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Abstract

The emergence of Internet of Vehicles (IoV) has facilitated many attractive vehicular applications that require massive sensed

data and timely data analysis. Data collection and resource allocation are critical issues in IoV for timely data processing

in dynamic network environments. However, the energy consumption of IoV infrastructure and vehicles pose challenges to

developing sustainable vehicular communication and networking infrastructure. Moreover, the communication and computing

resources are generally insufficient to support the transmission and analysis of the excessive data. Vehicular data are often

updated periodically, which makes much of which outdated, or useless for vehicular applications, and thus leads to large

latency and tremendous energy consumption. To this end, age of Information (AoI) has been introduced as a novel metric to

characterize data freshness. Satisfying the state update AoI constraint is of great significance to guarantee the freshness of

the IoV system. In this paper, we design a sampling strategy with responsive transmission and computing (e.g., no waiting

latency), and investigate an energy minimization problem under peak AoI constraints in age-aware vehicular networks. We

decouple the problem as a minimum set cover problem, and a convex problem, and propose a joint sampling selection and

resource allocation (JSRA) algorithm to obtain the approximate optimal solution. We evaluate the proposed sampling selection

and resource allocation strategy and JSRA algorithm by experiments on the simulation of urban mobilty (SUMO). Numerical

results show that the proposed sampling strategy and algorithm outperform existing methods in terms of energy consumption,

especially for the scenario with dense vehicles and pedestrians.
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Abstract—The emergence of Internet of Vehicles (IoV) has
facilitated many attractive vehicular applications that require
massive sensed data and timely data analysis. Data collection
and resource allocation are critical issues in IoV for timely
data processing in dynamic network environments. However,
the energy consumption of IoV infrastructure and vehicles pose
challenges to developing sustainable vehicular communication
and networking infrastructure. Moreover, the communication
and computing resources are generally insufficient to support
the transmission and analysis of the excessive data. Vehicular
data are often updated periodically, which makes much of which
outdated, or useless for vehicular applications, and thus leads to
large latency and tremendous energy consumption. To this end,
age of Information (AoI) has been introduced as a novel metric
to characterize data freshness. Satisfying the state update AoI
constraint is of great significance to guarantee the freshness of
the IoV system. In this paper, we design a sampling strategy with
responsive transmission and computing (e.g., no waiting latency),
and investigate an energy minimization problem under peak AoI
constraints in age-aware vehicular networks. We decouple the
problem as a minimum set cover problem, and a convex problem,
and propose a joint sampling selection and resource allocation
(JSRA) algorithm to obtain the approximate optimal solution. We
evaluate the proposed sampling selection and resource allocation
strategy and JSRA algorithm by experiments on the simulation
of urban mobilty (SUMO). Numerical results show that the
proposed sampling strategy and algorithm outperform existing
methods in terms of energy consumption, especially for the
scenario with dense vehicles and pedestrians.

Index Terms—Internet of Vehicles, energy consumption, peak
AoI, data collection, resource allocation.

I. INTRODUCTION

W ITH the advancement of mobile communications, In-
ternet of Vehicles (IoV) and artificial intelligence tech-

nology, a large number of vehicular applications have been
emerged, such as real-time situational awareness [1], virtual
reality [2], digital twin [3] and autonomous driving [4]. To
satisfy the performance requirements of vehicular applications,
vehicles will be equipped with diverse types of sensors (e.g.,
tachographs, lateral acceleration sensors, GPS, Cameras, Lidar,
etc.). With the evolution of vehicle-to-everything (V2X) com-
munications, vehicles with communication and sensing capa-

This work was supported in part by the National Natural Science Foundation
of China under Grant 61871339 and Grant 61971365, in part by the Science
Technology Project of Fujian under Grant 2020H6001 and Grant 2021H6001,
and in part by the Key Laboratory of Digital Fujian on IoT Communication,
Architecture and Security Technology under Grant 2010499. (Corresponding
author: Zhibin Gao.)

The authors are with the Department of Information and Communication
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361005, China (e-mail: chenfangzhe@stu.xmu.edu.cn; lfhuang@xmu.edu.cn;
gaozhibin@xmu.edu.cn; minghuilw@xmu.edu.cn).

bilities can be considered as mobile sensors that continuously
sense informative status updates about their surroundings,
providing public service for IoV. Limited by constrainted
sensing coverage, vehicles collect surrounding sensed data in
the sensing subdomain and transmit sensed data to the control
center by vehicle-to-infrastructure (V2I) communication [5].
Then, the control center aggregates and analyzes sensed data
to serve vehicular applications such as traffic management,
digital twin, etc.

Vehicular applications generally require vehicles to generate
a huge amount of sensed data. How to efficiently collect and
process massive amounts of data from hundreds of moving ve-
hicles is challenging for IoV infrastructure. First, the sampling
frequency of the data exceeds the requirements of the applica-
tion in most cases, making data redundant. Then, the sensing
scopes of the vehicles have overlapping parts. For a vehicular
application, much of the sensed data is duplicated. Finally,
the sheer amount of redundant data may exhaust transmission
and computing resources, resulting in heavy overhead [6].
To address the above challenges, avoiding unnecessary data
collection and allocating resources appropriately to transmit
and process data is critical.

Due to the high dynamics of the IoV, the timeliness of data
collection is of great significance. The traditional metric based
on delay can only reflect the transmission and computing time
of data, which, however, cannot express the update frequency.
[7] proposed the concept of Age of Information (AoI) to
quantify the freshness of sensed data. AoI is defined as the
elapsed time since the last received state information update
data was generated, which has been extensively researched
in various fields such as queuing models [8], [9], energy
harvesting [10], and data forwarding [6]. However, these work
focus on minimizing the average AoI. Average AoI can not
reflect the extreme AoI events with low probability, which are
fatal in the IoV. Moreover, the cost of electricity from the
IoV infrastructure and the fuel emissions from vehicles will
place an increasing energy burden on the IoV system [11].
The collection and analysis of massive data will consume
large quantities energy in the IoV infrastructure, making
the development of sustainable vehicle communication and
network infrastructure critical. Most of the existing energy
saving researches consider delay constraints [12], [13]. Under
AoI constraints, how to adaptively collect data and manage
resources to minimize energy consumption is a fundamental
but challenging problem. This motivates the current work.

In this paper, we propose a energy-efficient sampling se-
lection and resource allocation strategy. Specifically, we use
a directed graph to represent the connectivity among roads,
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with each node representing a road segment. To evaluate
the freshness of data, we establish a weighted AoI model
by integrating the density of vehicles and pedestrians. More-
over, a no-wait sampling slot model and a optimal sampling
selection and resource allocation is proposed which reduce
energy consumption under AoI constraints. Based on which,
an energy consumption minimization problem is formulated
which jointly considers node selection and resource allocation.
Since it is complicated to solve the problem directly, we
decouple the problem as a minimum set cover problem and a
convex problem, and propose a joint sampling selection and
resource allocation (JSRA) algorithm to obtain the approxi-
mate solution. Contributions of our paper are summarized as
follows.
• We model the correlations between sampled data as

directed graphs and propose a weighted AoI model to
measure data quality.

• we a propose joint sampling and resource allocation strat-
egy, and consider the energy minimization problem under
AoI constraints. On this basis, we design a sampling
time slot to ensure sufficient transmission and computing
resources in sampling slot to reduce the peak weighted
AoI of data.

• We decouple the energy minimization problem into a
minimum set covering problem as well as a convex
optimization problem, and propose the joint selection
and resource allocation (JSRA) algorithm to obtain an
approximate solution.

• We conduct experiments based on real-world vehicle
trajectories on the simluation of urban mobility (SUMO)
platform. Simulation results demonstrate the better per-
formance of the proposed scheme compared to the exist-
ing methods.

The rest of this paper is organized as follows. In Section
II, we review some related works on AoI optimization and
energy-efficent in vehicular networks. In Section III, we detail
the system model. The peak weight AoI constraints and the
energy minimization problem are presented. We analyze the
proposed problem and proposed JSRA alorithm to solve it.
In Section V, we show the numerical results and evaluate the
performance of our scheme and algorithm. The conclusions of
our work are presented in Section VI.

II. RELATED WORK

AoI is a metric to characterize the freshness of data and
has recently attracted attention from academia. Recently, there
has been a lot of work focusing on AoI minimization in
the IoV [14]–[20]. To be specific, Li et al. [14] proposed a
mathematical framework for analyzing vehicle social network
age and considered joint optimization of information update
rate and transmission probability. Qin et al. [16] designed
a distributed data collection strategy to address the sensing
data sampling of the source vehicle and the data forwarding
problem in vehicular sensing networks. The above work focuse
on the minimization of average AoI. However, the average
AoI cannot reflect extreme AoI events because of the low
probability of them. A few works [21]–[23] demonstrate that

it is more meaningful to focus on limiting the violation
probability of AoI than to average or peak AoI. In [23],
Hu et al. described the IoT network as a queuing model of
M/M/1 and M/D/1 and derived closed expressions for the peak
AoI distribution and AoI constraint violation probability. In
[24], Abdel-Aziz et al. They considered the AoI constraint
and studied the transmit power minimization problem. They
solved the proposed problem using extreme value theory and
Lyapunov optimization techniques. Considering data collec-
tion and resource allocation under AoI constraints in vehicular
networks is a problem of concern.

Energy-efficiency represents a key issue in IoV. The large
number of devices and the communication and computing
requirements of IoV applications will lead to a surge in
energy consumption in future IoV scenarios. Several works
have investigated resource allocation considering energy con-
sumption in the IoV and considered the trade off between
energy consumption and delay. Ke et al. [25] established a
novel computation offloading model and proposed an deep
reinforcement learning method that considers both energy
and data transmission latency. Yadav et al. [26] designed
a three-stage computation offloading and resource allocation
strategy that jointly considers energy consumption and latency.
Zhan et al. [27] studied a computational offloading scheduling
problem considering scheduling location and scheduling time
to reduce latency and energy. Futhermore, some works studied
the energy consumption under various constraints. Shang et
al. [28] investigated a computation offloading strategy and
designed a deep learning-based algorithm to minimize energy
consumption under multiple constraints. Dong et al. [13]
proposed an energy-efficient method for task scheduling in
vehicular networks based on deep reinforcement learning to
optimize the total energy of MEC servers under task delay
constraints. However, few of aforementioned work consider
the constraints of AoI, since the timeliness of data is critical
to the IoV. In this work, we focus on the energy minimization
under AoI constraints.

III. SYSTEM MODEL

This paper considers the traffic management application,
which needs to collect and process traffic data periodliy. As
shown in Fig. 1, service devices will be installed on the
roadside to manage traffic. We divide management road into
N segments, denoted as a set N = {1, 2, ..., N}. Each service
device integrates an RSU and a computing device. Each road
segment will install some sensors to periodically scan for
vehicles and pedestrians and estimate their density in each
segment. We assume that all vehicles on the road segments
of N are within the communication range of the RSU. At
each sampling time slot, the RSU collects traffic data of some
vehicles and transmits the data to the computing device for
processing and analysis.

A. Directed Graph and Weighted AoI Model

We construct the directed graph G(N , C, E) to establish the
relationship between different road segments, where road seg-
ments of N are nodes. E= {ηn,m : n ∈ N ,m ∈ N} denotes
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TABLE I
NOTATIONS AND DEFINITIONS

Notations Definitions
n, N road segment node index, set
m, M sampling node index, set
k sampling time slot

xn
a binary varible to indicate whether to sample data
at node n

ηn,m
a binary variable to indicate whether node n and
node m are connected and adjacent

zm,n
a binary varibale to indicate whether the weighted AoI
of node n is updated by the sampling of node m

εn the traffic complexity of node n
ϕn,m the path length from node m to node n
bn the sampling data size of node n
Pn the transmission power of sampling vehicle at node n

Gn
the channel gain between sampling vehicle and service
device at node n

B the total bandwidth
σ2 the background noise

ξ
the conversion coefficient between computing complexity
and traffic complexity

γn the proportion of bandwdith allocation
fn the computing rate for processing node n
κ the effective capacitance coefficient

an(t) the AoI of node n at time t
T t
n the transmission time between node n and service device
T c
n the computing time of data from node n

Et
n

the energy consumption of transmission between node
n and service device

Ec
n the energy consumption of processing data from node n

the connection relationship between different nodes, and we
have

ηn,m =

{
1, if n and m are connected and adjacent
0, otherwise.

(1)

C = {εn : n ∈ N} denotes the traffic destiny of each node.
We define the road traffic complexity of node n at the k-th
sampling as:

εn(tk) = ssn + sdn(tk), (2)

where tk is the time slot of the k-th sampling. ssn is the static
complexity. Its value increases with the complexity of the road
environment and is constant. sdn(tk) is the dynamic complexity.
Its value is positively correlated with the current road vehicle
and pedestrian density, which is estimated by cameras of the
service device scanning the road.

AoI is a novel metric to assess the freshness of received
data [29], which is defined as a(t) = t − u(t), where u(t)
is the time of the last update. AoI reflects the decay of data
correlation over time. According to traffic complexity and AoI,
we propose the weighted AoI. The weighted AoI of node n
can be written as

an(t) = εn(t) (t− un(t)) , (3)

where un(t) denotes the latest update time of the road node n.
The definition of weighted AoI causes nodes with congested
vehicles or pedestrians to have a higher sampling frequency.

We consider that sampling can update other node data, but
the updated weighted AoI has a spatial decay trend. Therefore,
we define spatial correlation to represent the weighted AoI
decay of data sharing for different road nodes. The spatial
correlation of adjacent road nodes can be written as ϕm,n =

Fig. 1. Service device for traffic management in vehicular network.

ρsm,ndm,n, where ρsm,n and dn,m denotes the coefficient of
spatial correlation and the distance between node n and node
m respectively [30]. Let ϕm,n be the path length between
adjacent nodes in directed graph G(N , C, E). The service
device can obtain the spatial correlation between all nodes by
using the Dijkstra algorithm to search for the shortest path.
Then, the weighted AoI of node n updated by the sampling
data of node m can be expressed as

an(t) = τtεn(t) (t− um(t)) + τsϕm,n, (4)

where τt and τs are weight coefficients that give the service
device the ability to consider temporal correlation (τs = 0),
spatial correlation (τt = 0), or both.

Figure 3 shows the weighted AoI evolution of node n.
Note that the service device collects the data of node n at
time tn,k and finishes processing the data at t′n,k. Therefore,
node n updates weighted AoI at t′n,k. Moreover, the service
device collects the data of node m at time tm,k and finishes
processing the data at t′m,k. Accroding to formula (4), The
weighted AoI of node n should add spatial correlation variable
ϕm,n.

B. Sampling Slot Model

To reduce the weighted AoI of the data, we design a
sampling strategy with no-wait transmission and no-wait com-
puting. As shown in Fig. 4, to ensure that the transmission
resources and computing resources are sufficient , the sampling
time should be after the completion of the previous sample
transmission. Besides, the computing device should process
the last sampled data before computing device receiving new
data. We define samping nodes as a set M = {1, 2, ...,M}
(M ⊆ N ). Assuming that the timestamp of k-th sampling is
tk, the transmission time and computing time of k-th sampling
in node m are T tm,k and T cm,k, respectively. tk should satisfy
the following constraints:

tk ≥ tk−1 + T tm,k−1 + T cm,k−1 − T tm,k, ∀m ∈M, (5)

tk ≥ tk−1 + T tm,k, ∀m ∈M. (6)
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Fig. 2. Directed Graph Model of Road Segments in IoV.

The sampling timestamp should be as small as possible.
According to constraint (5) (6), the sampling timestamp can
be written as

tk = min
{
t1,k−1 + T t1,k−1 + T c1,k−1 − T t1,k, t1,k−1 + T t1,k ,

..., tM,k−1 + T tM,k−1 + T cM,k−1 − T tM,k , tM,k−1 + T tM,k

}
.

(7)
Note that the transmission and computing of each samping slot
are independent. Therefore, we discuss sampling decisions and
resource allocation models for a single slot.

C. Transmission and Computing Model

We define a binary variable xn ∈ {0, 1} to denote whether
to sample node n. We have

xn =

{
1, if sampling node n
0, otherwise.

(8)

Due to the limitation of sensing ability, the service device
needs to cooperate with onboard sensors on the road to collect
detailed traffic data. We ignore the samping time of the
onboard sensors collect data. We ignore the time the onboard
sensors collect data. Assuming that the sampled data size of
each node is constant bn, the total bandwidth dedicated to
collecting traffic data is B. The transmission time of the data
collected by node n to the service device can be written as

T tn =
xnbn

γnB log(1 + PnGn
σ2 )

, (9)

where Pn is the transmit power of sampling vehicle, σ2

is the background noise, Gn is the channel gain between
sampling vehicle and service device, and γn is the proportion
of bandwidth allocation. γn should satisfy the constraint as
shown by the following:

N∑
n=1

xnγn ≤ 1. (10)

Assuming that the CPU cycles required to computing per bit
are positive correlation with the traffic complexity. Computing
time of traffic data can be written as

T cn =
ξbnεn
fn

, (11)

( )na t

t

n

m

,m n

,n kt ,m kt
,m kt

,n kt , 1n kt

, 1( )n kt

, 1( )n n ka t

,( )n m ka t

,( )n n ka t

Fig. 3. Illustration of weighted AoI update.

where ξ is the conversion coefficient between computing
complexity and traffic complexity. fn is the computing rate
for processing node n, it should meet the constraint as follow:

N∑
n=1

xnfn ≤ Fmax, (12)

where Fmax is the maximum CPU frequency of the computing
device. Then, the total execution time of samping node n can
be written as

T totaln = T tn + T cn. (13)

According to (4), the weighted AoI of node n will be updated
to ttotaln . The weighted AoI of unsampled nodes can also be
updated by sharing data from sampled nodes. It can be written
as

an(tk) = min
{
ε1T

total
1 + ϕ1,n, ...,

εMT
total
M + ϕM,n, an(tk−1)

}
.

(14)

D. Energy Consumption Model and Weighted AoI Constraint

Motivated by the above discussions, we consider the energy
consumption of transmission between vehicle and service
device. It can be written as

Etn =
bnPn

γnB log(1 + PnGn
σ2 )

. (15)

The computing device applies the dynamic voltage and
frequency scaling (DVFS) technique [31]. Assuming that κ is
the effective capacitance coefficient, the energy consumption
can be written as follows:

Ecn = κ(ξbnεn)fn
2. (16)

Then, the total energy consumption can be written as

E =
N∑
n=1

xn (E
t
n + Ecn)

=
N∑
n=1

xn

(
xnbnPn

γnB log(1+PnGn
σ2

)
+κξbnεnfn

2

)
.

(17)
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Fig. 4. Sampling slot model without transmission wait and computing wait.

We define a binary variable zm,n to denote whether the
weighted AoI of node n is updated by the sampling of node
m. We have

zm,n =


1, if m = argmin

{
ε1T

total
1 + ϕ1,n, ...

, εMT
total
M + ϕM,n, an(tk−1)

}
0, otherwise.

(18)

In order to ensure the freshness of traffic data, each node
needs to satisfy the peak weighted age of information (PWAoI)
constraint [32]:

zm,nεn(tk + T totalm,k − tk−1−T totalm,k−1) + a′n ≤ A′max,

∀n ∈ N , ∀m ∈M,
(19)

where a′n is the initial weighted AoI of node n for this
sampling slot. The left-hand side of constraint is the peak
weighted AoI of node n. However, the constraint cannot limit
a′n. High initial weighted AoI will make this constraint of the
next sampling slot hard to satisfy. Therefore, we constrain the
updated weighted AoI of each node as shown by the following:

an ≤ Amax, ∀n ∈ N . (20)

E. Problem Formulation
This section formulate joint sampling selection and resource

allocation as an optimization problem. Our objective is to
minimize transmission and computing energy consumption.
The design variables include the sampling selection {xn}, the
proportion of bandwidth allocation {γn} and computing rate
allocation {fn}. The optimization problem is formulated as

P1 : min
{xn,γn,fn}

E

s.t. (10), (12), (19), (20), (21)
xn ∈ {0, 1}, γn ≥ 0, fn ≥ 0. (22)

IV. OPTIMAL SAMPING SELECTION AND RESOURCE
ALLOCATION

Note that solving P1 is challenging with a non-convex
constraint (19) and an integer constraint (22). Therefore, we
decouple P1 into sampling selection problem and resource
allocation problem.

A. Optimal Sampling Selection Decision

Optimal sampling selection decision is under given
{γn, fn}. The problem can be formulated as

P1.1 : min
{xn}

N∑
n=1

xn
(
Etn + Ecn

)
s.t. (19), (20), (23)

xn ∈ {0, 1}. (24)

Problem is a 0-1 integer programming problem. It is still
challenging to solve P1.1 with complex constraints (19) and
(20). Therefore, we first calculate ttotaln of each node by given
{γn, fn}. According to (14), we define a binary variable set
Y = {y1,1, ..., yM,N} to denote whether sampling node m
satisfy constraint εnttotalm + a′n ≤ A′max and an ≤ Amax for
node n. We have

yn,m =

{
1, if m satisfy the weighted AoI constraint for n
0, otherwise.

(25)
The objective of the sampling selection decision is to minimize
energy consumption while satisfying weighted AoI constraints
for each node. For each sampling node m, there is a set of
nodes n satisfying weighted AoI constraints (yn,m = 1). P1.1
can be tranform into a minimum set cover problem, and we
can further relax xn. Problem can be formulated as

P1.2 : min
{xn}

N∑
n=1

xn
(
Etn + Ecn

)
s.t.

N∑
m=1

ym,nxn ≥ 1, n ∈ N , (26)

0 ≤ xn ≤ 1, n ∈ N . (27)

Note that P1.2 is a linear programming problem, and we can
obtain an optimal fractional solution {x∗∗n } with a linear pro-
gramming solver. Moreover, we use LP rounding algorithms
to get an integer solution of P1.1 as follows:

x∗n =

{
1, if x∗∗n ≥ 1/N,

0, otherwise.
(28)

B. Optimal Resource Allocation Decision

Resource allocation decision is to obtain optimal solution
{γ∗n, f∗n} under optimal sampling selection {x∗n}. For given
{x∗n}, weighted AoI constraints (19) (20) can be transformed
into time constraints as follow:

zm,nt
total
m,k ≤

A′max − (a′n + tk − tk−1 − ttotalm,k−1)

εn
,

∀n ∈ N ,∀m ∈M
(29)

zm,nt
total
m,k ≤

Amax − ϕm,n
εn

,∀n ∈ N . (30)
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Then, the optimal problem of resource allocation can be
formulated as

P1.3 : min
{γm,fm}

E

s.t.

M∑
m=1

γm ≤ 1, (31)

M∑
m=1

fm ≤ Fmax, (32)

ttotalm ≤ Am ,∀m ∈M, (33)
γm ≥ 0, fm ≥ 0. (34)

Where Am
∆
= min{A

′
max−(a′1+tk−tk−1−ttotalm,k−1)

zm,1ε1
,
Amax−ϕm,1
zm,1ε1

,

...,
Amax−ϕm,N
zm,NεN

}, constraint (33) is the combined constraint of
(29) and (30).

Lemma 1: P1.3 is a convex problem.
Proof: See the Appendix.

The Lagrangian function of P1.3 is

L =

M∑
m=1

(κξbmεmfm
2+

xmbmPm

γmB log(1 + pmGm
σ2 )

)

+µ(

M∑
m=1

γm − 1) + λ(

M∑
m=1

fm − Fmax)

+

M∑
m=1

θm(
κξbmεm
fm

+
bm

γmB log(1 + PmGm
σ2 )

−Am)

−
M∑
m=1

φmγm −
M∑
m=1

ψmfm.

(35)

where µ, λ, θm, φm and ψm are the Lagrangian multipliers.
Then, we can obtain the dual problem of P1.3 as follows:

max
{µ,λ,θm}

minL

s.t. µ ≥ 0, λ ≥ 0,

θm ≥ 0, φm ≥ 0, ψm ≥ 0, ∀m ∈M.

(36)

We can solve P1.3 using the KKT conditions. Assuming that
{µ∗, λ∗, θ∗m, φ∗m, ψ∗m} is the optimal solution to the Lagrange
dual problem of P1.3. As P1.3 is a convex problem, the
following KKT conditions are necessary and sufficient to solve
primal and dual optimal problem [33].

γ∗m ≥ 0, f∗m ≥ 0, µ∗ ≥ 0, λ∗ ≥ 0,

φ∗m ≥ 0, ψ∗m ≥ 0, θ∗m ≥ 0,m ∈M,
(37)

M∑
m=1

γ∗m ≤ 1,

M∑
m=1

f∗m ≤ Fmax, (38)

κξbmεm
f∗m

+
bm

γ∗mB log(1 + PmGm
σ2 )

≤ Am, m ∈M, (39)

µ∗(

M∑
m=1

γ∗m − 1) = 0, λ∗(

M∑
m=1

f∗m − Fmec) = 0, (40)

θ∗m(
κξbmεm
f∗m

+
bm

γ∗mB log(1 + PmGm
σ2 )

−Am) = 0, m ∈M,

(41)
φ∗mγ

∗
m = 0, ψ∗mf

∗
m = 0, m ∈M, (42)

∂L
∂γ∗m

=
−bmPm

γ∗m
2B log(1 + PmGm

σ2 )
+ µ∗ − φ∗m

− θ∗mbm

γ∗m
2B log(1 + PmGm

σ2 )
= 0, m ∈M,

(43)

∂L
∂f∗m

= 2κξbmεmf
∗
m + λ∗ − ψ∗m −

θ∗mξbmεm
f∗m

2 = 0, m ∈M.

(44)

Where (37), (38), (39) and (40) are the primal and dual con-
straints, (41) and (42) denotes the complementary slackness
conditions, and (43) and (44) denote the necessary conditions
for γm = γ∗m, fm = f∗m, m ∈M, respectively. To start with,
we establish the following lemma on the optimal solutions.

Lemma 2: For the optimal solution φ∗m and ψ∗m, they must
be hold that φ∗m = ψ∗m = 0.

Proof: We prove Lemma 2 by contradiction. We suppose
that φ∗m 6= 0. Based on the constraint (42), it must hold that
γ∗m = 0. For the constraint (39), ξbmεmf∗m

+ bm
γ∗mB log(1+PmGm

σ2
)
=

+∞. Accordingly, γ∗m can not satisfy the constraint. Similarly,
we suppose that ψ∗m 6= 0. Based on the constraint (42), it
must hold that f∗m = 0. For the constraint (39), ξbmεm

f∗m
+

bm
γ∗mB log(1+PmGm

σ2
)
= +∞. f∗m can not satisfy the constraint.

Therefore, the optimal solution φ∗m and ψ∗m must be hold that
φ∗m = ψ∗m = 0.

Lemma 3: For the optimal solution µ∗, it must be hold that
µ∗ 6= 0.

Proof: We prove Lemma 3 by contradiction. We sup-
pose that µ∗ = 0, the constraint (43) can be written as

−bmPm
γ∗m

2B log(1+PmGm
σ2

)
− θ∗mbm

γ∗m
2B log(1+PmGm

σ2
)

= 0, m ∈ M.

Obviously, −bmPm
γ∗m

2B log(1+PmGm
σ2

)
− θ∗mbm

γ∗m
2B log(1+PmGm

σ2
)
< 0.

Therefore, µ∗ 6= 0.
To obtain {µ∗, λ∗, θ∗m}, we consider four cases: i) if the

KKT conditions are satisfied when λ∗ = 0, θ∗m = 0. We set
λ∗ = 0, θ∗m = 0, and start a bisection search for µ until
the constraint (38). (ii) if the KKT conditions are satisfied
when θ∗m = 0. Similarly, we set θ∗m = 0, and start a bisection
search for µ∗ and λ∗ until the constraint (38). (iii) if the KKT
conditions are satisfied when λ∗ = 0. We set λ∗ = 0, and start
a two-layer bisection search for µ and θm until constraint (38)
and (39). (iv) if λ∗ 6= 0 and θ∗m 6= 0, we can start a two-layer
bisection search for µ∗, λ∗ and θ∗m until constraint (38) and
(39). The two-layer biosection search algorithm is described
in Algorithm 1.

C. Joint Sampling Selection and Resource Allocation Algo-
rithm

In this section, a joint sampling selection and resource
allocation algorithm (JSRA) is proposed to solve problem P1.
JSRA is shown in Algorithm 2. To be specific, we decouple
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Algorithm 1 Two-Layer Bisection Search for µ, λ and θm
1: initialize all θminm = 0, θmaxm , m ∈M;
2: while ∃m ∈M, θmax

m − θmin
m > κ1 do

3: for m = 1 :M do
4: setting θm =

θmax
m +θmin

m

2 ;
5: end for
6: initialize µmin = 0, µmax;
7: while µmax − µmin > κ2 do
8: µ = µmax+µmin

2 ;
9: calculate γm according to (43);

10: if
M∑
m=1

γ∗m ≤ 1 then

11: µmax = µ;
12: else
13: µmin = µ;
14: end if
15: end while
16: while λmax − λmin > κ3 do
17: λ = λmax+λmin

2 ;
18: calculate fm according to (44);

19: if
M∑
m=1

f∗m ≤ Fmec then

20: λmax = λ;
21: else
22: λmin = λ;
23: end if
24: end while
25: for m = 1 :M do
26: if ξbmεm

f∗m
+ bm

γ∗mB log(1+PmGm
σ2

)
≤ Am then

27: θmax
m = θm;

28: else
29: θmin

m = θm;
30: end if
31: end for
32: end while

P1 into node selection (P1.1) and resource allocation (P1.3).
First, we initialize the resource allocation of all nodes to
a large value regardless of resource constraints. Then we
solve P1 by alternately optimizing P1.1 and P1.3. The
algorithm repeats the process of alternating optimization until
convergence.

D. Algorithm complexity and convergence analysis

This section will analyze the computational complexity of
JSRA (Algorithm 2). At each iteration of JSRA, the compu-
tational complexity of obtaining ym,n (line 4-10) is O(MN).
Assuming that we solve P1.2 by interior point method, and
solution accuracy is ρ. The complexity of solving P1.2 (line
11) is O(N3.5log2(1/ρ)).

For Two-Layer Bisection Search (Algorithm 1), the com-
putational complexity of the second layer of Bisection
Search is O(log2(µ

max/κ2)) and O(log2(λ
max/κ3)) re-

spectively. The complexity of Algorithm 1 (line 17) is
O(M log2(θ

max
m /κ1)(log2(λ

max/κ3) + log2(µ
max/κ2))) =

O(M log2(θ
max
m /κ1)log2(λ

maxµmax/κ2κ3)). Assuming that

Algorithm 2 Two-Layer Bisection Search for µ, λ and θm
1: initialize all γ∗n = 1, f∗n = Fmax, n ∈ N ;
2: repeat
3: Based on γ∗n and f∗n, calculate ttotalm according to

(9)(11)(13);
4: for ym,n ∈ Y do
5: if εnttotalm + a′n ≤ A′max and an ≤ Amax then
6: Set ym,n ← 1;
7: else
8: Set ym,n ← 0;
9: end if

10: end for
11: Solve problem P1.2 to obtain x∗∗n by LP solver;
12: if x∗∗n ≥ 1/N then
13: x∗ = 1;
14: else
15: x∗ = 0;
16: end if
17: Based on x∗n, obtain Lagrange multipliers µ, λ and θm

by Algorithm 1;
18: for n ∈M do
19: Calculate γ∗n and f∗n according to (43)(44);
20: end for
21: until Convergence

the number of iterations is K. Therefore, the computa-
tional complexity of JSRA is O(KMN +KN3.5log2(1/ρ)+
KM log2(θ

max
m /κ1)log2(λ

maxµmax/κ2κ3)).
Next, we analyze the convergence of JSRA in the following

theorem. A similar approach is applied to prove the conver-
gence in [34].

Theorem 1: The algorithm JSRA is always converges.
Proof: The proof is established by showing that the

energy consumption (17) is noinreasing when the set of design
variables {(xn, γn, fn)|n ∈ N} is updated. Assuming that
E

(t)
al is the energy consumption for t iterations of algorithm,

we have

E
(t−1)
al =E(

{
(x(t−1)
n , γ(t−1)

n , f (t−1)
n )|n ∈ N

}
)

(a)
≥E(

{
(x∗n(

{
γ(t−1)
n , f (t−1)

n )|n ∈ N
}
),

γ(t−1)
n , f (t−1)

n )|n ∈ N
}
)

=E(
{
(x(t)
n , γ(t−1)

n , f (t−1)
n )|n ∈ N

}
)

(b)
≥E(

{
(x(t)
n , γ∗n(

{
x(t)
n |n ∈ N

}
),

f∗n(
{
x(t)
n |n ∈ N

}
))|n ∈ N )

}
=E(

{
(x(t)
n , γ(t)

n , f (t)
n )|n ∈ N

}
) = E

(t)
al

(45)

where x∗n(
{
γ

(t−1)
n , f

(t−1)
n )|n ∈ N

}
) denotes the optimal sam-

pling selection under γ(t−1)
n and f

(t−1)
n , γ∗n(

{
x

(t)
n |n ∈ N

}
)

and f∗n(
{
x

(t)
n |n ∈ N

}
) denote the optimal bandwidth allo-

cation and computing rate allocation under x(t)
n respectively.

Inequality (a) is due to x∗n(
{
γ

(t−1)
n , f

(t−1)
n )|n ∈ N

}
) is the
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optimal solution of P1.1 and its corresponding energy con-
sumption is the minimum under γ(t−1)

n and f (t−1)
n . Inequality

(b) is due to γ∗n(
{
x

(t)
n |n ∈ N

}
) and f∗n(

{
x

(t)
n |n ∈ N

}
) are

optimal solutions of P1.3 and the corresponding energy con-
sumption is the minimum under x(t)

n . Therefore, the energy
is nonincreasing after the update of sampling selection, band-
width allocation and computing rate allocation.

Obviously, the total energy consumption is always positive
according to formula (17) during each iteration. Since the en-
ergy consumption is nonincreasing in each iteration according
to (45) and the energy consumption is finitely low-bounded
by zero, algorithm JSRA must be converge.

V. NUMERICAL RESULTS

We conduct extensive experiments with vehicle trajectories
simulated by Simulation of Urban Mobility (SUMO). And the
simulation results are provided to evaluate the performance of
proposed method.

A. Simulation of Urban Mobility (SUMO) and parameters
setting

TABLE II
TABLE OF SIMULATION PARAMETER SETTINGS

Parameter Value
Bandwidth: B 4MHz [25]

Transmission power of vehicles: Pn 1W [36]
Background noise: ω0 -100dBm [37]

Effective capacitance coefficient : κ 10−28 [38]
The maximum computing capacity:Fmax 5G cycles/s

input data size: bn 0.1 ∼ 1Mbit [39]
conversion coefficient: ξ 10
length of road segment 50 ∼ 150m

number of nodes 26

SUMO is an simulation tool designed to handle vehicualr
networks [35]. We extract a 500×500 m2 area from Open-
StreetMap, which is shown in Figure 5. We use OSM tools

Fig. 5. Scenario considered during the experiments.

to generate different densities of vehicle flow and pedestrians.
Vehicles are randomly generated at the simulation boundary
and deleted when driving out of the boundary. Besides, we
generate directed graphs according to the connections between
road segments. Assume that the simulation scenario is within
the coverage of an RSU. The main parameters used in the
simulations are summarized in Table 1.

B. Impact of different maximum PWAoI constraints

To evaluate the impact of PWAoI constraint, we compare the
energy consumption and AoI violation probability [24] under
different maximum PWAoI constraints. PWAoI violations are
mainly due to limited resources unable to execute huge com-
puting tasks. We show numerical results in Fig. 6 and Fig.
7. Obviously, Lowering maximum PWAoI increase the energy
consumption and PWAoI violation probability. Note that when
vehicles are dense (number of vehicles > 80), the PWAoI
violation probability is high. This is because the resource
usage is approaching saturation, and the slowing down of the
slope of the ”maximum PWAoI = 0.1” curve in Fig. 6 can
also reflect this phenomenon.
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Fig. 6. Energy consumption vs. number of vehicles under different maximum
PWAoI constraints.
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Fig. 7. PWAoI violation probability vs. number of vehicles under different
maximum PWAoI constraints.
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Fig. 8. Comparison of energy consumption under different schemes with
maximum PWAoI=0.09.
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Fig. 9. Comparison of energy consumption under different schemes with
maximum PWAoI=0.12.

C. Performance Comparison for JSRA

In our scenario, the policy must satisfy the AoI constraint.
To verify the performance of JSRA, we choose the following
benchmark schemes.

1) AoI-Based Greedy Algorithm (AGA) Node Selection:
The RSU greedily selects sampling nodes in the node-set with
the most significant number of nodes that satisfy constraints
according to the PWAoI [40], and repeats this step for selection
among the remaining nodes that do not satisfy the constraints.

2) Random Node Selection: The RSU randomly selects
sampling nodes in the node-set with the most significant
number of nodes that satisfy constraints, and repeats this
step for selecting the remaining nodes that do not satisfy
constraints. Fig. 8 and Fig. 9 show the energy consumption
versus the number of vehicles, where maximum PWAoI is
0.09ms and 0.12ms respectively. Evidently, the performance
of the proposed JSRA significantly outperforms Random
and AGA in different PWAoI constraints. The number of
sampling nodes selection is a crucial factor affecting energy
consumption. Compared with other schemes, the Random
strategy may select additional sampling nodes, resulting in
data redundancy and increased energy consumption. Note that
the energy consumption curve of Random scheme will show
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Fig. 10. Comparison of energy consumption under different sampling
strategies with maximum PWAoI=0.09.
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Fig. 11. Comparison of energy consumption under different sampling
strategies with maximum PWAoI=0.12.

a different trend from a certain point. The reason is that the
service device need to sample more nodes with the number
of vehicles to meet the PWAoI constraints. The AGA strategy
presents similar numerical results under different maximum
PWAoI constraints. The reason is that AGA is an age-aware
strategy, which preferentially selects nodes with lower AoI.
So, it is easier to satisfy strict constraints without allocating
excessive resources.

D. Performance Comparison for proposed sampling strategy

Next, we compare the proposed sampling policy concerning
two benchmark policies named zero-wait and periodic sam-
pling.

1) Zero-Wait Policy: Zero-Wait policy minimizes the peak
age by eliminating the waiting time [41]. RSU collects new
data after the previous data collection, transmission and com-
putation.

2) Periodic Sampling: RSU periodically collects data from
each node at a set frequency. Collection period is set according
to PWAoI constraints.

In the set time slot of the same length, we compare policies
to keep PWAoI less than the constrained energy consumption.
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Considering the impact of PWAoI constraints on the results,
we assume that the zero-wait and periodic sampling strategies
have sufficient communication and computing resources. As
shown in Fig. 10 and Fig. 11, The zero-wait policy is slightly
better than proposed policy in some cases (number of vehicles
< 60, where maximum PWAoI = 0.12). The reason is that
zero-wait policy needs to wait for the last complete sampling
process to end before the next sampling. Compared with the
proposed policy, it has a lower sampling frequency and is
suitable for scenarios with low vehicle density and high max-
imum PWAoI. However, when the vehicle density increases
or the PWAoI constraints are more stringent, the zero-wait
method requires more resources to reduce processing latency.
The proposed policy can maximize the utilization of resources
while reducing the updated AoI so that the data collection
and computation generate only a tiny amount of energy
consumption. Therefore, the proposed policy exhibits better
performance than zero-wait policy and periodic sampling.

VI. CONCLUSION

In this paper, we have studied the energy minimization
problem in vehicular networks, considering AoI constraints.
We have modeled the correlation of road segments as a
directed graph, and evalute the freshness of data by weighted
AoI. A novel sampling slot model has been adopted to reduce
AoI. Then, we designed a energy-efficient data collection and
resource allocation strategy. Subsequently, we have formulated
a energy minimization problem subject to the peak weighted
AoI constraints and proposed a JSRA algorithm to obtain
the approximate solution. Numerical result based on SUMO
demonstrated that the proposed strategy and JSRA alogrithm
outperform the existing shcemes. Futhermore, our method
shows better performance in scenario with high destiny of
pederstrians and vehicles.

APPENDIX
PROOF OF LEMMA 1

First, we check the convexity of objective fuction. The
objective function of the problem (P1.3) can be expressed
as

min
{γm,fm}

f1(γm) + f2(fm). (46)

The second-order derivative of f1(γm) with respect to γm is

∂2f1(γm)

∂γm2
=

2bmPm

γm3B log(1 + PmGm
σ2 )

. (47)

As bm > 0, Pm > 0, Gm > 0, B > 0 and γm > 0, we have
∂2

f1(γm)
∂γm2 > 0. The second-order derivative of f2(γm) is

∂2f2(fm)

∂fm
2 = 2κξbmεm. (48)

As κ > 0, ξ > 0 and εm > 0, we have ∂2
f2(fm)
∂fm2 > 0.

Therefore, f1(γm) and f2(fm) are convex function. Due to
the convexity preservation of additive operation, the objective
function is convex. Evidently, the constraints (31), (32) and
(34) are linear convex. Then, we check the convexity of
constraint (33).

The constraint (33) can be expressed as

g1(γm) + g2(fm)−Am ≤ 0. (49)

The second-order derivative of g1(γm) is

∂2g1(γm)

∂γm2
=

2bm

γm3B log(1 + PmGm
σ2 )

> 0. (50)

And the second-order derivative of g2(fm) is

∂2g2(fm)

∂fm
2 =

2bmεm

fm
3 . (51)

As fm > 0, ∂2g2(fm)
∂fm2 > 0. g1(γm) and g2(fm) are convex

functions. Due to the convexity preservation of additive oper-
ation, constraint (33) is convex. Therefore, the problem (P1.3)
is a convex problem.
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