architecture looks like.

Key elements part of ADS architecture design, include the
considerations of relevant fault models (or fault hypothesis),
suitable patterns, where to deploy error detection mechanisms,
how to contain failures and how detected errors should be
handled. It appears generally accepted that traditional fault-
tolerance concepts such as triple modular redundancy (as
applied in flight controls [86]), would be too expensive and
not able to deal with common cause failures [78, 81]. The
appropriate level of redundancy and diversity required for cost-
effective designs remains an open issue, receiving increasing
attention in both industry and academia, with many cur-
rent proposals. Further open research challenges include how
environment perception sensors could potentially be shared
between different channels of the system (for cost-efficiency)
and the level of independence of such channels (relating to
potential common-mode failures) [81].

A common solution for realising a supervisory architec-
ture is using a nominal and a supervisory/safety/fallback/high
assurance channel [78, 81, 83, 88], an example of which
is shown in Fig. 6. The idea is that a high-performance
system (possibly with low dependability) is monitored (by
a high dependability component) and the control is, when
necessary, handed over to a supervisory channel (also of high
dependability). For this solution to support an ultra-dependable
system [33, p. 2], i.e. fulfilling challenge (C6), Kopetz [78]
stresses the importance of each subsystem to be its own
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ADS

Supervisory/safety channel

Operational environment
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Environment 
perception

Decision 
module

Vehicle 
platform

Nominal/complex channel

Environment 
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Vehicle 
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Safety monitoring

Fig. 6. Version of the simplex architecture [87] in the ADS context. A nominal
channel and a safety channel run in parallel, a monitor of the nominal channel
and a decision module is tasked with switching between the two based on
the input from the monitor. Both the monitor and the decision module could
optionally be allocated inside the safety channel, as suggested in [81], or as
a separate components, as recommended in [78].

Fault Containment Unit (FCU). Monitoring and deciding when
to switch to the supervisory channel, represent an essential
ingredient in such solutions [44, 78, 79, 80, 81, 82, 83].

Detecting failures is non-trivial given the inherent uncer-
tainty and risk in ADS operation (again, related to chal-
lenges (C1) and (C2)). Deriving supervision mechanisms
(constraints, rules, etc.) for detecting failures represents an
important area, (see [89, 90]), needing more research. The
definition of such mechanisms, and specifications thereof, face
some of the same challenges as those enumerated later in
relation to the verification and validation methods of Sec. V,
especially when deploying formal techniques [88] for realising
the supervision. In particular, formally capturing conditions
and scenarios from challenges (C1) – (C3), and ensuring
fulfilment to the high dependability required in challenge (C6)
pose an obstacle. Further, challenge (C4) makes it difficult to
anticipate all possible system states.

While the vast number of possible degradations (related to
challenge (C5)) pose a challenge for the implementation of a
supervisor, supervision is also the only solution allowing for
appropriate adaptation accounting for the degradation.

However, despite these limitations, surveillance architec-
tures still help ameliorating challenges (C1) – (C3), and
are integral in handling challenge (C5), i.e. system degrada-
tions. Further, by deploying anomaly and Out-Of-Distribution
(OOD) detection (as discussed further in Sec. VI-B), ML-
based components (related to challenge (C7)) can be effec-
tively supervised. Lastly, appropriate supervision capabilities
might ease the requirements on the assurance efforts done be-
fore deployment of the system, and thus ameliorate challenge
(C8) by reducing time-to-market for each ADS version.

As a final note on supervisory architectures, Jha et al. [21]
give an alternative approach for supervising the environment
perception block using predictive processing, where the quan-
tities monitored are the deviations of each sensor measurement
with respect to the constructed (internal) world model. The
approach is still conceptual and a concrete implementation is
yet to be provided, but it seems promising as such a system di-
rectly incorporates redundancy in the sensor processing. This,
they argue, could also provide a way forward to trust and rely

on black box algorithms, such as ML-based components [21],
i.e. addressing challenge (C7).

V. VERIFICATION AND VALIDATION METHODS

Verification and Validation (V&V) is an integral part in
providing evidence of the safety of a system, not the least
with respect to the system’s fulfilment of its specifications.
Riedmaier et al. [10] give a comprehensive overview of
existing methods for V&V of ADSs, focusing on methods
using scenarios in the assessment, but also give an overview
of safety-assessment approaches in general. Complementing
this work, Wishart et al. [91] also present a comprehensive
list of current V&V activities within industry and academia.

The presupposition for the V&V is the existence of a system
(or at least an implementation on some abstraction level, e.g. a
sub-component) and a specification that the system is expected
to fulfil. In terms of supplying evidence for the assurance case
of the system, there are four general caveats regarding the
V&V activities:
• The completeness of the specification vis-à-vis the real

operational use case,
• The verification might not exhaustively verify the system

with respect to the specification,
• The scalability of the method to enable coverage of

verification of the complete ADS system with respect to
its specification, and

• The complexity of the ADS will also propagate to the
V&V methods and tools, implying enormous efforts to
develop and ensure that these can be trusted, referred to
as ”tool qualification” in functional safety standards such
as ISO26262.

The impact of these four caveats on the remaining residual
risk, after the complete V&V processes/activities, is yet an
open research question and one which, in the light of chal-
lenges (C1) – (C4) and (C6), impacts the overall assurance of
the ADS.

In the sequel, we explore some of the approaches to V&V,
as illustrated in Fig. 2, and discuss their limitations in the light
of supplying evidence for the safety assurance of an ADS.

A. Field Operational Tests

In order to test a system in its real operational conditions,
one can make use of Field Operational Tests (FOTs). This is ar-
guably the validation method that gets the system closest to the
real operating conditions, therefore capturing the uncertainties
related to challenge (C1) most accurately. Systems that do not
provide tactical decisions, such as for example Autonomous
Emergency Brake (AEB) or Lane Keeping Assist (LKA), or
(sub)systems merely providing input to tactical decisions, such
as the perception system, are possible to evaluate in open loop.
This entails running the system passively in a vehicle (but
not intervening), that is otherwise manoeuvred by a human
driver (or another system). This approach is sometimes also
referred to as shadow-mode testing. From an ADS perspective,
while this could alleviate some validation gaps (corresponding
to challenges (C1), (C4), (C5), and (C7)), understanding the
behaviour of the full system requires the evaluation of the
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system in closed loop. By allowing the actions of the ADS
(formulated in challenge (C3)) to be enacted one can also
measure the ADS’s interactions with its environment (corre-
sponding to challenge (C2)). From a safety perspective, closed
loop verification is difficult, as it might be dangerous to rely
on safety drivers as backup due to human performance issues,
such as automation complacency [37, 38]. Furthermore, it is
also costly and difficult to achieve such testing at the scale
required to provide sufficient evidence in relation to the high
dependability requirements prescribed for an ADS [1, 2, 3],
therefore failing to address challenge (C6). The feasibility
of such a V&V method is also questionable considering the
higher cadence releases resulting from an agile development
process, or the sought continuous learning cycle of the system,
pertaining to challenge (C8). Collecting operational data from
the field, as discussed later in Sec. V-C, is closely related to
FOTs, and further to the supervisory architectures discussed
in Sec. IV-E. Such operational data supports the development
of an ADS in several different ways, in particular for:
• characterising the Operational Design Domain (ODD) of

the system [51], and consequently the specification of the
system,

• extrapolating the performance of the ADS through, for
example, the use of Extreme Value Theory (EVT) mod-
els [11] (as discussed in Sec. V-B),

• supplying operational data to be consumed for consecu-
tive releases of the ADS [13] (as discussed in Sec. V-C,
and

• serving as a baseline data set for scenario-based testing
and evaluation [6, 7, 92] (discussed in Sec. V-D).

A non-exhaustive list of large-scale FOTs is provided
by Batsch et al. [93, p. 4, Table 1].

B. Extreme Value Theory

Extreme Value Theory (EVT) focus on modelling the tails of
a probability distribution by considering the ”extreme” events
present in data (potentially provided by FOTs). In the context
of validation of ADSs, one could consider different types
of threat measures for the purpose of providing validation
evidence of the ADS. These threat measures are used as
a proxy for estimating the risk of the operational situation
faced by the ADS. Based on field data, such threat measures
can be calculated and the extreme events modelled through
EVT artefacts. Åsljung et al. [11] present an EVT analysis of
field data for the two threat measures: Break Threat Number
(BTN) and Time-to-collision (TTC). The proposed method
does not require detailed models of the system itself and
its operational environment, therefore alleviating challenges
(C1) and (C4) – (C5), which is a prerequisite for the other
V&V methods discussed in this section. Furthermore, EVT
approaches also alleviate challenge (C6) by extrapolating the
ADS’s performance from the data available, e.g. from FOTs,
therefore allowing for inference on the integrity of the system,
beyond the data collected. Since the system operates in its true
environment, the validity of the EVT approach is high with
respect to the data collected. However, the results are depen-
dent on the threat measure used [94], which might impact

the validity of the results provided with respect to the ADS’s
actual failure rates in real traffic. It should be noted that this
could impose a major limitation to the usefulness of EVT if an
appropriately predictive threat/risk metric cannot be selected.
It is also paramount that the data collected through the FOTs is
representative of the actual operating conditions of the ADS.
Thus, EVT faces the same challenges as FOTs with respect
to ensuring safety while testing the system in closed-loop (i.e.
to assess challenges (C2) and (C3)). In terms of challenge
(C8), pertaining to agile development and accommodating
continuous learning, the EVT approach helps ameliorating
parts of these challenges by leveraging collected data to infer
the systems performance level beyond the operational hours
used to collect it. However, the reliance on data is detriment
to the method’s ability to support frequent releases.

C. Operational Data Collection

Despite the best efforts to design and develop the ADS, it
will nevertheless be essential to monitor the ADS in operation
to ensure its safe operation. Not the least, to mitigate uncertain-
ties in relation to the ADS’s interactions, as per challenge (C2),
and its operational environment, regarding challenge (C1). For
the purposes of our discussions we can distinguish between
three types of monitoring capabilities:

(i) monitors for the collection of operational data (e.g.
similar to gather data from FOTs, see Sec. V-A above),

(ii) monitors for assurance reasons and inhibition/recall of
the system, contributing to the containment of the resid-
ual risk and thus being part of the V&V approach for
releasing the system in the first place, and

(iii) run-time supervisors to ensure that the ADS is operating
safely according to its ODD and according to its current
operational capabilities in relation to the requirements of
the current strategic mission.

The first two (i) and (ii), are tightly linked to the V&V of the
system. While (i) refers to the general case of data collection
for (off-line) modelling, (ii) refers the monitoring of specific
indicators for the purpose of assurance processes carried out
centrally, i.e. not in the vehicle itself. Both these aspects are
further elaborated in this section. The last point (iii), however,
is discussed more in detail in Sec. VI, as it provides input to the
operational decisions in run-time and is therefore better suited
for discussion in the context of run-time risk assessment.

In [76], several of the assurance approaches discussed
require (ii) monitoring of the system, its operational contexts
and/or some Key Performance Indicators (KPIs) [22, 23, 24].
Concrete measures and metrics underpinning such KPIs are
elaborated upon in Sec. VI-A. In the dynamic safety case
concept of Denney et al. [22], it is acknowledged that the
monitoring is to be done both inter-mission, corresponding
to our second category above (ii), as well as intra-mission,
corresponding to (iii).

Asaadi et al. [23] suggest to monitor certain indicators that
can be analysed to identify trends and shifts, and trigger an
update of the assurance case. Similarly, in the UL 4600 [95]
standard, it is suggested to monitor Safety Performance Indi-
cators (SPIs) of the system. These leading measures (should)
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give predictive indication for when the system might operate
unsafely and spur appropriate actions to mitigate the risks.
The main purpose of monitoring such indicators is therefore
to contain the residual risk related to challenges (C1) – (C5).
This type of indicator monitoring could be further enhanced by
the use of Extreme Value Theory modelling of the SPIs/KPIs,
as suggested in [96], helping to compare sparse data to the high
dependability requirements of the system (challenge (C6)).

The first type of monitoring (i), on the other hand, particu-
larly supports increased release cadence as well as promoting
a learning cycle (related to challenge (C8)) by improving
the basis on which models, analysis and design are founded.
Continuously adding new data from operations also provides
basis for retroactively fulfilling a statistical proof of the high
dependability requirements, pertaining to challenge (C6). Fur-
ther, systems for retroactive in-vehicle assessment could also
be used for validation purposes (see e.g. [97, 98, 99]), notably
for ML-based components of the perception system, and thus
reduce the gap of challenge (C7). Incorporating this type of
operational data is also beneficial for capturing changes to the
traffic (behaviour) due to increased penetration of technologies
such as ADSs.

Even though collecting and incorporating operational data
into the development process helps ameliorating all of the
challenges of Sec. III it should be noted that it might be
difficult to ensure the applicability of the data collected. For
example, it might be hard to ascertain that the data collected
with a previous version of the ADS is also useful for the
next generation of the system. Thus, frequent releases of
challenge (C8) might in fact limit the usability of operational
data.

There are however some challenges for collecting such
operational data from monitoring activities (i) and (ii):
• potential lack of computational resources for run-time

evaluation,
• limited transmission bandwidth, requiring a careful selec-

tion and curation of the data, and
• limited predictive power of the KPI/SPIs resulting in

limited risk reduction, related to monitoring activity (ii).

D. Scenario-Based Verification and Validation Methods

Most situations occurring during traffic are relatively mun-
dane and do not, consequently, bring value to the testing
of an ADS. Hence, FOTs are particularly exposed to this
phenomenon. However, when doing simulations or directed
testing, one can rely on scenario-based techniques as a means
to expose the ADS to more relevant test cases. Scenarios
can be generated from real data, as suggested in, e.g. [5,
6, 7, 100, 101], synthesised based on models, or through
expert knowledge, e.g. by using an ontology [102, 103]. In
all scenario generation approaches, the goal is to find relevant
scenarios to challenge the ADS. Irrespective of the approach
deployed, it is difficult to generate scenarios to capture all
uncertainties of the ADS’s environment and its interactions
with other road users (outlined in challenges (C1) and (C2)). In
fact, these aspects result in an infinite scenario space. Further,
the high dependability requirements of the ADS (challenge

(C6)) mean that rare scenarios, corner and edge cases will have
an impact on the assurance of the ADS. However, capturing
all relevant rare scenarios is close to an impossible task, as it
would either require huge amounts of driving hours [1, 2], or
be, if generated from expert knowledge, non relevant and result
in worst-case assumptions. An illustration of the scenario
space is shown in Fig. 7, where three different types of sce-
narios are shown. The scenarios applicable for the ADS given
its intended operational domain, A, the scenarios generated
for V&V, G, and the scenarios that would lead to safety
critical failures, C. The system could only be completely
assured if A is fully contained in G, and, in particular, if
the intersection between C and A is inside G. Any excessive
scenarios generated that are not applicable for the operational
design domain (i.e. G ∩ Ā) could potentially lead to loss of
performance due to negative test outcomes.

GA

C

Fig. 7. Illustration of the ”scenario space”. A corresponding to all possible
scenarios in the intended operational design domain of the ADS, G the
identified scenarios, and C the safety critical scenarios for the system.

When testing black-box components such as neural net-
works or other ML-based components, as per challenge (C7),
the vastness of the scenario space becomes a problem. Indeed,
it is challenging to decide on an appropriate granularity for
testing across the scenario space, as the validity of inter-
polation of the results is unclear [77]. Moreover, placing
all tactical responsibility on the ADS (i.e. challenge (C3))
makes the use of scenario-based testing difficult, since the
ADS might take actions to avoid the initial state of the
scenario altogether, rendering the testing results irrelevant. The
complexity of the system and its ability to handle degrada-
tions (challenges (C4) and (C5) respectively) could, on the
other hand, be efficiently validated through scenario-based
methods, as they scale according to the testing environments
used. Further, the use of simulations helps executing testing
and verification quicker than real-time, thus supporting high
release cadences (challenge (C8)), as V&V evidence can be
collected in a shorter time period. Additionally, this aspect
enables efficient testing of large changes to the system. This
said, validation of the models and tools used for simulation
itself still impose significant challenges. Riedmaier et al. [10]
give a comprehensive survey of scenario-based approaches
and present a taxonomy within which the surveyed papers
are situated. Similar to the note by Dijkstra et al. in [104,
p. 6] regarding software testing, Riedmaier et al. point out that,
despite the value and usefulness of scenario-based approaches,
the scenarios can only provide evidence for falsification of the
system, or provide a means to construct test cases. Ensuring
completeness of the scenario space itself has not been widely
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addressed despite the activeness in the field. Several studies
have, however, focused on the coverage of the scenario space
through testing, as pointed out in e.g. [9, 10, 93, 105], but how
well the scenario space represents the real world operational
conditions has not been shown. Thus, a quantitative measure
of the residual risk after scenario-based assessment is still
missing. Scenario-based methods do, however, provide an
efficient means for falsification of the ADS. Especially, if
coupled with search strategies rewarding critical scenarios,
such as, for example, importance sampling [106] or sub-set
simulation [107]. For the interested reader, Zhang et al. [9]
provide a systematic mapping of methodologies for critical
scenario identification.

From the discussion above it can be concluded that:
• when considering black-box components (challenge (C7))

it is difficult to judge the coverage level provided by the
assessment,

• the ADS, being responsible for the tactical decisions
(challenge (C3)), might avoid the initial state of the sce-
nario altogether, rendering the testing thereof superfluous,
and

• ensuring completeness of the scenario space with respect
to the real world operational conditions is difficult, but
nevertheless crucial to ensure that rare and relevant sce-
narios, as derived from the high dependability require-
ments (challenge (C6)), are not omitted in the assessment.

E. Formal Methods

Formal methods provide a means to perform verification
of the system, taking as inputs a specification of intended
behaviours as well as models of the system and its operational
environment. Relying on models of the system as well as
of its operational context such methods verify the system’s
fulfilment of its specification. Riedmaier et al. [10] give
an overview of existing methods for safety verification of
ADSs [10, p. 12–13] and distinguish between three different
branches within formal verification: theorem proving, reacha-
bility analysis and correct-by-construction synthesis. Further-
more, Riedmaier et al. [10] also provide a characterisation
of the methods and an evaluation based on several criteria.
In [108], a complementary classification of automatic formal
methods for automotive systems, that provides some guarantee
of quality, is presented and includes: abstract interpretation,
model checking and deductive methods. Abstract interpretation
methods assume an approximation of the system in order
to support the verification, whereas deductive methods cor-
respond to the theorem proving category of [10].

While formal methods can assess the system’s fulfilment of
its specification, it might nevertheless be tedious to transfer the
results from one assessment of one part of the system to other
parts, unless the design of the system is modular, suggesting
the usefulness of a contract-based design of the system.
Further, the dependency on models for each (sub)system under
assessment and models of its intended operational context
constitute a challenge for conducting formal verification with
respect to black-box models such as neural networks or other
ML-based components [10, Figure 8].

It is worth noting that correct-by-construction synthesis
could be considered as a design technique rather than a V&V
method. However, the challenges faced are the same as for the
other methods within formal verification domain, and this is
why it is discussed in this section rather than within Sec. IV.

Despite the merits and advantages of formal methods, one
can identify several potential difficulties and limitations with
respect to the safety assurance of an ADS, as detailed below.
Indeed, it may be difficult to:
• construct a complete specification with respect to the real

operating environment of the ADS, related to challenges
(C1) – (C3), which may also be exacerbated by chal-
lenge (C6),

• scale such methods to cover the entirety of the ADS,
corresponding to challenge (C4),

• ensure validity of the verification with respect to the
specification when using AI/ML-based components, cor-
responding to challenge (C7), and

• ensure the correctness of the models and parameter values
used in conducting the verification, which again stem
from challenges (C1) – (C3).

On the other hand, the successful application of formal
verification methods would provide an efficient means to
ensure the safety of the ADS and thus support high release
cadence as well as continuous learning (i.e. challenge (C8)).
Formal methods might also help analysing and understanding
challenge (C5), i.e. the capabilities of degraded modes of the
system, and how the system can safely adapt to cope with
such changes. Within a well defined setting, and for a limited
component, subsystem or specification, it should be noted that
formal methods are both suitable as well as useful. However,
as noted in [109], any evidence supplied from formal methods
should ideally be accompanied by the applicability of that
evidence, as well as the formal method/tool used, whenever
incorporated into the assurance case.

Formal Rules for Driving Behaviour: As a means to provide
a specification for formal methods, it is convenient to stipulate
(formal) rules regarding how the ADS should behave in order
to ensure that the system is never at fault in case of an
accident. Examples of approaches tackling such problems
are, for instance: Mobileye/Intel’s ”Responsibility Sensitive
Safety” (RSS) [14], Nvidia’s ”Safety Force Field” [15], the
”rulebooks” approach taken by nuTonomy [110] and Arechiga
[111]. Arechiga [111] propose a specification in signal tempo-
ral logic for safe ADS, while the rulebooks approach in [110]
refines and elaborates the use of rules to guide the behaviours
of the ADS. While [14] and [15] define interaction rules
based on mathematical formulas, the rulebooks approach [110]
can handle the priority amongst several (potentially conflict-
ing) rules. This capability differentiates the rulebooks ap-
proach [110] from the more simplistic approaches of [14] and
[15]. One could further consider using worst-case assumptions,
for which closed-form solutions of the driving behaviour might
be attainable, to elicit a specification of the driving behaviours.
An example of such, in relation to a collision avoidance setup,
is given in [112].

To summarise, there are four key limitations to keep in mind
when using (formal) rules or specifications, as detailed bellow:
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• the methods assume that other traffic participants follow
(the same) set of rules, which might not be the case with
human drivers,

• the methods (implicitly) define who is to blame for an
accident. While human drivers tend to naturally help out
and collectively avoid accidents, rigidly following a set of
rules might instead inhibit such collaborative avoidance
by the ADS, therefore increasing the overall number of
accidents,

• the approaches rely on assumptions on the parameters
used in the models and rules. For instance, RSS [14]
implicitly relies on assumptions regarding the vehicle’s
braking capabilities, as well as those of the surrounding
vehicles [113]. Ensuring that these assumptions are cor-
rect in all operational conditions of the ADS is central
to safety, as a mismatch could yield safety issues, as
discussed in [113], and

• accurately estimating the system’s parameters (as well as
those of the operating environment) is difficult and one
is often left with making worst-case assumptions, which
could yield a system that is unable to operate due to an
overly pessimistic view of the system’s capabilities [35].

VI. RUN-TIME RISK ASSESSMENT

Despite the existing design techniques and methods for
verification and validation purposes, covered in Sections. IV
and V respectively, challenges (C1) – (C8) also warrant efforts
for upholding safety of the system during operations. Within
that scope, the first aspect, pertaining to risk assessment,
is discussed within this section, while the second aspect,
regarding what to do about it, is covered in Sec. VII. These
two aspects are closely related, such that the output of the risk
assessment (discussed in this section) is consumed and guides
the adaptation (discussed in Sec. VII). Further, the available
adaptations of the system impact and determine what metrics
and quantities that should be monitored and assessed during
operations. The monitoring and degradation capabilities of the
system are themselves inherent of the architecture deployed,
which is discussed in Sec. IV-E.

As discussed in Sec. V-C, run-time monitoring of an ADS
can have different purposes. The collection of operational data
also highlights the importance of appropriate KPIs. In the
following section, we focus on the aspects of risk assessment
related to run-time (safety) supervision, effectively providing
input to, as well as ensure the safety of, the (tactical) decision
making of the ADS. The adaptation of the system due to such
tactical decisions is in turn discussed in Sec. VI. There are
three reasons for having run-time monitoring, to:

(i) Ensure safe tactical decisions despite internal errors
or (unexpected) changes to the operating environment,
while in the ODD,

(ii) Cope with (more permanent) system degradations, and
(iii) Avoid leaving the ODD.
These three types of monitoring are all related to the system’s
fault tolerance, where the focus is to identify errors and faults
and to establish appropriate counter-action measures, in order
to avoid safety critical failures. One way of viewing this

problem is through partitioning the operational space into safe,
warning and catastrophic states [88, Fig. 1]. With respect to
the different considerations above (i) – (iii), the states that one
needs to avoid are slightly different. Regarding (i), the focus
concerns the catastrophic states related to (temporary) errors
in any one of the ADS’s sub-systems or (unexpected) changes
to the operating environment that might result, if not mitigated
appropriately, in an accident or a requirement violation. Such
states can be reached due to an erroneous perception of the
world by the Environment Perception (EP) block (see Fig. 3),
an erroneous plan by the Decision Making (DM) block, or
unsuitable path following by the Vehicle Control (VC) block,
all of which might lead to a violation of a safety requirement.

As for (ii), the catastrophic states are similar to those of
(i), but pertaining to challenge (C5) associated with more
permanent or larger degradations, such as, for example, the
(permanent) loss of a sensor, reduced braking capabilities or
limited computational resources. This type of hazards might
also result in an inability of the ADS to safely fulfil its strategic
mission. One might consider using Restricted Operational Do-
mains (RODs) as a means to analyse and cope with situations
of system degradation, as elaborated on in Sec. VII-A. The
capabilities of the ADS to monitor its own system performance
is largely dependent on the architecture as well as what
requirements are imposed on each of the subsystems and
components. Architectural considerations have already been
covered in Sec. IV-E. Note that more detailed discussions on
component requirement supporting internal monitoring is left
for future work.

Lastly, the purpose of (iii) is, on the other hand, to avoid the
”catastrophic” state of operating outside of the ODD, which
can be mitigated by employing the ODD-strategies given in
[51] and, where appropriate, transitioning into a Minimal Risk
Condition (MRC). In [51], some considerations for defining a
suitable set of quantities and trigger conditions to support such
ODD exit strategies are given.

To give a broader context to metrics for run-time monitoring
we start by discussing threat assessment techniques used for
Advanced Driver Assistance Systems (ADASs), in Sec. VI-A.
This is followed by a section on OOD detection, Sec. VI-B
and a section revolving around dynamic risk assessment,
Sec. VI-C.

It should be noted that run-time verification [114] would
provide a means for run-time assessment of the system,
especially in relation to the fulfilment of the specification by
the present system configuration. Such methods face similar
challenges as formal methods, already discussed in V-E, and
will thus not be dedicated a separate subsection here.

A. Threat Assessment Techniques

Within the domain of ADASs, assessing the collision threat
is an integral part of being able to trigger appropriate corrective
measures that are able to avoid collisions through driver
support functions. The role of such threat metrics in relation
to validation and assurance of an ADS has already been
discussed earlier in this paper, namely in sections Sec. V-B
and Sec. V-C. There are several recent overviews on the
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literature focusing on threat metrics and Threat Assessment
(TA). For instance, a comprehensive analysis of different
metrics for collision avoidance has recently been provided
in [115, Table 3.1, pages 44–48]. In addition to listing the
metrics, Feth also provide a short description about which
situation is targeted, what assumption are made in terms of
prediction models and towards what such metrics are aimed at.
Complementary to that work, Dahl et al. [116] give a detailed
literature review on available TA techniques for collision
avoidance. In [116, TABLE I, p. 9], the reviewed literature is
positioned with respect to one of the five identified TA areas,
as well as which automotive-related application the reference
considers. Further, also Chia et al. [117] provide a set of risk
assessment methodologies, some of which are acknowledged
to be supporting run-time assessment (see last column of [117,
TABLE III, p. 7]). Lefèvre et al. [118] also present a survey on
motion prediction and risk assessment for intelligent vehicles.
In [118], the authors divide the methods into three categories:
physics-based, manoeuvre-based and interaction-aware motion
models. It is concluded that while the latter is the most
refined, it faces issues with computational complexity due
to the high number of considerations, consequently inhibiting
run-time applications (at least in 2014 when the survey was
conducted). This obstacle in particular is addressed in [119],
where a new risk assessment methodology, merging a network-
level collision estimate with an estimate on vehicle level, is
given. More precisely, this approach simultaneously integrates
a dynamic Bayesian network and interaction-aware motion
models [119].

Naturally, these different threat metrics come with their own
set of assumptions and limitations. In the sequel, we will
nevertheless try to assess their collective ability to alleviate
the challenges of Sec. III.

The intention of the threat metrics is to assess the current
threat or risk faced by the system during its operations.
However, accurate modelling and assessment incorporating
the uncertainties of challenges (C1) and (C2) into the metrics
remain difficult. The metrics themselves provide support for
the tactical decisions of the ADS (related to challenge (C3))
and also give a quantitative assessment of the risks irrespective
of the complexity of the system, i.e. bypassing challenge (C4).
This latter aspect is further discussed in Sec. V with respect
to operational data and EVT modelling.

The focus of most TA metrics is to assess the risk imposed
on the vehicle from its external environment. However, integral
to these assessments are the capabilities of the ego vehicle.
For example, the BTN or TTC [11] both incorporate the vehi-
cle’s braking capability. Consequently, the TA could partially
support the understanding of the necessary adaptation needed
to cope with system degradations related to challenge (C5).
If coupled with EVT modelling, TA could provide a way
to ameliorate the high dependability requirements of chal-
lenge (C6), but accurately considering the probabilities of rare
events might simultaneously reduce the accuracy of the TA
and thus suggesting that these same requirements might pose
an obstacle to TA. If the calculation of the metric is reliant
on AI/ML-based component, the TA will also be difficult to
validate, corresponding to challenge (C7). However, if that

is not the case, the use of metrics might provide a means
to validate the AI/ML-based components in the system based
on operational data, as discussed in Sec. V-C. The frequency
of releases of the ADS (challenge (C8)) will not constitute
an obstacle for deploying an appropriate TA. Furthermore,
such TA techniques would also not be of any particular help
to improve the release cadence of the ADS, for example by
providing complementary assurance evidence. Continuous data
gathering and analysis of the trends of the resulting TAs could
however support a learning cycle, also related to challenge
(C8).

B. Out-of-Distribution Detection
In order to integrate and trust AI/ML-based components,

their ability and performance naturally needs to be ensured. It
is difficult, however, to assess the ability of neural network-
based algorithms to extrapolate to unseen samples, as small
changes in input might drastically alter the results from neural
network-based algorithms [77]. Further, the estimated accuracy
and performance of such components are measured based on
a validation set concerning the intended operational domain.
Thus, to be able to rely on such performance estimates, it is
paramount to know that AI/ML-based components operate on
samples from the same distribution that it has been trained on.
For that purpose, anomaly or Out-Of-Distribution (OOD) de-
tection approaches can be used [120, 121, 122]. Alternatively,
one can strive for a network that directly rejects unrelated open
set inputs [123], whereby outputs are produced only if inputs,
from within some defined set, are provided to the network.
This last proposal could be seen as a means for a network to
operate under a contract, requiring the inputs to come from
the specified set.

OOD detection is believed to be helpful in increasing
the reliability of AI/ML-based components and consequently
address challenge (C7). As the components are ensured to
operate within the set of samples known to the algorithm,
one can also rely on the validation results provided (that
are based on samples from the same set). The environment
uncertainties faced by the ADS, formulated within challenge
(C1), might be partly mitigated by the use of OOD detection
whereas the uncertainties originating from the interactions,
concerning challenge (C2), are unrelated to the use of an
OOD detection method. The challenges of behavioural and
structural complexity, challenges (C3) – (C5), are also not ap-
plicable. Even though OOD detection methods might support
the validation of AI/ML-based components, ensuring sufficient
integrity of the OOD detection itself will be challenging
and, as a consequence, the high dependability requirements,
formulated within challenge (C6), will present obstacles. As
OOD detection methods will have to be trained on the same
data as the AI/ML-based components nothing does per se
hinder frequent development. In some sense updating the OOD
detection alongside the AI/ML-based components might even
be seen as supporting a learning cycle of the system.

C. Dynamic Risk Assessment
As an alternative to completely assure safety of the ADS’s

tactical decisions in design-time, where one needs to resort
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to employing worst-case assumptions or hard limits on op-
erational parameters, one could instead allow the system to
dynamically adapt according to the current situation it faces.
In practise, such a system would rely on creating situation
awareness, according to which the ADS can modulate or adapt
its behaviour [124]. Through this adaptation, the ADS could
achieve improved performance, while ensuring safety [30].
Situation awareness is constructed based on the perceived
surroundings of the ADS, prediction models of how the current
state will evolve [124], as well as knowledge of the capabilities
of the own system [125].

If such situation awareness is used for adapting the be-
haviour of the ADS, one could view the action space of the
ADS being restricted by: the system’s capabilities, including
the uncertainties of the perception system, and the surrounding
environment, as exemplified in Fig. 8. This could be compared
to the admissible action space from the system’s represen-
tation of itself and its environment, as discussed in [125,
notably Fig. 2]. Note that the time evolution of the scene is
not included in this illustration, for simplicity.

I

PU

P

IL

ADS

Fig. 8. The action space (striped region) is limited by the internal capabilities
of the ADS, IL, and the appropriately accounting for uncertainties, PU ,
around the perceived object, P . I exemplifies the full possible actions but
without accounting for uncertainties in the estimate of the internal capabilities.

Intention prediction is the common name of the task
concerning the prediction of the movements of other traffic
participants, for which Brown et al. [126] present a taxonomy.
The proposed taxonomy is constructed around four core tasks:
state estimation, intention estimation, trait estimation, and
motion prediction. Furthermore, it is also acknowledged that
risk estimation constitute an auxiliary task of the modelling.
Commonly speaking, these types of models rely heavily on
ML-based algorithms, and could provide a means for improv-
ing the situation awareness.

Dynamic Risk Assessment (DRA) relies on situation
awareness to support run-time decision-making of an ADS,
e.g. [31, 124, 127, 128]. In addition to situation awareness,
DRA capabilities need to connect a given situation to the
safety requirements of the system, or at least to some kind
of (quantitative) risk measurement. Similar to the surveillance
methods discussed in Sec. IV-E and the TA metrics discussed
in Sec. VI-A, Reich and Trapp [31] and Feth et al. [128]
suggest using risk metrics as a proxy for deducing the current
(dynamic) risk.

In [128], DRA is done by three components, one for each
integrity level (low, mid and high), corresponding to the in-
tegrity levels with which each (sub)system has been developed,
i.e. by following ISO 26262. In the approach of [128], also

the Environment Perception (EP) block (see Fig. 3) reports
with respect to these three integrity intervals (in-line with the
proposal of [129]) and each of the DRA components consume
the appropriate EP outputs corresponding its integrity level.

Dynamic behaviour risk assessment is further elaborated
upon in the thesis [115] by Feth, where the connection between
safety supervision and such a DRA method is also explored.

When approaching a solution to DRA, the more factors
and parameters included, the more refined model for situa-
tion awareness can be achievable. However, the more factors
included, the larger the need for data to determine the models
underpinning such a situation awareness. Thus, we face the
challenge of state space explosion due to the uncertainties of
the operational space of the ADS (related to the challenges
(C1) and (C2)), as discussed in Sec. V in terms of the
V&V methodologies. However, the ability for a DRA method
to handle uncertainties in run-time, formulated within the
challenges (C1) and (C2), is completely dependent on the
models used.

The flexibility of DRA seem to lend itself well to address
challenge (C8), where, for example, the models underpinning
the DRA can be easily updated provided that more operational
data becomes available. However, when trying to achieve
human-like performance (challenge (C6)), the question is how
to show the reliability of such methods, especially if such
needs to be done before the first deployment. Further, given
that much of the perception of an ADS and the subsequent
construction of its situation awareness are reliant on ML-based
algorithms, the question is also how to connect the outputs
thereof to the risk estimates of the DRA, an example related
to challenge (C7). This aspect is especially prominent for
the intention prediction task. The complexity of the system
(formulated in challenge (C4)) can somewhat be circumvented
by using DRA, as the down-stream decision-making can be
done in run-time based on the outputs of the relatively less
complex DRA system. However, how well these methods
are able to accommodate degradations (challenge (C5)) is
still an open question. Finally, even though an accurate risk
assessment at the present time is available through DRA, how
to account for the subsequent impact of the tactical decisions
of the ADS (i.e. challenge (C3)) has not yet been discussed
in the literature.

VII. RUN-TIME (SELF) ADAPTATION

Having presented different risk assessment techniques in the
previous section, we now focus on the task of adapting the
ADS’s behaviour based on such situation assessment.

One definition of self-adaptation considered in this pa-
per determines that the system adapts its behaviour to its
environment and context [130, p. 49]. For an ADS, this
adaptation can be viewed at different levels. The ADS is
explicitly designed to be self-adaptive in the sense of avoiding
collisions with other (dynamic) objects, as well as to follow
the road, etc., effectively integrating monitoring aspect (i)
discussed in Sec. VI. However, the system can adapt the way
these objectives are fulfilled and it can possibly also adapt
its available capabilities and features, formulated as challenge
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(C5). The latter aspect corresponds to monitoring aspects (ii)
and (iii) discussed in Sec. VI. For the sake of the clarity of the
following discussion, let us distinguish between three different
notions of self-adaptiveness of an ADS:
(a) Adaptation to changed user requirements or to changes

in the operational context in terms of services, features,
capabilities, or inter-operational systems (c.f. monitoring
aspects (ii) and (iii) in Sec. VI),

(b) Operational adaptation enabling the fulfilment of cer-
tain (safety) objectives (c.f. monitoring aspect (i) from
Sec. VI), and

(c) Adaptation of the (safety) objectives and/or adaptation of
the constraints for the operations of the system.

The focus of (a) is to elucidate when the user requests
changes to the mission, or when system-level changes or
degradations result in the need of an adaptation. (b), on the
other hand, regards the abilities of the ADS to avoid obstacles
in its environment as well as to account for intentions and
predicted behaviours of other traffic participants. Thirdly, (c)
refers to changing admissible risk levels in the light of the
present operating conditions. Each of these adaptation types
are discussed in the following subsections.

The first type of adaptation (a) aims at accounting for
changes in user requirements, active services, features, and
capabilities. To cope with severe system degradations or to
avoid leaving the ODD, a common strategy is to transition into
a Minimal Risk Condition (MRC). However, simply stopping
the ADS upon each and every (small) change to the system’s
capabilities might not be feasible nor desirable. Hence, the
concept of Restricted Operational Domains (RODs) have been
proposed in the literature [131]. Such degradation strategies
are further discussed in Sec. VII-A below.

As the possible space of all configurations, in relation
to adaptation type (a), could be vast, it has been proposed
to shift the certification of the specific configuration of the
system from design-time to run-time, called run-time cer-
tification [25]. As a consequence, this poses an alternative
means of adaption according to adaptation type (a). Similar to
contract-based design, run-time certification relies on defined
contracts (i.e. certificates) for each possible configuration of
the system. This set of contracts are defined in design-time, but
evaluated (certified) during run-time, in the light of available
run-time evidence. This restricts the certification activity to
only consider one specific system configuration at a time. Run-
time certification is discussed in Sec. VII-B.

Solutions to adaptation type (b) are largely provided through
the different methods discussed in Sec. IV, and are also the
focus of the V&V methods discussed in Sec. V. However, to
show that such solutions yield a safe ADS, while considering
all operational uncertainties (i.e. challenges (C1) and (C2)),
there is a need to make certain assumptions, often worst-
case assumptions, which encapsulate all (statistically) relevant
operational situations. These worst-case assumptions could
yield a safe but oftentimes unnecessarily conservative system.
To circumvent this, one can monitor the operational environ-
ment, as discussed in Sec. VI, and adapt the (worst-case)
assumptions subject to the present operational situation of
the ADS. This effectively corresponds to adaptation type (c).

Thus, the specific solution provided for adaptation type (b)
is deferred to run-time by adapting with respect to dynamic
objectives or constraints, i.e. according to adaptation type (c).
This is explored in [26], where a framework for Dynamic
Safety Management (DSM) is proposed, and further discussed
in Sec. VII-C.

Precautionary safety is yet another approach for ensuring
the fulfilment of the safety requirements of the ADS. Here,
the driving policy of the ADS is derived in such a way as to
ensure the fulfilment of quantitative safety goals, based on the
estimated exposure levels to certain events as well as the capa-
bilities of the sensor and actuator platform [12, 13]. Adapting
such a policy, subject to the current operational conditions
of the ADS, would correspond to adaptation type (c). Such
concepts are discussed in more detail in Sec. VII-D.

A. Degradation Strategies

It is central for an ADS to appropriately handle degradations
and avoid leaving the expected ODD, related the two last mon-
itoring types (ii) and (iii), discussed in Sec. VI. If faced with
a severe system degradation, or when approaching an ODD
exit, the ADS can resort to transitioning into a Minimal Risk
Condition (MRC). The MRC is a ”stable stopped condition
at a position with an acceptable risk [...] The ADS is brought
to this state by the user or the system itself, by performing the
Dynamic Driving Task Fall-Back (DDT-FB), when a given trip
cannot or should not be completed” [132, p. 2]. It alleviates the
risk of an ODD exit [51] as well as avoids operating the system
while facing severe degradations that inhibit the fulfilment of
the original, user-defined strategic mission [132].

To avoid abandoning the strategic mission of the ADS upon
any given system degradation, Colwell et al. [131] suggest
using a Restricted Operational Domain (ROD), which encodes
the operational domain of the ”new” system after the degrada-
tion. The ROD could thus effectively help determining whether
it is feasible to safely fulfil the strategic mission, despite the
system degradation, or if the mission should be abandoned in
favour of an MRC. The relationship between the MRC and
the ROD is elaborated upon in [132], where the contribution
to the safety assurance of such concepts is also discussed.

Fu et al. [133] present a distributed safety mechanism con-
cept, that provides multiple layers of monitoring and enables
degradation policies for the ADS. Degradation strategies may
range from a reduced driving envelope (e.g. corresponding
to a ROD), all the way through to a worst case, immediate
stop (corresponding to a highly restrictive MRC). It is worth
mentioning that any degradation strategy will require sufficient
internal capabilities of the ADS, as well as architectural
support (e.g. sensors and computing to actually carry out the
required manoeuvre).

An MRC effectively ameliorates the impact of foreseeable
changes of the uncertainties related to challenges (C1) and
(C2). That is, when it is possible to assess that the operational
context suggests uncertainties outside those specified in the
ODD, for example, the MRC could be invoked to avoid
the associated risks. However, in some cases, such shifts in
the uncertainty might not be detected early enough as to
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let the ADS avoid an accident. The decision responsibility
of the ADS, related to challenge (C3), is slightly clarified
through the decision hierarchy proposed in [132]. However, the
use of degradation strategies does not ameliorate nor support
challenge (C3) as such. The self-adaptation capabilities of the
ADS, related to challenge (C5), are highly reliant on appro-
priate MRCs, and the performance and utility of the system
can significantly be improved through the use of RODs. The
complexity of the ADS, pertaining to challenge (C4), makes
the use of a degradation strategy, such as the ROD, more dif-
ficult due to the large number of parameters to be considered.
The degradation strategies might help mitigate faults or errors
in the system and avoid catastrophic outcomes, consequently
supporting the achievement of high dependability require-
ments, related to challenge (C6). If coupled with anomaly
detection methods for AI/ML-based components, such as the
out-of-distribution detection methods discussed in Sec. VI-B,
the degradation strategies might support the safe handling of
situations problematic to AI/ML-based components. In other
words, the use of degradation strategies provides a partial
support for solving challenge (C7). As for agile development
processes/methodologies, related to challenge (C8), the use of
both MRCs and RODs would require significant efforts and
analyses before being deployed, which might inhibit frequent
releases of the software, as most of such analysis could likely
not be completely automated and would therefore be time-
consuming.

B. Run-time Certification
Rather than anticipating and analysing each possible con-

figuration of a system at design-time, the idea behind run-time
certification is shifting some of the assurance (or certification)
aspects from design-time to run-time, where more evidence
of the system’s actual operational context is available. Rushby
suggested this in 2007, through what the author calls Just-in-
Time Certification. This concept has been further developed
and, in the context of open adaptive systems, Schneider and
Trapp [25] propose conditional safety certificates (ConSerts)
for this purpose. In essence, the ConSerts represent a con-
tract with demands (cf. assumes of contract-based design,
Sec. IV-D) under which the subsystem is guaranteeing the
supply of a specific output. The ConSerts of a (run-time
configured) system are evaluated in the light of the available
run-time evidence, in order to assess the applicability of a
particular configuration. If one configuration is found to be
invalid, Schneider and Trapp [25] propose to continue evalu-
ating the next available configuration of the system, suggesting
the existence of some hierarchy of system configurations.
As such, ConSerts provides a potential way of managing
system degradations (related to challenge (C5)). Further, Dig-
ital Dependability Identities (DDIs) [27] have been proposed
to formalise the information exchange within a systems of
systems setup, and to support run-time certification in the
context of systems of systems [28, 29]. DDIs or ConSerts
could, in practise, be used as a means to facilitate safety
supervision, given formalisable properties of the system, while
also accommodating for configurability and systems of sys-
tems facets. The formalisation required for this approach does,

however, face some of the same obstacles as those discussed
in relation to formal methods, see Sec. V-E. However, with
an appropriate granularity of the system configuration and of
the limitations to the factors modelled, the impact of such
limitations might be reduced. Nevertheless, this remains an
aspect to be shown.

A dynamic measure of the operational environment, pro-
vided e.g. by DRA (discussed in Sec. VI-C), could be matched
to the assumes of the contracts, corresponding to the run-time
certification concept discussed before. Consequently, the two
approaches could likely support each other in the construction
of a safe and performant ADS.

Even though run-time certification mitigates the state space
explosion related to challenges (C1), (C2) and (C3), the
approach faces the same issues as contract-based design. Is
it possible to create contracts (e.g. ConSerts) that adequately
capture the uncertainties related to challenges (C1) and (C2),
and the flexibility emanating from challenge (C3)? Similarly,
the scalability of run-time certification in the light of chal-
lenges (C3) and (C4), remains to be shown. However, by for-
malising the interfaces between subsystems and components
of the ADS, such methods can effectively provide a means
to support high cadence releases and continuous learning,
i.e. challenge (C8), similar to contract-based design. Lastly,
given appropriate measures and monitors for anomaly and
OOD detection, run-time certification approaches might help
growing the trust in ML-based components (challenge (C7)),
as the usage of such components can be adapted given the
fulfilment of their respective demands.

C. Dynamic Safety Management

To circumvent the need for a static safety analysis at
design time, Trapp and Weiss [30] propose the framework
of Dynamic Safety Management (DSM), which allows the
system to ”self-optimise its performance during run-time” [26,
p. 1]. DSM presumes access to run-time information provid-
ing a contextual- as well as self-awareness. Considerations,
upon which, the more recent development of DRA methods
discussed in Sec. VI-C has been founded. This run-time
information is used to derive what is called safety awareness,
and allows the system to reason about the current risk and
adapt its behaviour accordingly. Notably, Trapp et al. [26]
explores this idea by proposing a dynamic risk analysis, where
the quantification of the HARA is done in run-time based
on such safety awareness. This quantification is proposed to
subsequently ensure that the configurations of the system is
valid and safe. Developed in parallel, Khastgir et al. [65] also
suggest to dynamically update the parameters of the HARA,
in run-time, based on the current operational situations. How-
ever, [65] suggests that the update to the HARA should imply
changes to the driving behaviour of the ADS, by restricting
or relaxing the integrity requirements for the system to solve
the current operational situation.

Also, Calinescu et al. [24] suggest allocating some of the
assurance tasks to run-time, by dynamically generating the
assurance case throughout both design-time as well as run-
time. This run-time assurance generation is predominantly
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dependent on formal methods and model checking [24], as-
suming formalisable system models and requirements.

While [30] suggest DSM as a means to optimise the system
(configuration) according to the current safety awareness, and
[65] propose to alter the behaviour of the ADS implicitly
by evaluating the HARA in run-time, one can also consider
adapting the (tactical) behaviour of the ADS according to
the dynamically assessed risk (e.g. from DRA). This latter
concept is explored in [115, 127] and is also hinted at
in [135, 136, 137].

Deferring the assurance of the tactical decisions to run-
time is proposed in order to ameliorate the effects of the
operational uncertainties related to challenges (C1) and (C2).
The considerable complexity of the required risk assessment
techniques to support DSM seem to be exacerbated by the
ADS’s responsibility for tactical decisions, i.e. challenge (C3).
However, the impact from the complexity of the ADS itself
(challenge (C4)) could be ameliorated, as already argued in
Sec. VI-C for DRA, by relying on a relatively less complex
system for DRA/DSM. Degradation capabilities (related to
challenge (C5)) would not only be solved through DSM but
could further support a more elaborate handling of any type of
degradation, effectively providing understanding for the RODs
of each degradation of the system. However, this presumes
good self-awareness capabilities of the system.

By being highly dependent on the DRA methods, the lack
of proof of reliability on the part of the DRA approaches is
also inherited by the DSM, making it difficult to assure the
reliability of the resulting actions of the ADS. Consequently,
it might be difficult to quantify and assure the DSM method
before deployment, at least when comparing to the high
dependability requirements related to challenge (C6). This
would be exacerbated if one is reliant on AI/ML-algorithms
for the implementation of either the DRA or the DSM. In
which case, the validation of such components, i.e. related to
challenge (C7), would impose an obstacle. However, the DSM
might also provide a means to rely on AI/ML-components
for path planning, as the risk of each generated path could
effectively be assessed through DRA, see e.g. [135].

Assuming that the models underpinning the DRA and DSM
are updated based on collected operational data, they would
promote a learning cycle of the system (corresponding to
challenge (C8)). Further, having assured a method for DSM
would also support the frequent changes of other components
in the system (the first aspect of challenge (C8)), as suggested
in [136].

D. Precautionary Safety

The concept of precautionary safety policy was first intro-
duced by Rodrigues de Campos et al. [12] with the purpose
of achieving an improved ADS performance while ensuring
the fulfilment of ambitious quantitative safety requirements,
prescribed as a Quantitative Risk Norm (QRN) [47]. The
proposed methodology accounts for the system’s emergency
response capabilities, sensing performance and the exposure
levels to different adverse events in order to enable the
derivation of an appropriate driving policy, with which the

ADS is able to fulfil the prescribed safety requirements. The
fulfilment of the quantitative requirements is shown in a
statistical way, rather than proving the fulfilment of safety
requirements based on worst-case assumptions. In [13], this
methodology is elaborated upon to include more complex
perception error rates and a process of rate estimation, both
for perception error rates as well as for the arrival rate of an
adverse event. These aspects led to a probabilistic approach
for coping with random errors or degradations of the system
(related to challenge (C5)).

While the precautionary safety methodology alleviates some
of the restrictions of a worst-case design-time assumption
with respect to the operational uncertainties of the ADS
(challenges (C1) and (C2)), the scalability aspects has not been
exhaustively addressed. Thus, the ability for this methodology
to overcome challenge (C4) is still an open question. The
approach of [13] suggests that challenges (C6) and (C7)
could be overcome, but at the (initial) expense of a reduced
performance of the system. Furthermore, placing the tactical
responsibility onto the ADS (challenge (C3)) might in turn
impact the event exposure rates, which are the central tenant
of the methodology. Consequently, it remains unclear how
well such methodology could work for releases of a specific
ADS (version) without considerable closed-loop data from that
specific version of the system. How a design methodology
based on precautionary principles can help support agile devel-
opment and frequent releases of challenge (C8), also remains
to be seen. However, the incorporation of operational data,
as suggested in [13], suggests that this methodology could
support the continuous learning aspect related to challenge
(C8).

The notion of precautionary safety could also be merged
with a framework for DRA in order to achieve a dynamic
adaptation of the policy, based on the current risk levels of the
ADS, which could help to achieve an even more performant
system. This is partly exemplified in [127], but with the main
difference that the requirements on the ADS are not posted
as quantitative elements. However, the risks are dynamically
estimated in [127], including a probabilistic formulation of
the uncertainties, which is the same as suggested in [12]
and [13]. For example, the jay-walking avoidance use case
analysed by Rodrigues de Campos et al. presents a very crude
way of DRA, where the considered two different road types
are associated with different exposure levels. Thus, given the
knowledge about which road type the ADS is operating on, it
is possible to adapt the driving policy in order to ensure the
fulfilment of the safety requirements.

VIII. RESULTS AND DISCUSSION

TABLE I summarises the ability of each of the discussed
methods to overcome the eight challenges (C1) – (C8). The
table is a result of a qualitative assessment made by the
authors, resulting in a classification (identified by letters) that
indicates how each of the the surveyed methods responds to the
identified challenges, as detailed in the caption of TABLE I.
Each assigned letter is motivated in the section where the
respective method has been discussed. The classification can
be structured into three main groups:
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Section
reference Method

Challenges

Uncertainties Behavioural and
structural complexity

Dependability
requirements

AI and ML
components

Agile
development

(C1) (C2) (C3) (C4) (C5) (C6) (C7) (C8)

D
es

ig
n

Te
ch

ni
qu

es

IV-A Operational
design domain C C A A A A A A

IV-B Hazard and
risk assessment C C C O O O N U

IV-C Process
arguments C C O O O O U O

IV-D Contract-based
design C C C O A N O S

IV-E Supervisor
architectures A A A O S A A A

Ve
ri

fic
at

io
n

an
d

va
lid

at
io

n
m

et
ho

ds

V-A Field
operational tests A O O A A C A C

V-B Extreme
value theory A O O A A A A N

V-C Operational
data collection A A A A A A A A

V-D Scenario-based
V&V methods C C C A A O C A

V-E Formal
methods C C C O A O O A

R
un

-t
im

e
as

se
ss

m
en

t VI-A Threat
assessment O O A A A A A A

VI-B Out-of-distribution
detection A N N N N O A A

VI-C Dynamic risk
assessment A A U A U U U A

R
un

-t
im

e
ad

ap
ta

tio
n

VII-A Degradation
strategies A A N O S A A O

VII-B Run-time
certification O O O O S N A S

VII-C Dynamic safety
management A A O A S O O A

VII-D Precautionary
safety A A U U A S S U

TABLE I
CLASSIFICATION OF HOW THE IDENTIFIED CHALLENGES ARE ADDRESSED BY THE DIFFERENT METHODS DISCUSSED. LEGEND: S={PROVIDES

SOLUTION}, A={AMELIORATED BY/SUPPORTS SOLVING}, U={UNCERTAIN/UNCLEAR, MORE WORK IS NEEDED}, N={NEUTRAL, NEITHER SUPPORTS
NOR IS AFFECTED BY}, O={OBSTACLE, MINOR CHALLENGE}, AND C={CHALLENGE, FUNDAMENTAL TO METHOD}.

• the ones indicating a positive contribution (S and A),
• the ones indicating a neutral contribution (U and N), and
• the ones indicating that the particular challenge is difficult

to, or not tackled by, the method (O and C).

Methods promising a solution to a particular challenge are
annotated with an S, referring to a Solution. For example, com-
pletely adopting contract-based design promises to solve chal-
lenge (C8). Whether this is feasible considering the remaining
seven challenges is, of course, questionable. Nevertheless, the
notation S indicates some clear advantages of this solution
with respect to those challenges. An A, referring to an Amelio-
ration of the challenge, is reserved for methods that support or
partly solve the given challenge. For instance, operational data
ameliorates all discussed aspects in one way or another, but it
is not sufficient on its own to provide a complete solution to
any of the challenges. Cells annotated with a U indicate that
the authors are unable to deduce the method’s applicability

to solve a given challenge. This suggests the need for future
work to answer that question. An N, referring to Neutral,
implies that the method is deemed indifferent with respect
to the particular challenge, since it neither ameliorates nor
exacerbates the challenge. Challenges that impose an obstacle
for the methods to provide valuable assurance evidence are
annotated with an O. Finally, a C denotes challenges that are
fundamental to the method and that, despite continued efforts
and future work, will likely remain troublesome. While a C is
used to indicate the fundamental limitation to the method with
respect to a given challenge, an O suggests that future work
might provide solutions to overcome the obstacles currently
present.

The novelty of a system such as an ADS, as well as the
lack of best practises and sufficient data affect all methods and
techniques discussed. The proposed classification may come
to change as new best practises evolve and, especially, when
more data is gathered. Particularly, the challenges pertaining
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to uncertainties (i.e. challenges (C1) and (C2)) might not be as
daunting given the existence of billions of miles of operational
data. Thus, the assessment of TABLE I reveals a snapshot at
this point in time, of which of the challenges that currently
impose issues for the discussed methods.

Another important aspect, only covered implicitly in the
discussions, is the question of residual risk, i.e. what is the
quantitative risk that each method is not able to (sufficiently)
capture. This is, for example, related to the question of
tool/process qualification and also partly captured by the
challenge of ensuring the integrity of each method, thus related
to the methods’ abilities to solve challenge (C6).

A. Addressing the Challenges
Below we analyse, in more detail, the collected results of

TABLE I in order to deduce which methods suggest solutions
to each of the challenges. Notably, each challenge has a
method which seems to at least ameliorate the challenge, albeit
not solve it completely.

In general, many of the challenges are (at least to some
extend) supported by the collection of more operational data
together with the use of DRA and DSM.

Challenges (C1) and (C2), pertaining to the uncertainties
imposed on the ADS, seem promising to address by shifting
at least parts of the assurance provision into run-time. This
can be achieved through monitoring of the operations of the
system, using a run-time monitor or a supervisor. Ideally, such
monitoring is coupled with DSM or a precautionary driving
policy to optimise available performance of the ADS.

Challenge (C3), the tactical responsibility, might be possi-
ble to address through DRA, but more work remains for a
conclusive statement. However, the challenge can be partly
ameliorated on the specification side, through the use of
the ODD. Further, it can be mitigated through appropriate
supervisor architectures and operational data collection.

Coping with challenge (C4), the complexity of the ADS,
can be supported by DSM, together with DRA, as well
as through confinement using the ODD. Further, it can be
assessed through the collection of operational data (through
FOTs, operational data collection and by extension EVT) as
well as through scenario-based methods.

Handling degradations of the system (challenge (C5)), re-
quires supervision, but can also be solved through appropriate
degradation strategies, run-time certification and DSM. All of
the V&V techniques also provide means to assess the validity
of such degradations, albeit under the assumption of explicit
analysis of each subsystem in relation to its capabilities,
performance and ROD.

The high dependability requirements (challenge (C6)), are
difficult to ensure through the V&V methods presently avail-
able, even though operational data collection and EVT would
provide some support. These requirements seem best ad-
dressed by supervision methods and architectural patterns
coupled with appropriate degradation strategies. However, the
probabilistic formulation for precautionary safety also suggests
a solution.

As for incorporating and growing trust in AI and ML-based
components (challenge (C7)), we also seem to have a solution

in the precautionary safety approach, however, operational data
collection, supervision architectures as well as FOTs, coupled
with EVT, also provide ameliorating solutions, as does the use
of OOD detection methods.

Lastly, many of the discussed methods could to be compat-
ible with agile development and frequent releases, related to
challenge (C8). Most notably, the contract-based techniques,
such as contract-based design and run-time certification, lend
themselves particularly well for this purpose, but with the
caveat of scalability and the ability to compose contracts in
the light of challenges (C1) – (C3).

B. Identified Research Gaps

Supported by TABLE I and our discussions from Sec-
tions. IV – VII, we conclude five categories of research gaps,
as given in the sub-sections below. The gaps are derived
by consulting TABLE I and identifying the challenges for
each method that provide an obstacle (O), a fundamental
challenge (C) or where the assessment is yet uncertain/unclear
(U). While the fundamental challenges (C) might not directly
warrant further development of the method itself, they could
still leave a missing piece for the safety assurance of the ADS
and are hence included in the derivation of the research gaps.
The derived individual gaps are subsequently gathered into
similar themes forming the five categories.

1) Completeness of provided safety evidence:

• How to ensure that the confinement to the design made
through the ODD (IV-A) is appropriate with respect to
the uncertainties of challenges (C1) and (C2)?

• How to amend or tailor the process for HARA (IV-B) to
ensure completeness of the provided hazards with respect
to the operational uncertainties ((C1) and (C2)) and the
fact that the ADS is responsible for the tactical decisions
(challenge (C3))?

• What are the implications and potential remedies for
contract-based design (IV-D) and formal methods (V-E)
if considerations from the tactical responsibility and
operational uncertainties of the ADS (corresponding to
challenges (C1) – (C3)) cannot be adequately formalised?

• How to mitigate the impact from a mismatch between the
real operational uncertainties of the ADS (challenges (C1)
and (C2)) and the considered scenario space for scenario-
based V&V (V-D)?

2) Improvements, analyses, and automation of methods:

• How to automate HARA (IV-B) to support challenge
(C8), with frequent releases and continuous learning?

• What are the quantitative contributions from current
(safety) design and development processes (IV-C), es-
pecially considering the operational uncertainties of the
ADS, i.e. challenges (C1) and (C2), but also chal-
lenges (C3) – (C6)?

• What are appropriate leading metrics for (safety) oper-
ational data collection (V-C) of an ADS, in particular
to capture the operational uncertainties ((C1) and (C2)),
the tactical responsibilities (C3) in relation to the high
dependability requirements of challenge (C6)?
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• How to derive realistic and statistically probable (albeit
rare) scenarios (V-D) corresponding to challenge (C6),
the high dependability requirements of an ADS?

• How to ensure that tested scenarios are relevant con-
sidering the ability of the ADS to avoid the situation
leading up to the scenario through its tactical decision,
i.e. challenge (C3)?

• What are appropriate metrics for threat assessment
(VI-A) to appropriately capture the uncertainties of chal-
lenges (C1) and (C2), especially considering rareness of
events (related to challenge (C6))?

• How to assure the integrity of run-time methods: OOD
detection methods (VI-B), DRA (VI-C), run-time certifi-
cation (VII-B) and DSM (VII-C) in the light of the high
dependability requirements on the ADS (challenge (C6))?

• How well does DRA (VI-C) accommodate degradations
of the system (challenge (C5))?

• How to construct run-time contracts (VII-B) to appropri-
ately capture the uncertainties present in run-time (i.e.
challenges (C1) and (C2))?

3) Collecting closed loop data and handling the responsi-
bility of tactical decision allocated to the ADS:
• How to safely collect (large quantities of) closed loop

data (supporting the fulfilment of the high dependability
requirements of challenge (C6)) from FOTs (V-A), and
thereby support EVT (V-B) and provide input to precau-
tionary safety (VII-D), and how to account for the tactical
responsibility of challenge (C3)?

• How does the tactical decision responsibility of the ADS
(challenge (C3)) impact the DRA (VI-C), DSM (VII-C)
and precautionary safety (VII-D) methods?

4) Coping with AI/ML-based components: This category
of gaps corresponds to the column with challenge (C7) of
TABLE I.
• What are appropriate design and development processes

(IV-C) to incorporate and rely on AI/ML-based compo-
nents?

• What is the impact on scenario-based V&V considering
the non-interpolatable results when testing AI/ML-based
components?

• How to ensure validity when using formal methods (V-E)
for such components, especially in relation to the high
dependability requirements of challenge (C6)?

• How to compose contracts for AI/ML-based components,
both for contract-based design (IV-D) as well as run-time
certification (VII-B)?

• How to derive quantitative risk measures from such
components for the use in DRA (VI-C) and in turn for
DSM (VII-C), while also ensuring dependability of the
resulting outputs?

5) Scalability of method and patterns:
• How do contract-based design (IV-D), supervisor archi-

tectures (IV-E), formal methods (V-E), run-time certifica-
tion (VII-B), DRA (VI-C), degradation strategies (VII-A),
DSM (VII-C) and precautionary safety (VII-D) scale
when applied on a complex system such as the ADS (c.f.
challenge (C4))?

• How to best leverage FOTs (V-A) for providing safety
evidence of the system in relation to an agile develop-
ment process (challenge (C8)) and considering the high
dependability requirements of challenge (C6)?

C. Threats to Validity

This paper presents a holistic perspective on safety evidence
provision for an ADS and discuss methods related thereto. For
each of the methods discussed we draw upon a selection of
papers to support the view presented. Due to the diversity of
topics included in this paper, and the novelty and specificity
of the application (ADS), we eventually discarded explicit
systematic searches and methods, due to the vastness of
publications found through such an approach. Thus, two key
validity concerns for this work are: the lack of reproducability,
and the lack of proof for completeness and exhaustiveness. The
work of trying to systematise the search did however yield a
solid basis for further work, both in terms of a comprehensive
list of related work as well as resulting in the mindmap of
Fig. 2 providing structure to both the work with the survey as
well as for this paper.

Where applicable, we rely on literature surveys conducted
in the field to provide an overview of the respective areas. [67]
gives an overview of design processes for safety of AI/ML-
based components and [59] discuss qualitative processes in
relation to safety in general, giving support to the section
on qualitative process arguments of Sec. IV-C. For supervisor
architectures, we draw upon the results of [79, 82]. [10, 91]
give an overview of V&V methods for ADSs, guiding the dis-
cussions of Sec. V. The connection between operational data
and assurance methodologies is given in [76]. [8, 9, 10, 105]
provide insights into scenario-based V&V methods, whereas
we draw upon the works in [10, 108] for the section on formal
methods. As for the run-time risk assessment methods, dis-
cussed in Sec. VI: threat assessment techniques are discussed
taking support from [115, 116, 117, 118], whereas the survey
on open adaptive systems and run-time certification of [138]
helps us in the discussions on run-time certification as well as
dynamic risk assessment.

Based on these surveys we implicitly inherit completeness
with respect to at least those sub-topics. For other topics,
we have relied on snowballing [139] starting from one or
two prominent papers on the topic. We have naturally also
drawn upon the complementary expertise of the co-authors
for the covered areas. Taken together we believe that we have
presented an appropriate and representative view of each of the
discussed methods. Despite a possible lack of completeness
and exhaustiveness of this review, we believe that it provides
a representative and useful overview of the current challenges
present for safety evidence provision for ADSs. We further
believe that potential work overlooked would not have a
significant impact on the assessments of TABLE I nor the
derived research gaps above.

D. Future Work

In this paper the methods are discussed in isolation, whereby
their interaction and interplay have not been analysed in-depth.
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How well the methods work together, and how they can be
combined to address the challenges presented in this paper
have only been briefly discussed herein and are also suggested
for future work. Further, an analysis of which assumptions,
models and uncertainties that each method is imposing, con-
suming, and mitigating/leaving would be a reasonable next
step for further work. Finally, to understand the holistic safety
perspective on that level of detail, it will be paramount to also
include assurance methodologies, focusing on the organisation
and traceability of the arguments and evidence supporting the
assurance case, in such an analysis.

IX. CONCLUSION

In this paper we identify eight challenges pertaining to
the safety evidence provision for ADSs. Furthermore, we
analyse methods of the state-of-the-art in relation to these
eight challenges, thereby providing a holistic perspective of
the current progress of safety evidence provisioning for ADSs.
The results of the discussion are summarised in TABLE I,
where the ability of each method to mitigate the challenges
is given. Additionally, the challenges especially onerous,
with respect to each method, are highlighted. Supported by
these results, a list of research gaps are identified, grouped
into five major themes: VIII-B1 completeness of provided
safety evidence, VIII-B2 improvements and analysis needs,
VIII-B3 safely collecting closed loop data and accounting for
tactical responsibility on the part of the ADS, VIII-B4 coping
with AI/ML-based components, and VIII-B5 the scalability of
the approaches with respect to the complexity of the ADS.

We conclude that the existing methods provide a good base
for safety evidence provision, but there are several challenges
remaining when considering the complexity and novelty of
an ADS. Several methods need to come together to bridge
this gap. As a next step, we propose to include assurance
concepts (i.e. how to organise, trace and present the assurance
arguments and evidence into an assurance case) in the analysis
as well as expand such analysis to include assumptions and
models deployed by each method. Including these aspects will
help elucidate the interplay between the methods. Finally, we
suggest to analyse how and where, throughout the assurance
life-cycle of the ADS, that uncertainties originate and are
mitigated in relation to the analysed methods.
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