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Abstract

With the rapid penetration of electric vehicles (EVs), the security of EV charging systems is becoming an important issue. This

paper addresses cyber-physical protection of EV charging systems from the perspective of control theory. By using a residual

generation technique, an attack-resilient EV charging system is designed, which detects false data injection under the denial of

service (DOS) attack. The effectiveness of the proposed attack-resilient EV charging system is verified experimentally by using

a hardware-in-the-loop testbed, developed by the IEEE 802.15.4 wireless sensors.
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By Using Residual Generation Technique

Mohammad Anvaripour, S.M.Mahdi Alavi∗, Martin J. Hayes, Mehrdad Saif

Abstract—With the rapid penetration of electric vehicles (EVs),
the security of EV charging systems is becoming an important
issue. This paper addresses cyber-physical protection of EV
charging systems from the perspective of control theory. By using
a residual generation technique, an attack-resilient EV charging
system is designed, which detects false data injection under the
denial of service (DOS) attack. The effectiveness of the proposed
attack-resilient EV charging system is verified experimentally by
using a hardware-in-the-loop testbed, developed by the IEEE
802.15.4 wireless sensors.

Index Terms—Cybersecurity, Cyber-physical Systems, Electric
Vehicles, Charging Systems, Residual Generation.

I. INTRODUCTION

In the near future, it is expected that a numerous number
of electric vehicle (EV) chargers are installed all around
the world, [1]. Approximately 80,000 home and public EV
chargers were deployed in the United States in 2018 [2]. In
China, this number has reached to around 808,000 in January
2019 [3]. Charging points are typically unmanned and partially
located in remote areas, where cyber-physical protection is not
guaranteed [4]. In order to address this issue, the European net-
work of cyber security (ENCS), and the European distribution
system operators’ association for smart grids (E.DSO) aimed
to standardize cyber-security requirements for EV charging
systems [5].

Based on the classification in [5], an EV charging system,
as shown in Figure 1, is composed of three main parts:
charge points, charge point operators (CPOs), and distribution
system operators (DSOs). The charge point is responsible for
measurements from EV sensors, control of energy transfer
from the charge point to EV, identifying and authorizing EV
users via user authentication component, and enabling some
remote capabilities such as adjustment of the charge point’s
maximum energy via the local controller component over
a wide area network (WAN). CPO is mainly an interface
between the charge point and DSO. Its role is to collect and
process the data of charge points. CPO provides charge points
with the information about energy limits based on the DSO
data. DSO aims to forecast the available capacity of the grid,
ensure power supply stability, etc.

EV charging system is susceptible to various cyber-attacks
such as denial of service (DOS), and false data injection. In
a DOS attack, sending and receiving the data is deteriorated
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Fig. 1. Schematic of the Electric Vehicle (EV) charging system

by injection a large volume of data, which worsens data
transfer time-delay and packet dropout and impairs the system
performance [7], [8], [9], [10]. The false data injection aims
to change the states’, sensors’ and actuators’ data and deceive
the control system and charge algorithms [7], [8], [9], [10],
[11]. Design and implementation of attack-resilient cyber-
physical systems have been an important research topic of
control theory. Modeling of cyber-attacks has been addressed
in [7], [8], [9], [10], [11], [12]. Detectability and identifiability
of attacks have been discussed in [9]. Several detection and
defense mechanisms have been proposed by using physical
watermarking [8], observers [12], residual-based detectors
[13], detection and identification filters [14].

This paper focuses on the cyber-physical protection of
charge points and CPOs in EV charging systems. An attack-
resilient EV charging system is designed by using an H∞-
based residual generation technique, which detects false data
injection under the DOS attack. The effectiveness of the
proposed attack-resilient EV charging system is verified ex-
perimentally by using the IEEE 802.15.4 wireless sensor
technology.

The rest of this paper is organized as follows. In section II,
the cyber-physical problem in EV charging systems is stated
and formulated. In section III, a method is proposed for the
detection of false data injection under DOS. The results are
shown and discussed in Section IV.
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II. MODELING AND PROBLEM STATEMENT OF
CYBER-PHYSICAL EV CHARGING SYSTEM

The operation of the cyber-physical EV charging system
is as follows. Charge points collect and send the information
of EV batteries to CPO through a WAN, in real-time. It is
assumed that attackers inject a large volume of data, which
causes random packet dropout and DOS. Simultaneously, a
bias is occurred on the battery sensor, which could be due to
either a cyber-attack or hardware/software malfunctions. CPO
aims to detect and inform the charge point of the sensor fault
in the present of packet dropout.

A. Mathematical Modeling

In this work, state-of-charge (SOC) of the battery is used as
the metric for the determination of the battery state. 0% SOC
means battery is discharged, and 100% SOC means battery is
fully charged. The first-order discrete-time Randles equivalent
circuit model [15], [16] of the EV battery is used for the
computation of its SOC as follows [17].

x(k+1)Ts
= AxkTs

+MhkTs
+B1ukTs

+B2fkTs
(1)

ykTs
= CxkTs

(2)

with

A =

[
1 0
0 1− Ts

R1C1

]
, B1 =

[
Ts
Ts

]
,

B2 =

[
Ts/Q
Ts

]
, C =

[
1 0

]
.

In these equations, x = [SOC q]T is the state vector given
in terms of battery’s SOC and the amount of charge q. The
superscript T denotes the transpose operator. u is the battery
current, y is the output of the system, Q denotes the charge
capacity, and R1 and C1 are the Randles circuits parameters,
representing electrochemical reactions inside the batteries. The
values of these parameters are chosen within the typical
range of batteries as follows: Q = 3921C, R1 = 0.01Ω,
and C1 = 100F . A, B1, B2, and C are system matrices.
The variable h accounts for the tolerance of measurements,
which can be weighted by the gain of M. In this paper, 1%
tolerance is considered on the SOC and q measurements,
which is equivalent to M = 10−2[1 1]T , and a zero-
mean random function h is used with the variance of 0.01.
The variable f represents the fault due to false data injection
or hardware/software malfunctions. Ts is the sampling time,
chosen 0.5s. For simplicity, Ts is omitted from the subscripts
hereafter, i.e., x(kTs) is written as xk.

The battery’s SOC, y, is digitized and transmitted through
WAN to CPO. CPO might not receive the data due to the DOS
cyber-attack. The received data at CPO is then formulated as
follows:

zk = αkround(Cxk) +D1wk (3)

where αk is a random variable. It is 1 when yk is successfully
received to CPO, otherwise it is 0. It is assumed that the
random variable αk is a Bernoulli distributed sequence with

Prob{αk = 1} = E {αk} = α (4)

where α is a positive real number within the interval (0, 1],
and E{αk} stands for the expectation of the random variable
αk. The packets are then dropped with an expectation of

α′ = 1− α. (5)

This model of packet drop has widely been used in the
networked control and fault diagnosis systems, see [18] and
references therein. Due to the exitance of the random variable
α, the cyber-physical EV charging system (1)-(4) is stochastic.
The signal wk represents the computational errors due to the
rounding function. It is assumed that wk is white Gaussian
number sequence with zero mean and bounded standard devi-
ation.

B. Problem Statement

The problem is then stated as follows: By using the received
data zk, CPO aims to detect fk under random packet drop with
the probability α.

C. Assumptions

In this work, It is assumed that hk is bounded with respect
to xk, i.e., there is a matrix H which yields

‖Mhk‖ ≤ ‖Hxk‖ . (6)

It is also assumed that the battery model (1)-(2) is asymp-
totically mean-square stable.

Definition 1: (Definition 1 in [18]) The stochastic system
(1)-(4) is said to be asymptotically mean-square stable if there
exist real scalars 0 < φ ≤ 1, µ1 ≥ 0 and µ2 > 0, such that:

E
{
‖xk‖2

}
≤ µ1 + µ2(1− φ)k, for k ∈ I+0 . (7)

where, I+0 is the set of positive integers including zero,
i.e., I+0 = {0, 1, 2, 3, · · · }. The notation ‖xk‖ refers to the
Euclidean vector norm of xk which is ‖xk‖ =

(
xTk xk

)1/2
. �

In fact, the embedded controller within the charge point is
designed to make (1)-(4) asymptotically mean-square stable.

III. DETECTION METHOD USING RESIDUAL GENERATION

In the proposed method, a residual filter is designed, which
aims to track fk. The residual filter takes feedback from zk
and generates a residual signal rk as follows:

x̂k+1 = Af x̂k +Bfzk (8)
rk = Cf x̂k (9)

where, x̂k is the state vector of the residual filter. Let us assume
that both xk and x̂k belong to teh same space R2. Af , Bf ,
and Cf are matrices of the residual filter. This paper presents
a method for the design of these parameters.

In practice, it is sometimes desired to weight the variable f
as follows [19]:

x̄k+1 = Atx̄k +Btfk (10)
f̄k = Ctx̄k +Dtfk (11)

where x̄k is the state vector of the weighting function. At,
Bt, Ct, and Dt are matrices of the weighting function, which
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are determined prior to the design, based on the nature of
the system and design requirements. It is simple to show that
the combination of (1)-(11) results in the following compact
state-space equations [18]:

ηk+1 = Âηk + (αk − α) Ãηk + M̂ĥk + B̂dk + (αk − α) B̃dk
(12)

ek = Ĉηk + D̂dk (13)

where,

ek = rk − f̄k, (14)

and,

ηk =

 xk
x̂k
x̄k

 , ĥk =

 hk
0
0

 , dk =

 wk

vk
fk

 , (15)

round(Cxk)− Cxk = vk, Â =

 A 0 0
αBfC Af 0

0 0 At

 ,
Ã =

 0 0 0
BfC 0 0

0 0 0

 , M̂ =

 M
0
0

 ,
B̂ =

 B1 0 B2

BfD1 αBf 0
0 0 Bt

 , B̃ =

 0 0 0
0 Bf 0
0 0 0


Ĉ =

[
0 Cf −Ct

]
, D̂ =

[
0 0 −Dt

]
.

By using the system dynamics (12)-(15), the cyber-security
problem of the EV charging system is formulated as an H∞
problem as follows:

Problem Formulation in H∞ framework: Consider the
cyber-physical EV charging system (12)-(15). Given a positive
constant γ, find the parameters Af , Bf , and Cf such that
the overall system is asymptotically mean-square stable for
dk = 0, and the residual filter satisfies

E
{
eTk ek

}
− γ2E

{
dTk dk

}
< 0 (16)

for all admissible wk, vk and fk.
The parameters of the residual filter (8)-(9) are designed by

using the following lemma.
Lemma 1: (Theorem 2 in [18]) By defining α1 =

E
{

(αk − α)2
}

= α(1 − α), the cyber-physical EV charging
system (12)-(15) is asymptotically mean-square stable for
dk = 0, and the residual filter satisfies (16) for a given γ > 0,
if there exist X = XT � 0, Y = Y T � 0, Pt = PT

t � 0,
τ > 0, Ãf , B̃f and, C̃f such that the following LMI holds:

Λ =

[
Λ11 Λ12

ΛT
12 Λ22

]
≺ 0 (17)

with Λ11, Λ12, and Λ22 given in the box below.

Λ11 =



−I 0 0 0
[

0 C̃f

]
∗ −

[
Y X
X X

]
0 0

[
α1B̃fC α1B̃fC

0 0

]
∗ ∗ −

[
Y X
X X

]
0

[
Y A+ αB̃fC Y A+ αB̃fC + Ãf

XA XA

]
∗ ∗ ∗ −Pt 0

∗ ∗ ∗ ∗ −
[
Y − τHTH X − τHTH
X − τHTH X − τHTH

]



Λ12 =



−Ct 0
[

0 0 −Dt

]
0 0

[
0 α1B̃f 0
0 0 0

]
0

[
YM
XM

] [
Y B1 + B̃fD1 αB̃f Y B2

XB1 0 XB2

]
PtAt 0

[
0 0 PtBt

]
0 0 0



Λ22 =

 −Pt 0 0
∗ −τI 0
∗ ∗ −γ2I



Under a feasible solution for (17), the FDF parameters (8)-
(9) are obtained as follows:

Af = (X − Y )−1Ãf , Bf = (X − Y )−1B̃f , Cf = C̃f

(18)

Proof: See [18].

IV. RESULTS

In this section the effectiveness of the proposed residual
based attack-resilient EV system is evaluated by using a
hardware-in-the-loop experimental setup. A general picture
of the hardware-in-the-loop testbed is shown in Figure 2,
developed by using the IEEE 802.15.4 TelosB wireless sensors
technology [20]. The first-order discrete-time Randles equiv-
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Fig. 2. Cybersecurity of EV charging systems using the residual generation.

alent circuit models of the EV batteries are implemented in
MATLAB. At every time step, batteries’ SOCs are measured
by the charge points’ meters, and transmitted to CPO through
a wirelesses link. By using the received signals zk, the residual
filters, implemented in CPO, aim to detect the bias of SOC
measurement under the DOS attack, which caused random
packet dropouts. CPO then sends back the information of
biases to charge points, to appropriately adjust the charging
currents. In the proposed methodology, one residual filter per
charge point is designed in a decentralized fashion. Without
loss of generality, the results of the system with one charge
point are given and discussed in the following.

In this testbed, the packet drop occurs if the strength of the
received signal is low. The strength of the received signal is
quantified by a received signal strength indicator (RSSI) in
the IEEE 802.15.4 WSN standard [21], [22]. Power outage,
shadowing and fading effects, and channel congestion cause
low RSSI values. To generate packet dropouts, the AA battery
of the TelosB is unplugged manually from the sensor node in
this experiment. The actual injected bias is fed back to the
residual filter, with no weighting function, i.e,

At = 0, Bt = 0, Ct = 0, Dt = 1

Let assume the packet drop’s expectation value is α = 0.5.
By solving (17), the parameters of the residual filter are
obtained as follows:

Af =

[
0.5221 −0.058× 10−3

−2038.3 0.3434

]
,

Bf =

[
0.121× 10−3

0.4938

]
,

Cf =
[
−3.9814 0.8895× 10−3

]
.

Figure 3 shows the system performance under no packet
drop for 25%, 50%, and 75% false-injection biases which
occur at t = 25s. Figure 3(a) shows a representative snapshot
of yk, and zk signals under no packet drop, when a 25%
bias, fk = 0.25, is injected at t = 25s. Figure 3(b) shows
the performance of the proposed false-injection detection filter

Fig. 3. A representative figure of yk , and zk signals under no packet drop,
when a 25% bias, fk = 0.25 is injected at t = 25s. (b) The performance
of the proposed false-injection detection filter for 25%, 50%and 75% biases
which occur at t = 25s under no packet drop. This figure shows the generated
residual signals rk , which satisfactorily track fk = 0.25, 0.5, 0.75.

for 25%,50%, and 75% biases which occur at t = 25s under
no packet drop. This figure shows that the generated residual
signals rk’s satisfactorily track fk = 0.25, 0.5, and0.75.

Figure 4 shows the system performance under the DOS
attack with 50% pack drop for 25%, 50%, and 75% false-
injection biases which occur at t = 25s. Figure 4(a) shows a
representative snapshot of yk, and zk signals under 50% packet
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Fig. 4. A representative figure of yk , and zk signals under 50% packet drop,
when a 25% bias, fk = 0.25 is injected at t = 25s. (b) The performance
of the proposed false-injection detection filter for 25%, 50%and 75% biases
which occur at t = 25s under 50% packet drop. This figure shows the gen-
erated residual signals rk , which satisfactorily track fk = 0.25, 0.5, 0.75.

drop, when a 25% bias, fk = 0.25, is injected at t = 25s. Fig-
ure 4(b) shows the performance of the proposed false-injection
detection filter for 25%,50%, and 75% biases which occur at
t = 25s. This figure also shows the generated residual signals
rk’s, which satisfactorily track fk = 0.25, 0.5, and0.75.

Both experiments demonstrate the detection of false-
injection biases with and without DOS cyber attacks.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, the cyber-physical protection of EV charging
system has been addressed. A residual generation technique
has been presented to provide an attack-resilient EV charging
system which detects false data injection under the DOS
cyber attack. The effectiveness of the proposed method was
practically evaluated on a hardware-in-the-loop testbed devel-
oped by using the IEEE 802.15.4 wireless sensors technology.
The results illustrate a satisfactory level of bias estimation
under the DOS attack. As the future work, the charge control
algorithm at the charge point is modified to compensate
possible false data, based on the information received from
CPO.
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