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Abstract

New scientific knowledge is needed more urgently than ever, to address global challenges such as climate change, sustainability,
health and societal well-being. Could artificial intelligence (AI) accelerate the scientific process to meet global challenges
in time? Al is already revolutionizing individual scientific disciplines, but we argue here that it could be more holistic and
encompassing. We introduce the concept of \textit{virtual laboratories} as a new perspective on scientific knowledge generation
and a means to incentivize new Al research and development. Despite the often perceived domain-specific research practices
and inherent tacit knowledge, we argue that many elements of the research process generalize across scientific domains, and
that it is possible to build a common software layer that serves different domains and provides Al assistance. We outline how
virtual laboratories will make it easier for Al researchers to contribute to a broad range of scientific domains, and highlight the

mutual benefits virtual laboratories offer to both AI and domain scientists.
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Abstract—New scientific knowledge is needed more
urgently than ever, to address global challenges
such as climate change, sustainability, health and
societal well-being. Could artificial intelligence
(AI) accelerate the scientific process to meet global
challenges in time? Al is already revolutionizing
individual scientific disciplines, but we argue here
that it could be more holistic and encompassing.
We introduce the concept of virtual laboratories as
a new perspective on scientific knowledge genera-
tion and a means to incentivize new Al research and
development. Despite the often perceived domain-
specific research practices and inherent tacit knowl-
edge, we argue that many elements of the research
process generalize across scientific domains, and
that it is possible to build a common software layer
that serves different domains and provides AI as-
sistance. We outline how virtual laboratories will
make it easier for AI researchers to contribute to a
broad range of scientific domains, and highlight the
mutual benefits virtual laboratories offer to both AT
and domain scientists.

1 INTRODUCTION

Merriam-Webster defines a laboratory as “a place equipped
for experimental study in a science or for testing and anal-
ysis” or more broadly as “a place providing opportunity
for experimentation, observation, or practice in a field of
study” '. The definition refers to a physical environment
that exists for the purpose of making new discoveries.
While laboratory tasks are now frequently carried out on
computers, or on more and more automated synthesis and
measurement devices, the laboratory itself remains surpris-
ingly similar to its 19th century form. In our increasingly
digital world, we think it is time for a paradigm shift to
virtual laboratories (VLs).

Thttps://www.merriam-webster.com/dictionary /laboratory
May 2022)
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Fia. 1: AI methods enable generalizing across field-specific virtual labo-
ratories, each using a mixture of field-specific and general methods.

The starting point for a virtual laboratory are the com-
putational methods and tools that are already an integral
part of modern scientific practices. These include compu-
tational simulations, digital twins of various instruments,
robotic measurement devices, and methods for experimen-
tal design, data analysis and statistical estimation. In most
scientific disciplines, physical laboratories already heavily
use these computational tools, and research combines com-
putation and real-world experiments. The new digital tech-
nologies already provide scale-advantages and improve re-
producability and reliability.

In this perspective, we argue, however, that the current
tools are not yet sufficient for building virtual laboratories,
and two aspects need to be addressed. First, the current
toolkit needs to be updated. The tools of today are typ-
ically field-specific, each designed to address specific nar-
rowly defined tasks, and deployment decisions are still pri-
marily made by researchers almost as if the measurements
were still carried out by laboratory scientists. Instead, the
tools could be designed to better serve the scientific re-
search process itself, and to offer better assistance, which
becomes necessary with increasing workflow, tool and re-
search complexity.

The second step required for reaching the full potential of
virtual laboratories is to consider what can be done differ-
ently now that the computational backbone exists in differ-
ent disciplines. Could we develop new types of tools (Fig.1)



Virtual Laboratories: Transforming research with Al

by thinking across laboratories, and in particular, could we
benefit from advances in AI methodology? If the tools were
not developed independently in each field but would instead
pool the creativity, ingenuity and resources from a variety
of fields, progress would be faster and VLs could become
a reality sooner. Such generalization and acceleration is
precisely the promise Al-based tools offer.

In this paper we present a vision for Al-assisted virtual
laboratories: Digitalization of research and development
will move from isolated digital twins to Al-assisted support
of the scientific innovation process. In the future, new inno-
vations are made in virtual laboratories, where researchers
seamlessly operate with physical and virtual measurements
in close collaboration with AI, accelerating the pace and
improving the quality of research. The virtual laboratories
are supported by a common software library.

Virtual laboratories provide a conceptual frame of refer-
ence, and in this paper we outline practical directions for
the transition from real to virtual laboratories. This paper
is a call for both AI researchers and domain scientists to
join forces. Section 2 introduces the main concept of virtual
laboratory and outlines the high-level goals and challenges.
In Section 3 we present the main actions we think should
be taken by different parties. Lastly, we motivate the pro-
posed developments by reviewing the state of emergent VLs
in three different fields in Section 4, outlining for instance
how drug design is already largely done in a virtual realm
but using field-specific tools.

2  VIRTUAL LABORATORY CONCEPT

2.1  VIRTUAL LABORATORY

Following our laboratory definition in the introduction, a
virtual laboratory (VL) is the in silico equivalent of a phys-
ical laboratory. A VL exists primarily in a virtual space, or
at least mediates the interaction of stakeholders with the
VL remotely through a digital user interface. In practical
terms, a VL is a collection of interconnected digital twins
and a digital user interface (see Fig. 2). In our opinion, Al
assistance is a critical element of VLs that facilitates nav-
igation of the complex VL environment and enhances the
research process.

Digital twins are faithful computational representations
of real-world entities or processes [1, 2, 3]. We here consider
a wider definition of digital twins than usual and distin-
guish between three types: a) assets, b) processes and c¢) hu-
man interactions. In a), physical assets is an umbrella term
for scientific instruments, measuring devices and equipment
that manufacture goods, fabricate materials and synthesise
substances. In b), computational models and simulators
aim to capture physical or chemical processes. In ¢), we re-
fer to user models of human behaviour and human-machine
interactions. Combined, these three types of digital twins
transfer real-world data into the virtual realm, where it is
processed by simulators and AT methods.

As implied by the word wirtual, one purpose of VLs is
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Fia. 2: Top: Elements of a virtual laboratory; bottom: Stakeholders from
academia, industry, government and the public interact with the virtual
laboratory. Assisted by Al assistants, they design, perform and analyze
virtual experiments. The word “experiment” is used as a placeholder here
for different functions and features of the virtual laboratory.
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to transfer the experimentation and discovery process from
the real into the virtual realm. In this virtual mode, users
interact with the digital twins instead of their real-world
manifestations to derive new knowledge, educate them-
selves or to receive assistance in complex decision making.
This usually offers significant time and resource savings
compared to directly operating in a physical laboratory.
The digital twins interact with the real-world, when neces-
sary, to stay up-to-date and react to changing conditions.
In the real mode, the VL has a direct physical outcome,
e.g., a material or drug. The VL facilitates, accelerates or
even enables the design and development of the physical
outcome.

2.2 ELEMENTS OF DIGITAL TWINS

Although each digital twin serves a specific purpose, several
aspects are common to digital twins that have already been
realized: a) live coupling between the physical asset and its
digital twin via multiple streaming data sources originat-
ing from live sensing of the physical process, b) access to
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Fic. 3: Schematic of digital twins depicting the key information flow and
quantities of interest. Several DTs could be aggregated in a VL. The sub
instance could be different instruments combined into one digital twin or
different realizations of a device in different labs around the world.

additional information about the modelled process, such as
geometry, topology, physical laws or 3-D characteristics for
physical assets, ¢) Al models utilising the aforementioned
data sources and prior knowledge to accurately predict or
simulate future states of the physical twin from these, d)
some ability to perform what-if scenarios and counterfac-
tual reasoning over the process, e) a decision-making mech-
anism (typically with a human-in-the-loop) for acting on
the asset/process given the model and any what-if reason-
ing abilities therein.

A digital twin can also be composed of several sub dig-
ital twins. These sub digital twins could be in different
physical locations, e.g. different real-world laboratories.
The VL would integrate (or aggregate) all these sub twins
into one digital twin as illustrated in Fig. 3. We are now
moving to the realm of decentralised/distributed inference
and borrowing statistical and causal strength across ex-
periments. Methodological frameworks such as multiout-
put/multitask learning [4], transportability and data fusion
[5, 6], federated learning [7], physics-informed ML [8] and
semi-parametric statistics bridging to traditional numerical
methods [9] are central for such interconnected VLs.

These interconnections are graphically depicted in Fig. 3
using the gemini symbol (1) as a playful abstraction of a
digital “¢win”. On the bottom hull the true data generat-
ing process of the real-world component is generating data
that is noisily sensed via multiple sensor networks with po-
tentially different characteristics. These are streamed up-
wards to the digital twin where inference over a model or
a model family is performed with some level of model mis-
specification that may be estimated. In turn, the posterior
beliefs of the digital twin over the model and/or the model
parameters are utilised to compute expectations of func-
tions of interest with respect to these posteriors, and sub-
sequent decision-making or simulation of what-if scenarios
is performed leading to actionable interventions back on
the physical asset.

2.3 A VIRTUOUS CYCLE OF VL DEVELOPMENT

A wirtuous cycle is a recurring chain of events with a pos-
itive outcome. If we can start such a virtuous cycle in VL
development, in which advances in Al and domain specific
knowledge benefit each other, we can increase the pace,
quality and cost-efficiency of scientific research. In this cy-
cle, the VLs are the catalysts for facilitating the interaction
and the research environment.

Once kick-started, the virtuous cycle will produce first
success stories. These will trigger an increased interest from
both Al researchers and VL users, which, as the cycle pro-
gresses, should then result in a self-sustaining community
effort.

2.4 VL LIBRARY — A COMMON SOFTWARE PLATFORM

We argue that a key requirement for a successful, virtuous
cycle is a common software platform for VLs across fields
- a virtual laboratory library (VLL). The software platform
should be built such that AI advances can be developed
independently in a modular fashion and taken immediately
into use across all VLs with minimal effort. This platform
provides the technical realization of the VLs to produce
scientific and societal impact. We believe that the develop-
ment of the VLL is necessary not only for the permeation of
VLs across fields, but also for incentivizing VL developers,
VL users and Al researchers to join forces.

3 TowaRrDS REAL VIRTUAL LABORATORIES

In this section, we outline the main steps we consider nec-
essary, from a technical perspective, to build VLs and to
generalize the concept across disciplines.

3.1 VIRTUALIZATION

Transferring key components of the scientific method, such
as hypothesis generation, experimentation, confirmation
and discovery, from the physical to the virtual setting is the
central objective of VLs that enables acceleration, repro-
ducibility, and scalability of research. The primary vehicles
for virtualization of such components are digital twins of as-
sets, processes and human interactions that are interlinked
inside the virtual lab. Significant resources are already be-
ing dedicated to improving the quality and versatility of
digital twins as components of the VL and the transition
will directly benefit from the results of these efforts, but
dedicated research will be needed for virtualization of the
research process and the human elements of that.

Many key Al technologies and research areas are neces-
sary for the virtualisation process itself: from simulators,
emulators, artificial agents and their data calibration and
optimisation, to reinforcement learning and robotics for
automated measurement devices. Some of these, such as
robotics, target the automation of physical measurements
while other areas are necessary for exploring and optimis-
ing virtual measurements and for counterfactual reasoning.
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We note that a large body of Al research including experi-
mental design, Bayesian optimization (BO), reinforcement
learning (RL), causal inference (CI), bandits, probabilistic
modeling, probabilistic numerics (ProbNum), uncertainty
quantification (UQ), and physics-informed ML (®-ML) will
be central in enabling full virtualization.

3.2 HUMAN IN THE LOOP

AT tools are predominantly used to automate tasks and
supplement or replace human-derived insight with data-
driven models. The evolution towards 'robot scientists’ [10]
has been invoked, but in reality human scientists remain
involved, in two ways. They drive the scientific process,
by instantiating, designing and applying AI methods, and
they provide knowledge.

Through human-in-the-loop machine learning [11], prior
human knowledge could be directly integrated into VLs.
Human-in-the-loop methods elicit knowledge from human
users to maximally improve Al models with minimal user
effort.

Current human-in-the-loop methods are not compatible
with the other reason humans are involved—that they drive
the research process. The current methods treat humans as
passive data sources instead of active agents. For VLs, we
need to develop human-centric Als and human-AI collabo-
rations [12]. Multi-agent modelling methods from human-
robot interaction [13] are a start, but work is still needed
for formulating assistants which are useful to human sci-
entists while leaving them in full control [14]. For this the
assistants will need to infer their user’s goals and then rec-
ommend actions in a way they understand—in other words,
they would need models of human users to efficiently collab-
orate with them. In Section 2, we referred to these models
as user models or digital twins of human-machine interac-
tions. With user models of scientists, Al assistants will be
able to anticipate their actions and aid them in the scien-
tific discovery process.

VLs will be a fitting environment for mixed human-Al
research teams. Before fully fledged Al assistants become
available, Al tools that give better recommendations would
already be beneficial. To reach this point, advances in both
AT and human-computer interaction are required.

3.3 SOFTWARE LAYER

Building a common software layer for VLs will be critical.
We only benefit from up-scaling, if multiple VLs use the
same underlying platform, so that Al researchers can easily
develop and evaluate their methods for multiple use-cases
and VL hosts can easily integrate new VL elements.

The VL software layer mediates the scientific process in
the virtual realm and provides the link to the physical
realm, but should not be specific to any particular labo-
ratory type. It needs to represent digital twins, moderate
data flows between digital twins (as well as their physical
counterparts), and enable human-Al collaboration. This
requires a modular architecture that communicates with

domain-specific databases and models, so that all elements
of Al-assistance and DT operation are provided as inde-
pendent modules.

We are not aware of any general VL software develop-
ment even though many libraries for the individual VL
components and for the automation of data analysis work-
flows [15, 16] already exist. Besides a modular architecture,
an emerging software layer should:

e re-use existing (or future) libraries and avoid repli-
cating any functionality specific to a given domain or
general-purpose algorithms (e.g. optimization or ma-
chine learning tools).

e run on standard cloud architectures and databases.

e be free and open-source, but licensed to enable com-
mercial support for broad use in industry and research.

e be designed from the start as shared community effort,
and eventually establish new standards for information
transfer between digital twins and laboratories.

e actively support the FAIR (Findable, Accessible, In-
teroperable & Reusable) data principles [17], required
for community development of the AI elements and
reliable operation of VLs.

e support compartmentalization of public and private
data and models, so that sensitive data and propri-
etary simulators and digital twins can be excluded
from externalised Al development.

e support extracting data and virtual running environ-
ments outside of the VL (so that AI researchers can
run them on their own machines) as well as running
external algorithms on local computing resources (so
that predictions can be evaluated on internal private
data and using proprietary models).

3.4 ENABLING AND ENCOURAGING VL RESEARCH

VLs generate added value from the synergy between Al
and research in other domains. To create this synergy, the
barrier for contributions from AT researchers and VL do-
main scientists should be lowered. The common software
layer is necessary but not yet sufficient for this. Numer-
ous examples demonstrate a clear benefit from lowering
the contribution barrier: ImageNet data [18] revolution-
ized computer vision and MuJoCo [19] and OpenAl gym
[20] reinforcement learning. We need similar success stories
for VLs.

A key difference between VLs and the above examples
is that VLs are linked also with physical reality and many
of the interesting research questions involve humans, as ex-
plained in Section 3.2. This introduces additional chal-
lenges but we have not identified any immediate show-
stoppers that could not be overcome by combining differ-
ent approaches. Many Al elements can be developed in
purely digital laboratories, using simulated human activ-
ity if needed. For example, ChemGymRL? offers a reinforce-
ment learning environment for a purely virtualized chemical
laboratory, Trubucco et al. provide a virtual environment

2https://github.com/chemgymrl/chemgymrl
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for design problems [21], and many elements of cognitive
models of researchers can be trained with non-experts in
crowd-sourcing experiments, for instance models of work-
ing memory and decision-making [22].

We believe the most important step towards realizing our
vision will be the activation of the research community.
Providing computational platforms, theoretical concepts
and individual AI modules is a community effort, both in
terms of sufficient resourcing, but also to ensure open stan-
dards and broad applicability across different fields. This
is best achieved by an open initiative for supporting virtual
laboratories. The initiative would bring Al researchers and
domain scientists together to design and develop the soft-
ware platform, to determine incentive structures and fund-
ing models for VL hosts e.g. by extending the practices
currently in place for data releases, and to work towards
key standards. The initiative should also thrive to increase
awareness of the concept via workshops series organized
alongside the leading AI conferences and challenges de-
signed for steering the efforts of AI researchers, motivated
by e.g. the effect the Netflix prize had on recommendation
engine research [23].

4 EXAMPLES

No fully operational VLs exist today in the natural sciences,
but significant progress is being made. To make the con-
cept more concrete and to highlight ongoing research and
potential outcomes, we discuss three examples from three
different scientific disciplines. For ease of communication,
we use examples from the authors’ research domains, but
emphasize that the VL concept is general and applicable
from cognitive science to climate research.

4.1 MATERIALS SCIENCE

While no fully fledged virtual laboratories have emerged in
materials science yet, the components are in place. The ear-
liest databases date back to 1965. Their number has risen
exponentially since the Materials Genome initiative [24]
was launched in the United States in 2011 [25]. Databases
evolved via data centers into materials discovery platforms
by incorporating data analysis and machine learning tools.
The Materials Project [26], the Novel Materials Discovery
(NOMAD) laboratory [27] and Citrine Informatics [28] are
prominent examples of such materials discovery platforms
and could be viewed as virtual laboratory incubators.
Digital twins are more common in engineering and in-
dustry (see Section 4.3). They are slowly emerging in ma-
terials science, too, with battery development leading the
way [29]. Ngandjong et al. recently proposed a digital twin
of a Li-ion battery manufacturing platform that combines
modeling approaches at different scales [30]. Thomitzek
et al. added a battery cell production digital twin based
on digitalization and mechanistic modeling [31]. Regard-
ing scientific instruments, Passananti et al. developed a
digital twin of a chemical ionization atmospheric pressure
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F1a. 4: Top: Conceptual illustration of Al-guided materials synthesis and
characterization. Bottom: Biomaterials example, in which AI guided the
extraction and characterization of lignin from birch wood with Bayesian
optimization. With very few data points (black and green squares and
stars) lignin properties (here the yield) can be correlated to the experi-
mental control variables (here temperature and reactor severity (P-factor).

interface time-of-flight mass spectrometry (CI-APi-TOF-
MS) that facilitates the analysis of molecular cluster for-
mation events in the atmosphere [32].

In the Finnish Center for Artificial Intelligence (FCAI),
we are developing Al-guided experimentation and synthesis
techniques [33, 34]. An example is presented in Fig. 4. A
Bayesian optimization based Al requests data from scien-
tists who synthesize and characterize materials. The exam-
ple shows the extraction of the biopolymer lignin from birch
wood and the characterization of the structural properties
with 2D nuclear magnetic resonance (NMR) spectroscopy.
The data is returned to the AI, which updates its surrogate
model of the process and subsequently issues new data re-
quests. The lower panel of Fig. 4 demonstrates that with
relatively few datapoints (i.e., time consuming synthesis
steps), the lignin yield can be maximized. In addition, the
surrogate model provides an insightful visualization to the
operating scientists of the relation between the extraction
(or synthesis) conditions and the lignin (or materials) prop-
erties. Such Al-guidance tools are not only the first step
towards autonomous experiments or fabrication, and thus
the corresponding digital twins, but they also facilitate the
collection of data that has traditionally been difficult to
digitize due to its acquisition cost (e.g., human, process or
computational time and instrument cost).

Akin to our proposition of a generalized software frame-
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work for virtual laboratories, Deagen et al. recently pro-
posed materials-information twin tetrahedra (MITT) [35].
The term “digital twin” is here used as an analogy between
concepts in materials and information science and does not
refer to a component of a virtual laboratory. With MITT
they advocate a holistic, data-driven approach to mate-
rials science, which we believe could be further extended
across scientific domains. In a similar vain, Suzuki et al. re-
cently promoted a knowledge transfer from Al applications
in pharmaceutical science to materials science through a
generalized automated machine learning framework [36].

4.2 DRUG DESIGN

Applying Al to drug design has become very popular in the
last five years triggered by the innovations in AI [37]. Com-
mon application areas are molecular de novo generation,
synthetic route predictions, and molecular property pre-
dictions. In drug design a starting molecule with typically
poor properties is iteratively optimized until a molecule
with properties suitable to start clinical trials is identified.
The iterative cycle is usually called the Design-Make-Test-
Analyze (DMTA) cycle (Fig. 5) [38].

The virtual drug design laboratory will consist of digital
twins for the different components in the DMTA cycle. Sev-
eral of the necessary digital twins are under development.
Digital twins are developed for the design part through
deep learning based molecular generation, for the make part
through designing synthetic routes by deep learning, and
for the test part through developing digital twins for the
assays that are used to test the molecules.

An outstanding important research task is to find out
how implicit knowledge residing with the scientist can be
modelled through human-in-the-loop modelling, so that it
can be included in the digital twin of the analysis step.
It is important to keep in mind that the virtual labora-
tory is an approximation of a real drug design laboratory.
Virtual molecules are optimised in the virtual laboratory
and then actually synthesized and tested in a real labora-

tory in an iterative manner. An optimal laboratory would
combine a virtual laboratory with a fully automated real
laboratory. There are several efforts on-going to create au-
tonomous automation systems for synthesizing and opti-
mizing molecules [39]. Thus for drug design, virtual and
real laboratories needs to exist in close collaboration, where
as good compounds as possible are proposed by the virtual
laboratory, the molecules are then synthesized as efficiently
as possible in the laboratory, and the resulting data is fed
back to the virtual laboratory.

4.3 DATA-CENTRIC ENGINEERING

Engineering has recently witnessed a proliferation in data-
centric techniques and digital twin development. While
the concept and need for virtual laboratories to augment
these efforts is in its infancy, we showcase two examples of
recent engineering DT's developed at the Alan Turing Insti-
tute with academic and industrial partners, demonstrating
how the VL concept extends beyond scientific research in
natural sciences to design tasks in engineering.

The first one is the world’s first 3-D printed steel bridge
(MX3D bridge) depicted in Fig. 6 and currently situated in
Amsterdam, Netherlands. The various sensor networks on
the bridge, such as cameras, accelerometers and load cells,
stream live data to its digital twin at the Turing Institute
in the UK. The underlying DT model has been developed
based on the StatFEM methodology that was recently in-
troduced [9] to formally synthesize observational data and
numerical models of its structure.

The second example, from the CROP project?, is a dig-
ital twin of an underground farm in a tunnel situated in
Clapham, London, UK. This is a hydroponics system with
2 aisles running in parallel in 23 zones and 2 meters long.
Various environmental measurements and camera footage
are live-streamed from sensor networks to monitor crop
health, forecast yield and future conditions, and optimize
all levels of operation including location of crops and envi-
ronmental conditions. The underlying DT model here uti-
lizes particle filtering for model calibration [40] and data
synthesis.

5 CONCLUSION

We introduced the virtual laboratory concept to amalga-
mate scientific research and R&D in industry with Al tech-
nology and Al assistance. We highlighted the benefits of
VLs for both research laboratories and Al researchers, and
outlined key requirements of a common software layer and
various research directions to proceed towards VLs. In our
opinion, VLs are a community effort. To get the move-
ment started, we are currently preparing for formation of
an open initiative that brings Al researchers and scientists
of other domains together to raise awareness for the VL
concept and to work together towards realizing VLs.

3https://github.com/alan-turing-institute/CROP



Virtual Laboratories: Transforming research with Al

F1G. 6: The 3D-printed steel bridge currently installed in Amsterdam,
Netherlands and its multiple sensing arrays that are streaming live data
into the corresponding digital twin in The Turing, UK. Images by Joris
Laarman Labs, Thea van den Heuvel, MX3D, and AutoDesk Research.

The goal of transforming research with Al is ambitious
and the transformation will not happen fast. The domain
scientists are already working towards this direction, as
highlighted by the examples in this paper, and hence we
conclude our work with words of encouragement for the Al
researchers. In short, VLs provide Al researchers with in-
centives to contribute to the scientific efforts for solving the
grand challenges we are facing. It is hard to think of a sub-
area of Al that would not be useful for VLs, and hence VLs
will provide unique opportunities and cross-fertilization al-
ready within AI itself. In many areas, from reinforcement
learning to constrained optimization and probabilistic mod-
elling, the current techniques are already clearly sufficient
for becoming core elements of VLs. In others, such as causal
inference and probabilistic numerics, the VLs will provide
concrete cases for testing the current solutions and identi-
fying future research directions.

Fia. 7: The underground farm in Clapham, London, and its multiple
sensing arrays that are streaming live data flows into the corresponding
digital twin in The Turing and the University of Cambridge, UK. Images
by Rebecca Ward, Flora Roumpani, and Zero Carbon Farms Ltd.
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