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Abstract

Wireless telecommunication is the backbone of mainstream technologies such as automation, smart vehicles, virtual reality, and

unmanned aerial vehicles. Today, we are witnessing a wide-scale adoption of these technologies in our daily lives. The endless

opportunities generated due to rapid deployments of new technologies have also brought about new challenges, chief among

them is ensuring reliable system performance of cellular networks in mobility scenarios. Beamforming is an integral part of

modern mobile networks that enable spatial selectivity and hence improved network quality. However, most of the beamforming

techniques are iterative; therefore, they introduce additional unwanted latency into the system. Lately, we are witnessing an ever-

increasing interest in exploiting the location of a mobile user to speed up beamforming. This paper comprehensively discusses

how location-assisted beamforming strategies improve performance, such as latency and signal-to-noise ratio. Furthermore, we

also show how artificial intelligence schemes such as machine learning and deep learning are also used to implement contextual

beamforming techniques that exploit the user’s location information.
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A Primer on Contextual Beamforming Techniques
that Exploit a User’s Location Information

Jaspreet Kaur, Olaoluwa R Popoola, David Owens, Daniela Petrovic, Muhammad Ali Imran, Qammer H Abbasi
and Hasan T Abbas

Abstract—Wireless telecommunication is the backbone of
mainstream technologies such as automation, smart vehicles,
virtual reality, and unmanned aerial vehicles. Today, we are
witnessing a wide-scale adoption of these technologies in our
daily lives. The endless opportunities generated due to rapid
deployments of new technologies have also brought about new
challenges, chief among them is ensuring reliable system perfor-
mance of cellular networks in mobility scenarios. Beamforming
is an integral part of modern mobile networks that enable
spatial selectivity and hence improved network quality. However,
most of the beamforming techniques are iterative in nature;
therefore, they introduce additional unwanted latency into the
system. Lately, we are witnessing an ever-increasing interest in
exploiting the location of a mobile user to speed up beamforming.
This paper presents a comprehensive discussion of how location-
assisted beamforming strategies improve performance, such as
latency and signal-to-noise ratio. Furthermore, we also show
how artificial intelligence schemes such as machine learning and
deep learning are also used to implement contextual beamforming
techniques that exploit the user’s location information.

Index Terms—Beamforming Classification, Adaptive and Con-
textual Beamforming, Machine and Deep Learning, Artificial
Intelligence.

I. INTRODUCTION

EVERY successive generation of cellular communication
has enabled technologies that allow increased data speeds

and capabilities by at least a factor of five [1]. The first
generation (1G) offered the very first cell phones, second-
generation (2G) enabled text message service, third-generation
(3G) enabled internet streaming, and chief amongst the high-
lights of the fourth-generation (4G) was the introduction of
broadband internet coverage. However, because of the rapid
increase in user demands, 4G networks have hit their capacity
limits, just as customers need more data for their cell phones
and other smart devices. We are approaching commercial de-
ployments of fifth-generation (5G) cellular technology, which
can carry thousands of times more traffic than currently
available networks and evolve ten times faster than long-term
4G development (LTE) [2]. We expect that the 5G cellular
networks will soon springboard large-scale deployment of
technologies such as augmented reality (AR), autonomous
vehicles, the internet of things (IoT), and more [3]. There
are five new 5G technologies that are at its core; full-duplex,
massive multi-input multi-output (MIMO), millimetre waves
(mmWaves), smart cell, and beamforming (BF). Smartphones
and certain other electronic gadgets employ radio frequency
(RF) frequencies that are typically less than 6 GHz [4],
[5]. Such frequencies are becoming increasingly congested
because different communication technologies and multiple

mobile carriers squeeze the frequency from the small spectrum
out of the industrial, scientific and medical (ISM) band. Mobile
phone carriers can fit only so many bits of data onto the
same amount of RF spectrum. Slower services and more lost
connections will become more common as more devices come
online [6]. The answer is to create a new frequency spectrum.
Researchers have investigated GHz ranging from 30 to 300
GHz [6]. Although satellite communication has been taking
place in this millimetre wave frequency band for a while, only
recently have we started to see mobile communications ex-
ploiting the millimetre wave. As a result, more bandwidth has
opened up to everyone. However, there is a problem associated
with it, the roots of which lie in the underlying physics of the
propagation of electromagnetic waves (EM). Despite offering
a larger frequency spectrum for communications, the use of
millimetre waves comes with a major challenge. mmWaves,
unlike lower frequency bands, cannot pass through houses and
other obstructions and are lost to the environment [7]. Smart
cell networks are required to overcome this problem. Large
high-power cell towers can now transmit their information
over long distances due to current cellular connections [8], [9].
However, higher-frequency mm waves cannot travel through
obstacles, which means if the user is not within line of sight,
then the user experiences a significant drop or a complete
loss of communication signal. Thousands of small low-power
access points (APs) can be used in a smart cell network to
solve this problem [10], [11]. These APs will not only be
substantially closer but they will also be spatially grouped
in a relay to carry signals around obstructions. This method
eliminates reliance on LOS and will be particularly effective in
urban areas. When the user equipment (UE) travels behind an
obstruction, it will immediately switch to a new AP, ensuring
that cellular service is uninterrupted. Today modern 4G BSs
include twelve ports for antennas that handle all data traffic (a
port is a phrase for signal transmission under identical channel
circumstances). Massive MIMO can, in spite of its drawbacks,
multiply the capacity of a mobile adhoc network by a factor
of 22 or more [11], [12]. Massive MIMO, on the other hand,
has its drawbacks [13], [14].

To communicate over a time-division multiplexing system,
UE must take turns whilst speaking and listening, which not
only lengthens the whole communication but makes the entire
process inefficient. In today’s cellular BSs, an antenna can
either broadcast or receive at any fixed instant. Although
multiplexing can be used to increase performance, transmit
and receive signals are typically propagated at different fre-
quencies. Current cellular antennas send data in all directions
at the same time, potentially causing major interference [15]–



2

Fig. 1. Illustration of BF according to the scenario (rural, semi-urban, urban, highway).

[19]. For example, Fig.1 shows the illustration of BF (signal in
all directions at once) in rural, semi-urban, urban and highway
areas.

In this paper, we discuss some of the unique features of
BF chief amongst them how BF can free up the frequency
spectrum through full-duplex communication. In Section I,
we present a preliminary discussion of BF, followed by
discussions of the types of BF by the antenna and system
design in sections II and III respectively. The advanced BF
techniques consisting of adaptive BF algorithms, contextual
BF and location-assisted BF have been reviewed in Section V.
Section VI discusses how artificial intelligence can assist to
mitigate the challenges of BF adaptive systems following the
conclusion in section VIII.

II. BEAMFORMING

Cellular networks can use BF as a signalling technique.
Rather than radiating an omnidirectional beam which is inef-
ficient, BF enables a transmitter to generate a directed signal
to a given user [20]. This accuracy eliminates interference and
improves communication efficiency, allowing BS to handle
more traffic at any given time. For instance, consider a person
trying to make a phone call in a group of buildings. The
EM waves from the phone antenna reflect or bounce off the
buildings nearby, crisscrossing with signals from other nearby
users. All of these signals are received by a massive MIMO
BS, which keeps track of their arrival time and direction. It
then triangulates where each signal is originating from using
signal processing methods and maps the optimal transmission
back to each phone over the air. To protect the signals from
interfering with each other, it will sometimes bounce off indi-
vidual packets of data in various directions from infrastructures
and other objects. The end result is a logical data stream
that is sent only to the primary user [11], [21], [22]. This
is a multidimensional problem that researchers are actively
studying in order to optimise mobile communication. In this
paper, we discuss some aspects of BF that can potentially
help and reduce conflicts arising due to signal interference as
described in [78]. Along with the classification of BF that has
been done according to antenna design, system design, and
advanced techniques and are shown in Fig.2.

Fig. 2. Classification of BF.

III. TYPES OF BF BY SYSTEM DESIGN

Before discussing types of BF, it is essential to understand
how an antenna array plays a crucial role in BF. An antenna
array is a group of several antenna elements that help to gener-
ate a directed signal [24]–[28]. It is a means of concentrating
radio frequency energy in a specific direction or where the
client or user is located [29]–[31]. Static BF, dynamic BF,
and transmit BF are the three main types of BF.

A. Static Beamforming
BF in the static sense is carried out with the help of multiple

directional antennas that are aimed away from the centre to
provide fixed radiation patterns [25], [30], [32]. It is usually
done with an indoor sectorized array where a sector antenna
(a form of directional microwave antenna that radiates in a
sector-shaped pattern). A sectorized antenna has very low back
lobe levels, hence interference is very low with other channels.
For instance, if one sector antenna covers 60 degrees of the
area and emits radiation on channel 1 and the other sector
antenna covers other 60 degrees of the area and likewise,
multiple sector antennas can be used to cover a complete
360 degrees or the whole area over different channels such as
6, 11, and so on. Stacking together multiple antennas covers
a wider area known as static BF. By simply working non-
overlapping transport channels (medium), the interference is
reduced by using sector antennas. This could be considered a
major advantage of sector antenna BF.

B. Dynamic Beamforming
There are many similarities between dynamic and static

BF, except for the fact that in the former, we can adjust
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Fig. 3. Illustration of dynamic and static BF at different time instances.

or reconfigure the radiation pattern to cater to the optimum
signal/beam for every UE. It employs an adaptive antenna
array to steer a beam/signal toward the intended user or
receiver. Smart antenna technology or beam steering are a few
other terms for this concept because of its properties, that is,
the beam is directed at the target client/user.

To understand this, let’s consider three scenarios. The first
scenario assumes an ideal case in which no BF is associated.
An omnidirectional antenna access point serving 3 clients is
placed by emitting radiation at a particular frequency. Clients
are receiving and able to transmit signals to and from the
access point. Sometimes, there is another transmitter in the
vicinity of this scenario that transmits at the same frequency,
causing interference in the signal and resulting in data loss.
To overcome this interference problem, dynamic BF comes
into play as has been incorporated into the IEEE 802.11n
standard. The second scenario assumes how dynamic BF helps
to overcome the problem that occurred in the first scenario.
The access point is enabled to perform dynamic BF, so it
can form narrow beams instead of covering a wider area or
broader beam by sensing the links to serve the clients in the
vicinity. This way, it would not affect the signal as there is
no data loss due to the absence of interference of signals
from the transmitter. Due to the shorter beam width of these
narrow beams, the concentration is higher. As a result, the
power consumption is also lower and supports a high data
rate. However, this is not always the case, sometimes during
transmission, the interference persists (because of the change
of direction of radiation from transmitters). So, here is the
third scenario that assumes the practicality or dynamicity of
dynamic BF. The signal emitted from an access point can
change its beam path in such a way that the client is served
without interference caused by the transmitters. Regardless of
such advantageous techniques, there are only a few vendors
that support this BF [32]. The figure 3shows that, in discrete
instances, a beam projected toward a designated receiver using
an adaptive array could be easily handled using dynamic BF
instead of static BF. The user at time t1 gets the signal from
the base station in static and dynamic BF. However, at time
t2, only in dynamic BF, does the user get the signal. Beam
steering or smart antenna technology are other names for this
technology. Only the transmission station has access to this

Fig. 4. Basic block diagram of analog BF.

capability.

C. Transmit Beamforming

In transmit BF, a series of out-of-phase beams/signals with
the aim of in-phase signals arriving at the receiver side [33]–
[35] are generated. For example, if a signal is transmitted
through multiple antennas, multiple paths may be required
to reach the receiver in phase. Due to the phase matching,
we observe an increase in the overall gain and, therefore, the
received signal amplitude is increased as well. However, if
the signal reaches the receiver end out of phase, then the
signal faces amplitude cancellation as well as gain reduction.
Transmit BF is a process in which the access point transmits
the signal with phase shift so that it can reach the receiver
in phase. These phase-shifted signals will add up and result
in high amplitude and gain. Transmit BF, unlike dynamic
BF, neither alter an antenna’s radiation pattern nor produce
a directional beam. Therefore, the former is a digital signal
processing technique, not an antenna technology. It replicates
the sent signal on several antennas to provide a combined
signal that is optimised for the user. In short, transmit BF
is about adjusting the phase transmission, and can be done
explicitly or implicitly [36].

IV. BF BASED ON ANTENNA DESIGN

The above-mentioned types can be considered while on the
antenna front end. However, in the era of massive MIMO,
BF is its subset. BF in massive MIMO is classified as
analogue, digital, and hybrid BF. The distinction between them
is explained in detail as follows:

A. Analog Beamforming

Analog BF is the simplest type of BF with less complex and
low power consumption electronics back end. Fig.4 shows the
block diagram for analog BF, which consist of a Digital signal
processor (DSP), RF chain, splitter, and N-phase shifter.

The beam is regulated by analog phase shifters and a shared
RF source is shared between many antenna elements [37].
After the digital to analog converter (DAC) at the transmitter
side, the amplitude/phase modulation is introduced on the
analog input, and the signal received from separate antennas
is merged before applying to the analog to digital converter
(ADC) at the receiver end [38]. In analog BF, a single RF
chain is used with a power combiner (receiver side), power
divider (transmitter side), and a series of phase shifters, one
with each antenna port. However, only a single beam of the
signal can be produced with this approach and this ability to
transmit in direction of of the user at a given time hinders the
BF use. In other words, a single beam is created with a phase
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Fig. 5. Basic block diagram of Digital BF

delay, or time delay applied to each antenna element. By using
phase shifters and/or variable gain amplifiers (VGAs), complex
coefficients or weights are used to modify RF signals. On the
transmitter side, DAC converts the coded baseband in-phase
and digital bit streams to continuous-time analog signals.
The analog signal is passed by a low pass filter to sup-
press out-of-band spectral contents. This filtered signal is
then modulated with a high-frequency carrier signal or local
oscillator (LO) signal using a mixer. A mixer is a nonlinear
component and produces harmonics at a higher frequency
which reduces signal power as well as might interfere with
other communication links. However, an appropriate bandpass
filter helps to mitigate this effect. At last, the signal is
amplified using a power amplifier to enhance the signal power
to the desired level and then transmitted through the antenna.
analog BF is further classified into analog RF BF, analog LO
BF, and analog baseband BF depending on the position of
the phase shifter. These topologies have their benefits and
drawbacks dependent on the performance characteristics of the
phase shifters and their frequency-dependent characteristics.
analog BF is a simple and effective way to generate high
BF gains from a large number of antenna elements in an
array. However, it has fewer beams and less multiplexing to
gain flexibility. Time-domain BF is mainly implemented using
analog BF techniques. Analog BF technique can be achieved
by tunable phase shifters, switchable lens antenna, or using
different circuit-switched techniques [39].

B. Digital Beamforming

The RF signals are processed using a digital signal pro-
cessing system in digital BF, which allows more flexibility
and degrees of freedom to construct efficient BF algorithms.
Digital BF is accomplished by multiplying a certain coefficient
by the modulated baseband signal per RF link using digital
precoding. The digital BF transceiver may direct beams in a
theoretically limitless number of directions at the same time
because of precoding in the digital domain [79]; however,
these are not identical. Precoding pertains to the software
implementation of the communication concept. It entails in-
dividual management of the amplitudes and phases of the
signals sent from the multiple transmit antennas, as well as the
optimisation of the information stream to leverage broadcast
diversity. On the other hand, the term BF is more related to
hardware implementation and antennas and can be applied to
both the transmitter and receiver sides [34].
In digital BF, precoding and BF are implemented together
to efficiently focus the energy on the desired receiver. At
the transmitter, precoding associates channel state information
(CSI), which involves delivering a coded message to the

Fig. 6. Basic block diagram of Hybrid BF

receiver. In turn, every user sends their individual CSIs back to
the transmitter. The feedback signal is then utilized to create
a precoding matrix for the data transfer that follows [40]. The
N-RF chains in digital BF are equivalent to the number of
antennas involved, thus it provides high flexibility and BF
gain in rich multi-path environments. Fig.5 shows the block
diagram for Digital BF which consists of a Digital signal
processor (DSP), N-RF chains followed by antenna assembly.
Nevertheless, digital beamformers are complex, expensive, and
power-hungry. This is due to the fact that ADC consumes an
equal amount of power/energy like a thousand logic circuits.
Moreover, in the implementation of digital baseband algo-
rithms as a result of Moore’s law (claiming that the transistors
on an integrated circuit are doubled every two years), the
power consumption in ADC is still about three times higher
than that of the other electronic circuitry. However, there are
certain advantages of digital BF over analog BF such as high
resolution, low side lobes, greater flexibility in power and time
management, spectral efficiency, and high system [41].
Digital BF is implemented primarily for frequency domain BF.
Digital BF has proven helpful in various applications such
as speech, sonar, wireless communication, radio astronomy,
radar, acoustics, biomedicine, seismology, as well as beyond
5G communication [41]–[43]. Table Iillustrates the key dis-
tinctions between analog and digital BF.

C. Hybrid Beamforming

To intelligently construct beam patterns over a wide antenna
array, hybrid BF combines analog BF with digital precoding.
A network of analog components like switches and/or phase
shifters integrate a limited set of RF chains to a multi-antennas
in hybrid BF. Fig. 6 shows the block diagram for Hybrid BF
which consists of a Digital signal processor (DSP), n X m RF
chain, n X m splitter, n X m phase shifter followed by antenna
assembly. The main goal of hybrid BF is to increase the multi-
user total rate while maintaining hardware prices, complexity,
and power consumption within acceptable limits. The N-RF
chains are more than one but mainly less than the multi-
antennas. It provides sharp beams with phase shifters and
switches in the analog waveform and flexibility in the digital
domain. Thus, a combination of the low hardware cost and
low complexity of analog BF, along with the high resolution,
gain, and flexibility of digital BF makes hybrid BF an efficient
choice for a cost- and energy-efficient system. A comparison
between hybrid and digital BF in terms of power and hardware
cost is reported [34], [36].
Hybrid BF is further categorised into sub-connected and totally
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TABLE I
COMPARISON BETWEEN ANALOG AND DIGITAL BF.

Analog BF Digital BF
Adaptive transmit/receive weights at RF to
form beam Adaptive transmit/receive weights at baseband

One transceiver unit and one RF beam with
high antenna gain

Each antenna element or antenna port has a transceiver
unit, high number (>8) of transceiver units.

”Frequency flat” beam forming ”Frequency selective” beam forming

Best for coverage (due to low power
consumption & cost characteristics)

Best for capacity and flexibility (subject to high
power consumption & cost characteristics when
bandwidth increases)

connected architectures. Every RF chain is only linked to a
subset of the existing antennas in the sub-connected configura-
tion. Every UE’s data from multi-beams is digitised/precoded
before being delivered to the analogue BF through an RF
chain. After then, the signal is transmitted with a sub-array of
antenna elements. The sub-connected architecture is simpler
and more power-efficient than a fully connected one, but
it is less spectral efficient [44]. Each RF chain in a fully
integrated design is linked to all antennas [38]. The signal is
precoded and processed by each RF chain before being sent
through a common analogue BF unit to each antenna element
in the array. This approach results in high performance but
creates high complexity and high energy consumption [44].
Both architectures have trade-offs in terms of complexity and
gain. The number of signal processing paths in fully connected
architecture is proportional to the square of the N-RF chains
involved with greater spectral efficiency but high complexity,
whereas for sub-connected arrays the gain is reduced by a
factor of the inverse of the number of RF chains.

V. ADVANCED BEAMFORMING TECHNIQUES

An adaptive beamformer is a tool for performing adaptive
spatial signal processing using an array of transmitters or re-
ceivers. The signals are integrated in such a way that the signal
intensity to and from a specific direction is increased. Signals
from and to other directions are combined constructively or
destructively, resulting in degradation of the signal from and
to the undesired direction. This method is utilised in both RF
and acoustic arrays to achieve directional sensitivity without
physically changing the receivers or transmitters [45]–[47].
Adaptive BF was first developed in the 1960s for military
sonar and radar applications. There are various modern ap-
plications for BF, with commercial wireless networks such as
long-term evolution (LTE) being one of the most noticeable.
Adaptive BF’s first applications in the military were primarily
focused on radar and electronic countermeasures to counteract
the effects of signal jamming. In phased array radars, BF
can be seen. These radar applications use either static or
dynamic/scanning BF, however, they are not truly adaptive.
Adaptive BF is used in commercial wireless standards such
as 3GPP LTE and IEEE802.16 WiMAX to enable important
services within each standard [48]. The concepts of wave
transmission and phase relations are used in an adaptive BF
system. A greater or lower amplitude wave is formed, for
example, by delaying and balancing the received signal, using
the concepts of superimposing waves. The adaptive BF system

is adaptive in real-time to maximize or minimize desirable
parameters including signal-to-interference ratio and noise
ratio (SINR). There are numerous approaches to BF design,
the first of which was achieved by Applebaum in 1965 by
increasing the signal-to-noise ratio (SNR) [49]. This method
adjusts the system parameters to maximize the power of the
received signal while reducing noise (jamming or interfer-
ence). Widrow’s least mean squares (LMS) error method and
Capon’s maximum likelihood method (MLM) introduced in
1969 are two further approaches. The Applebaum and Widrow
algorithms are quite similar in that they both converge on the
best option. However, these strategies have difficulties in terms
of implementation. Reed demonstrated a technique called sam-
ple matrix inversion (SMI) in 1974 [50]. Unlike Applebaum
and Widrow’s approach, SMI determines the adaptive antenna
weights directly [45]–[47].

A. Adaptive Beamforming

The Weiner solution can be used to create statistically
optimal weight vectors for adaptive BF in data-independent BF
design methods. On the other hand, the asymptotic 2nd order
statistics of SINR were assumed. Statistics fluctuate over time
in cellular networks where the target is mobile and interferes
with the cell area. An iterative update of weights is required
to follow a mobile user in a time-varying signal propagation
environment [20]. This enables the spatial filtering beam to
adjust to the time-varying DOA of the target mobile user and to
provide the desired signal to the user. To address the challenge
of statistics (which can vary over time), adaptive algorithms
that adapt to changing environments are frequently used to
determine weight vectors. The functional block diagram of
an adaptive array of n elements includes an antenna array of
n elements and a digital signal processor with a feedback
and/or control loop algorithm. The signal processing unit
receives the data stream gathered by an array and computes the
weight vector using a specific control method. The adaptive
antenna array is divided into two categories: a) steady-state
and b) transient state. These two categories are determined
according to the array weights of stationary environment
and time-varying environment. If the reference signal for the
adaptive method is known from prior information, the system
can update the weights adaptively through feedback [37]. To
change the weights of the time-varying environment at every
instance, several adaptive algorithms (mentioned in the further
section) can be utilized. Fig.7 shows the block diagram for
adaptive BF which consist of a digital signal processor (DSP),
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Fig. 7. Basic block diagram of Adaptive BF

RF chain, splitter, and N-phase shifter followed by antenna
assembly along with an adaptive system providing feedback
to shifters.

1) The Least Mean Square Algorithm: The least mean-
square (LMS) algorithm is a popular adaptive filtering method
that is utilised in a variety of communication systems [49],
[51]–[53]. It has low computing complexity and has been
demonstrated to be reliable because of its widespread use. It
iteratively minimises the mean-square error by incorporating
fresh observations. The LMS algorithm updates the weight (w)
with the expected gradient direction using the negative steepest
descent strategy [54]. The operation of the LMS algorithm is
depicted in the block diagram in Fig.8.

Fig. 8. Schematic of minimum mean squares error system

The approximation of the gradient vector is based on the
input vector x(k). For each k in :

e(k) = d(k)− wH(k)x(k)

w(k + 1) = w(k) + µe∗(k)x(k)
(1)

where K is the adaptation index, d(k) is the reference
signal, e(k) is the error between d(k) and the output of the
weighted matrix, and µ is a scalar constant that regulates
the convergence rate and the stability of the algorithm. To
provide stability in the mean squared sense, the step size µ
in the interval should be in the range 0 ≤ µ ≤ 2

λmax
for

λmax ≤ trace Rxx

where δmax is the maximum eigenvalue of Rxx and Rxx

is the total input power. It takes around 2N complex multi-
plications/iteration. where N is antenna elements in an array.
If the eigenvalue spreads (which happens when convergence
is slow), the LMS algorithm may not converge to the optimal

solution due to a lack of enough iterative weights, but real-
time adaptation to a time-varying environment is impossible.
It is necessary to have a sufficient understanding of the desired
signal. This approach is inapplicable, particularly for fast-
fading conditions.

2) The Recursive Least Squares Algorithm: The weight
vector w(k) is chosen in the least-squares technique to min-
imise a cost function comprised of the sum of squares of the
error with respect to time, i.e., the least square (LS) solution
is minimised recursively [20], [37].

Algorithm 1 The recursive least square algorithm [62]
For each k
{
K(k) = R− 1(k − 1)x(k)
K(k) = k(k)/ δ +xH(k)K(k)
R− 1(k) = 1/δ [R− 1(k − 1)−K(k)H(k)/(δ
+ xH(k)K(k))]
e(k) = d(k)− wH(k)x(k)
w(k + 1) = w(k) + µ e∗(k)x(k)
}

where R− 1(0) = δ − 1 I, δ is a positive constant and I is
the identity matrix N ×.

As a result, the convergence rate is generally faster than that
of the basic LMS method. Each iteration of the algorithm 1
necessitates 4N2+4N +2 complex multiplications. where N
is antenna elements in an array. In a finite-precision environ-
ment, this algorithm faces significant divergence behaviour, a
stability challenge, high cost, and complexity [52], [56]–[59].

3) The Constant Modulus Algorithm [62]: The complex
envelope of various phase-modulated/frequency communica-
tion signals, such as frequency modulation and continuous
phase frequency shift key modulation, is constant. Signals
can use prior knowledge of this characteristic to design an
adaptation approach for obtaining a desired static response
from the array for a variety of communication applications.
It is appropriate for transmitting a baseband signal over a
wireless medium since noise and interference degrade the
desired constant modulus (CM) characteristic of the signal.
The CM property of a signal travelling through a frequency
selective channel is almost always lost. Modifies the weight
vector of the adaptive array to reduce the variance of the
intended signal in the array. Once the convergence of the
algorithm is over, a signal is pointed in the desired direction,
and the null signals are inserted in the interfering sites [51],
[52]. The convergence of the algorithm is determined by the
coefficients p and q. The CM algorithm search for a weight
vector that reduces the cost function of the form:

Jp,q = ϵ{||y(k)|p− 1|q} (2)

where p and q produces a special cost function called the
(p, q) CM cost function. The algorithm 2 is a pseudocode for
the CM (p = 1, q = 2) algorithm. The goal of CM BF is to
convert the array output y(k) to a constant envelope signal.
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TABLE II
COMPARISON OF THE LMS AND CM ALGORITHM.

LMS Algorithm CM Algorithm
d(k) is important y(k)/|y(k)| is important
The reference signal d(k) must be sent from the transmitter to the receiver
and must be known for both the transmitter and receiver.

The reference signal is not required to generate the
error signal at the receiver.

For each k
{
e(k) = d(k) - wH(k)x(k)
w(k+1) = w(k) + µ e*(k)x(k)
}

For each k
{
y(k) = wH(k)x(k)
e(k) = y(k)/|y(k)| - y(k)
w(k+1) = w(k) + µe*(k)x(k)
}

Algorithm 2 CM Algorithm [62]
For each k
{
y(k) = wH(k)x(k)
e(k) = y(k)/jy(k)j − y(k)
w(k + 1) = w(k) + µ e∗(k)x(k)
}

where k is the adaptation index, x(k) is the input data vector,
e(k) is the error between y(k)/|y(k)| and weighted array
output y(k), µ is the step size and e∗(k) is the conjugate of
e(k). Table IIrepresents the differences between the LMS and
CM 2 algorithms.

4) The Affine Projection Algorithm: The affine projection
(AP) method can be thought of as a generalised data reuse
algorithm that can reuse any number of data pairs [60]. Adjusts
its coefficients vector so that the new solution is located at
the intersection of the P hyperplanes defined by the current
and P − 1 prior data pair x(i), d(i), ki = k − P + 1.The
AP algorithm was developed using the following optimisation
criterion:

w(k + 1) = arg min||w − w(k)||2

subject to d(k) = XT (k)w∗ (3)

where d(k) = [d(k), d(k − 1), ..., d(k − P + 1)]H and
X(k) = [x(k), x(k − 1), ..., x(k − P + 1)]

Algorithm 3 The AP Algorithm [62]
For each k
{
e(k) = d(k)−XT (k)w ∗ (k)
t(k) = [XH(k)X(k) + δ I]− 1e∗(k)
w(k + 1) = w(k) + µ X(k)t(K)
}

where k is the adaptation index, x(k) is the input data
vector, d(k) is the reference signal, δ is the small positive
constant, I = NxN , e∗(k) is the conjugate of e(k). A step
size mu is introduced to manage the stability, convergence,
and final error, where 0 < µ < 2. A diagonal matrix delta I
is used to regularising the inverse matrix in the procedure to
improve robustness [58], [61].

5) The Quasi-Newton Algorithm: The recursive least square
(RLS) algorithm’s rapid convergence is calculated on the basis
of the inverse of the correlation coefficients R-1(k), which
must be symmetric and positive for the process to stay stable.
On the other hand, the introduction of infinite precision may
cause R-text1(k) to become indefinite. The quasi Newton
(QN) algorithm is one algorithm that has a convergence speed
equivalent to the RLS algorithm but is guaranteed to be stable
even under high input signal correlation and fixed-point short
word length arithmetic. The weight vector is updated in the
QN algorithm as follows:

w(k + 1) = w(k) + µ(k)h(k) (4)

where mu(k) is the step size determined by an accurate line
search and h(k) is the update direction determined by,

h(k) = −R− 1(k − 1)
∂Jw,w∗

∂w∗
(5)

where the cost function, Jw,w∗ = |e(k)|2 is an precise line
search that gives a step size µ (k) = 1

2x HR− 1(k − 1)x(k)
as a rough estimate of R-1(k-1). This makes it robust, as it
maintains positive definiteness even when input signals are
strongly linked and word-length arithmetic is small.

Algorithm 4 QN Algorithm [62]
For each k
{
e(k) = d(k)− wH(k)x(k)
t(k) = R− 1(k − 1)x(k)
τ (k) = xH(k)t(k)
µ(k) = 1

2τ(k)
R− 1(k) = R− 1(k − 1) + [µ (k) - 1]t(k)tH(k)/τ (k)
W (k + 1) = w(k) + α (e*(k)/τ (k)) t(k)
}

In the algorithm4, α is the positive constant and It’s used
to manage convergence speed and misadjustment. For 0 < α
< 2, convergence in the mean and mean squared sense of the
weight matrix is assured if R − 1(k − 1) is positive constant
[60].

Optimal BF strikes a balance between giving maximum
power to a single user while decreasing or eliminating signal
interference at other users. When the maximum ratio transmis-
sion (MRT) BF technique is used in an MU-MIMO system,
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the transmitter transmits a beam to every user according to its
weight vector. The resultant power received by each user for
the signal intended for that user is calculated as the product
of the channel gain and weight vector. Because the MIMO
system transmits to multiple users at the same frequency,
a critical performance metric for the system is the signal-
to-interference-plus-noise ratio (SINR) for each user. This
concept has been proved in [78] that shows how SINR can
be significantly improved by 28.83 dBm and/ or 53% (Fig. 9)
by using MRT in comparison with no BF.

Fig. 9. SINR comparison of MRT with No-beamforming in University campus
scenario

B. Contextual Beamforming

The capacity to forecast the receiver’s next location based
on previous movements is useful for creating intelligent ap-
plications like automobiles, robotics, augmented/virtual reality
etc. The advancement of location prediction apps and services
is enabled by the growth of methodologies for predicting
and projecting the receiver’s position in the future [62]. A
wireless system, in general, controls a location-predicting
framework by capturing and communicating critical data prior
to application. The sender must be able to determine the
receiver’s location at any given time to interact effectively
with them. Machine learning (ML) methods have already been
used to predict the receiver’s location. Context is created by
recording, processing, and transcribing the receiver’s status
data at a certain time. Several machine learning algorithms,
such as DNN, CNN, GAN, and others, have been recog-
nised as aiding in the technological advancement of location
forecasting. Furthermore, depending on the application, ma-
chine learning algorithms can be modified and customised to
match their objectives [80]. The majority of existing mmWave
beam tracking research is focused on communication-only

protocols. The unusual beam tracking technique necessitates
the transmitter to send information to the receiver, which
then determines the angular position and delivers it to the
transmitter again. It is worth noting that in high-mobility
communication circumstances like the one depicted in Fig.10,
it is insufficient to just follow the beam. To achieve the crucial
latency requirement, the transmitter should be able to predict
the beam [63]. The state prediction and tracking designs in
Fig.11 are based on the classic Kalman filtering process.

C. Location-assisted predictive Beamforming

The prior information on the location of the user can enable
the system to work more efficiently. The sorting of the prior
information can reduce energy footprints. As an example,
the branch predictor [64], [65] in computer architectures can
improve the flow in the instruction pipeline to achieve high
effective performance. In the case of location aided or location-
aware BF, a similar concept has been seen. Fig.12 shows the
block diagram for predictive or location-assisted BF which
consist of a digital signal processor (DSP), RF chain, splitter,
and N-phase shifter followed by antenna assembly along with
a feedback loop providing current target user location to
shifters.

Line of sight (LoS) communication in mmWave transmis-
sion systems provides multi-gigabit data transmission with
BF toward the user direction to mitigate the substantial
propagation loss. However, abrupt performance degradation
caused by human obstruction remains a major issue, thus using
possible reflected pathways when blocking occurs should be
considered [66]. With the development of ultra dense wireless
communication in 5G compared to earlier mobile generations,
5G has significantly higher requirements. 5G is expected to
have a capacity of up to 7.5 Tbps/km2, a data rate of up
to 1 Gbps in downlink (DL) and 500 Mbps in uplink (UL),
and significantly higher demands for angular resolution in DL,
according to technical standards. Moving user equipment (UE)
with speeds up to 0.5 m/s must have an angular resolution of
less than 5°, moving UE with speeds up to 10 km/h must
have an angular resolution of less than 10°, and static UE
must have an angular resolution of less than 30 °, according to
3GPP. Massive MIMO, Direction of Arrival (DoA) estimates,
and BF are expected to meet these requirements. The use
of DOA and BF together allows for reliable and spectrally
effective communication to the required location. DOA is
a digital signal processing that calculates the direction of a
corresponding incoming signal’s originating location. BF is a
strategy for directing a maximum antenna radiation pattern
(ARP) into the desired bearing direction, while ARP nulls
are aimed at interfering sources. The fundamental task of
a 5G application is to direct the main lobe of an antenna
positioned on an access node (AN) towards the UE. Ultra-
dense 5G networks are expected to be made up of densely
scattered AN, allowing the widespread use of location-aware
BF and interference mitigation techniques to take advantage
of the spatial dimension. Short user environment area network
(UEAN) distances in a packed environment resulted in higher
levels of interference, while network densification enhances
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Fig. 10. Base station to vehicle scenario

Fig. 11. A standard procedure based on the Kalman filter.

Fig. 12. Basic block diagram of Location-Assisted BF

the chance of LoS and, as a result, leads to more accurate
UE placement. The possibilities for acquiring and utilizing
UE location data enable the use of spatial dimension by BF
and interference reduction. The accuracy of the radio network
positioning systems currently available is substantially inferior
to that of fibre optic communication systems in radar stations
and atomic clock-based satellite navigation systems. Future
5G networks, on the other hand, are expected to provide
positioning accuracy on the order of one meter. The goal
of this study is to calculate positioning accuracy in 3D
using DoA measurement processing and then implement it
in real-world location-aware BF environments [67]. Table III
shows recent literature on location-aided BF. The location-
aware system has been developed by considering the location
unaware systems with benchmarking techniques by [68]. Also,

conventional beamforming algorithms had been improved by
opportunistic BF with channel delay information as feedback
to smart antennas [69]. The authors of [70] review a low-
complexity shrinkage-based mismatch estimation batch algo-
rithm to estimate the desired signal steering vector mismatch,
in which the interference-plus-noise covariance matrix is also
estimated by a recursive matrix shrinkage method. whereas,
[71] employs a two-stage design approach; the first stage
considers the beamforming design, and the second stage
considers adaptive power allocation, and modulation designs
for fixed beamforming. They [71] propose a novel and general
approach to derive the statistical distribution of signal to noise
ratio (SNR) by exploiting the structure of the array, the BF
type and slow fading channel coefficients, and utilize the
derived SNR distribution to design the power and modulation
adaptation strategies. The scheme in [72] allows the UE and
the base station to perform a coordinated beam search from a
small set of beams within the error boundary of the location
information, the selected beams are then used to guide the
search of future beams. [73] propose an end-to-end deep
learning technique to design a structured CS matrix that is
well suited to the underlying channel distribution, leveraging
both sparsity and the particular spatial structure that appears in
vehicular channels. [74] describes that current mmWave beam
training and channel estimation techniques do not normally
make use of the prior beam training or channel estimation
observations. Further, [75] identifying the optimal BF vectors
in large antenna array mmWave systems requires considerable
training overhead, which significantly affects the efficiency of
these mobile systems.

VI. BEAMFORMING AND ARTIFICIAL INTELLIGENCE

In multi-user multiple-input-single-output (MISO) systems,
BF is a useful way to increase the quality of incoming
signals. Finding the best BF solution has traditionally relied
on iterative techniques, which have a significant processing
delay and are hence unsuitable for real-time application [77].
With recent improvements in deep learning (DL) algorithms,
it is now possible to identify the best BF in real-time while
accounting for both performance and computational delay.
This is due to the fact that the DL approach trains neural
networks offline before deploying them for online optimiza-
tion. When the trained neural network is used to identify the
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TABLE III
RESEARCH ON LOCATION AIDED BF.

Journal Year Method/Approach
[68] 2009 Bench-mark position unaware systems with respect to position aware systems.

[69] 2012 The conventional OBF can be improved by contextual information of location
and speed and can obtain high gain.

[70] 2016 LOCSME robust adaptive BF method has been improved to a
low-complexity adaptive robust adaptive BF algorithm i. e. LOCSME-CG.

[71] 2020 For the 5G V2I network, adaptive BF, power allocation, and
modulation architecture has been suggested.

[72] 2019
A coordinated beam alignment algorithm that takes advantage of the UE’s
noisy position data and possible reflection points and the algorithm will
dramatically increase the beam alignment speed.

[73] 2019 Deep learning can be used to optimize the base matrix in 2D-CCS as a guide.

[74] 2018
The covariance matrices as images in our machine learning model has
treated and used the conditional generative adversarial networks to learn
the significant characteristics of these images.

[75] 2018 A deep learning model that learns the mapping from omni-received uplink
pilots and the beam training result.

Fig. 13. A Basic Architecture of a deep neural network that consists of input (extracted features), neural layers(as per required framework), output (desired
results) and a feed for post-processing.

optimal BF solution, the computational complexity is moved
from online optimization to offline training, and only simply
linear and nonlinear operations are required, minimizing the
computational complexity and time [77]. The deep learning-
based neural network architecture for BF is shown in Fig.13
consisting of input, neural layers, and output to extract the
features for further processing.

Multiple pathways in complicated indoor or outdoor con-
texts create additional issues due to propagation loss, noise,
and Doppler effects. After collecting large volumes of LoS
and NLoS data, Chong Liu’s method is to deploy a machine
learning regression method that is based on efficient BF
transmission patterns to predict the position of users on the
move [76].

VII. CONCLUSION

In this study, we first discussed the evolution of telecom-
munication services from the first to the fifth generation,
with a focus on beamforming (BF). Through which many
users can be served simultaneously in a desired direction.
We provided an overview of advanced adaptive BF in which
artificial intelligence techniques such as deep learning (DL)
can be used. More importantly, we have shown that with access
to contextual information such as prior user location, a wireless
network’s performance can be improved by through deep
learning techniques. With the development of exciting new

technologies such as edge computing and federated learning,
we believe that the next generation mobile networks will
unlock new opportunities. The communication systems will
continue to evolve as closed loop systems where data extracted
by observing a mobile user will be exploited to improve
connectivity and network performance such as the signal to
noise ratio (SNR). We have touched upon some of the studies
already under way that can harness a user’s location, and
develop a DL-enabled contextual beamforming strategy that
can improve the SNR by 53% on average.
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