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Abstract

In networks consisting of agents communicating with a central coordinator and working together to solve a global optimization

problem in a distributed manner, the agents are often required to solve private proximal minimization subproblems. Such a

setting often requires a decomposition method to solve the global distributed problem, resulting in extensive communication

overhead. In networks where communication is expensive, it is crucial to reduce the communication overhead of the distributed

optimization scheme. Gaussian processes (GPs) are effective at learning the agents’ local proximal operators, thereby reducing

the communication between the agents and the coordinator. We propose combining this learning method with adaptive

uniform quantization for a hybrid approach that can achieve further communication reduction. In our approach, the GP

algorithm is modified to account for the introduced quantization noise statistics due to data quantization. We further improve

our approach by introducing an orthogonalization process to the quantizer’s input to address the inherent correlation of the

input components. We also use dithering to ensure uncorrelation between the quantizer’s introduced noise and its input.

We propose multiple measures to quantify the trade-off between the communication cost reduction and the optimization

solution’s accuracy/optimality. Under such metrics, our proposed algorithms can achieve significant communication reduction

for distributed optimization with acceptable accuracy, even at low quantization resolutions. This result is demonstrated by

simulations of a distributed sharing problem with quadratic cost functions for the agents.

1
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Abstract—In networks consisting of agents communicating
with a central coordinator and working together to solve a global
optimization problem in a distributed manner, the agents are often
required to solve private proximal minimization subproblems.
Such a setting often requires a decomposition method to solve the
global distributed problem, resulting in extensive communication
overhead. In networks where communication is expensive, it is
crucial to reduce the communication overhead of the distributed
optimization scheme. Gaussian processes (GPs) are effective at
learning the agents’ local proximal operators, thereby reducing
the communication between the agents and the coordinator.
We propose combining this learning method with adaptive
uniform quantization for a hybrid approach that can achieve
further communication reduction. In our approach, due to data
quantization, the GP algorithm is modified to account for the
introduced quantization noise statistics. We further improve
our approach by introducing an orthogonalization process to
the quantizer’s input to address the inherent correlation of the
input components. We also use dithering to ensure uncorrelation
between the quantizer’s introduced noise and its input. We
propose multiple measures to quantify the trade-off between
the communication cost reduction and the optimization solution’s
accuracy/optimality. Under such metrics, our proposed algorithms
can achieve significant communication reduction for distributed
optimization with acceptable accuracy, even at low quantization
resolutions. This result is demonstrated by simulations of a
distributed sharing problem with quadratic cost functions for the
agents.

Index Terms—distributed optimization, ADMM, proximal op-
erator, communication reduction, Gaussian Process, quantization

I. INTRODUCTION

Networked systems have emerged due to the rapid devel-
opment of communication systems and sensing technologies.
Such networks consist of multiple (possibly mobile) agents
that cooperate to reach a global objective. Many of those
networks can obtain its global objective by convex distributed
optimization. In the framework of distributed optimization,
some applications for network systems (as listed in [1]) include
power systems, sensor networks, smart buildings, and smart
manufacturing.

A simple yet powerful algorithm suited to distributed convex
optimization, first presented in [2], is the Alternating Direction
Method of Multipliers (ADMM). In this algorithm, the optimiza-
tion is solved by decomposing the global objective problem into
smaller local sub-problems. Then, each agent solve its local sub-
problem and send its results to the coordinator which combines
all the agent’s solutions to assemble the global objective.
Also, ADMM is relatively easy to implement and, because
of its decomposing behavior, it is simple to parallelize. As

mentioned in [3], ADMM has broad applications in statistical
and machine learning problems including the Lasso, sparse
logistic regression, basis pursuit, support vector machines, and
many others.

To solve a distributed optimization in a star topology
networked system using ADMM, a query-response scheme
is often employed. In such a scheme, the local sub-problems
are cast as proximal minimization problems [4], which are
regularized versions of the original sub-problems, to be solved
by the agents in response to queries made by the coordinator.
Proximal minimization keeps an agent’s local function from
being revealed to the coordinator, which is ideal for networks
with privacy constraints. The queries are calculated and
transmitted by the coordinator in each iteration upon receiving
the agents’ responses in the previous iteration.

A major drawback of this distributed optimization scheme
is that it often incurs extensive communication between the
coordinator and agents, increasing communication overhead
and communication costs, potentially making the network non-
viable if communication is costly. It is therefore critical to
reduce the communication load in these distributed optimization
solved via query-response schemes. This communication load
can be reduced not only by limiting the number of communica-
tion rounds directly but by considering the communication
overhead, namely the payload size in each iteration of a
distributed optimization algorithm. Payload size can be reduced
by quantizing the data exchanged between the agents and
coordinator.

Our previous work [5] proposed to solve a distributed
optimization problem using ADMM where the proximal oper-
ators were predicted by Gaussian Processes (GP) regression,
and the communications coming from the agents to the
coordinator were quantized. This study faced two limitations:
1) it did not account for the quantization of the training data
in the optimization of the GP hyperparameters and in the
GP regression, and 2) it did not consider the correlation
between quantization noise and inputs, nor mitigation of
these correlation issues. Such limitations are critical because
GP regression is based on an assumption of joint Gaussian
distribution in the underlying conditional mean evaluation,
exploiting the knowledge of past function values to infer a new
sampled value. Since the quantization noise was not Gaussian
and even correlated with the original function values, the
regression modeling had to be adjusted accordingly. The use of
inferred values from an incorrectly modeled learning method
affects the accuracy of the ADMM algorithm. This can cause
an increase in the number of iterations to reach convergence
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or potential failure to reach convergence.
In this paper we propose to address the limitations of our

previous work [5] and to integrate two components: an adaptive
uniform quantizer with joint dithering and orthogonalization,
and an improved regression method that takes into consider-
ation the quantization error in the learning data. Our main
contributions are summarized below.

1) We study the statistics of the quantization error of the
adaptive uniform quantizer proposed in our previous
work [5], and characterize its impact on the distributed
optimization algorithm.

2) We employ a novel Linear Minimum Mean Square
Estimator (LMMSE) based regression which takes in
consideration the impact of the quantization error to
improve the hybrid communication reduction approach
from [5]. We also develop an additional LMMSE to be
used only when a communication between coordinator
and agent is required. Since the agent’s response is
quantized, this additional LMMSE approximates the
quantized response to the real value calculated by the
agent to further mitigate the impact of quantization in
the ADMM algorithm.

3) We integrate our adaptive uniform quantizer with orthog-
onal transformations and dithering. These additions serve
the purpose of taking into account the inherent correlation
of the elements conforming the quantizer’s input and
ensuring the un-correlation between the quantization error
and the quantizer’s input, respectively.

4) We validate our approach and algorithms by running
extensive simulations of a distributed network solving
a sharing problem with a quadratic cost function. For
comparison purposes, we also test three baseline methods
using the proposed distributed network: vanilla ADMM,
ADMM with uniform quantization, and ADMM with GP.
The simulation results show significant reductions in the
total communication expenditure in all test cases when
compared against the baseline methods, with negligible
compromise in the optimization performances.

Paper Organization: This paper begins with the problem
formulation in Section III. An overview of our proposed
adaptive uniform quantization scheme and new GP algorithms is
presented in Section IV. The main mathematical foundation and
derivations are presented in Section V. A detailed presentation
of our complete proposed approach is shown in Section VI.
The simulation results are presented in Section VII. This paper
concludes with the main contributions in Section VIII.

II. RELATED WORKS

In the context of ADMM solving distributed optimization
problems examples include [6] and [7], where ADMM was used
to solve consensus and sharing problems, respectively. Also,
in [8] ADMM is used with particle swarm optimization (PSO)
for task offloading in vehicular networks with hybrid fog/cloud
computing. Furthermore in [9], ADMM with proximal operator
is used to minimize the fixed-point error in a reinforcement
learning problem.

Communication reduction in distributed optimization settings
has been previously studied. By solving each subsystem

via ADMM and using the k-means algorithm to partition
a distributed smart grid, the authors of [10] were able to
reduce communication complexity. The concept of the Moreau
envelope function is used in [11] and further developed in [12]
to predict the proximal operators of the local agents so that
certain communication rounds can be skipped. The same
concept was used in [13], where the local proximal operators
and their gradients were predicted by GP with derivative
observations. The GP models of the local proximal operators
were updated online and provided the predicted proximal
operators at new query points and their prediction uncertainties.

Several works proposed quantization methods to reduce
the size of the data exchanged in each algorithmic iteration,
resulting in less overall communication overhead. The work in
[14] presented a quantized distributed composite optimization
problem over relay-assisted networks solved via a simplified
augmented Lagrangian method. In [15], the stabilization prob-
lem for switched linear systems with quantization and event-
triggered control is studied. In [16], a distributed optimization
problem affected with quantization was solved using the
inexact proximal gradient method. This work also explored
the conditions to ensure convergence in this setting. In [17], a
distributed optimization problem was solved by a distributed
gradient algorithm with an adaptive quantization scheme.

Distributed optimization problems running GP regression
where part of the data were censored was previously studied.
Authors of [18] explained a GP framework where all data
that was outside of a specific range was fixed to a value.
Also, in [19] a system identification with quantized output
data modeled with GP was presented, where Gibbs sampler
was used to estimate the kernel hyperparameters. Finally, in
[20] GP was used to predict the best locations for sensors in a
spatial environment.

Our work is fundamentally different since it combines the
concepts of ADMM, online learning, and quantization that in
previous works were studied separately. Also, our work not only
put the three concepts together but considers the presence of
the quantization error and prediction error to build an approach
that do a correct modeling and mitigates the impact of both
sources of error.

III. PROBLEM FORMULATION

This work deals with a multi-agent optimization problem
whose structure takes the form of the sharing problem as
considered in [3], [7]:

minimize

n∑
i=1

fi (xi) + h

(
n∑

i=1

xi

)
. (1)

Here, n agents, each with local decision variables xi ∈ Rp and
convex local cost function fi : Rp 7→ R, coordinate to minimize
the system cost consisting of all local costs and a convex shared
global cost function h : Rp 7→ R. Each cost function is only
known to its corresponding agent, and for privacy reasons,
cannot be shared with the coordinator or other agents. The
problem is solved with information exchange between only the
coordinator and the agents.
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The problem presented in (1) can be solved with the ADMM.
By introducing copies yi of xi, the problem can be formulated
equivalently as

minimize
∑n

i=1 fi (xi) + h (
∑n

i=1 yi)

subject to xi − yi = 0, ∀i = 1, . . . , N .
(2)

Because agents must keep their local cost function fi private,
each agent i will only provide the solution to the following
local proximal minimization problem to the coordinator

prox 1
ρ fi

(zki ) = argmin
xi∈Rp

{
fi(xi) +

ρ

2
∥xi − zki ∥2

}
, (3)

in response to a value (a query) zki sent to it by the coordinator
at iteration k, where ρ > 0 is a penalty parameter. The ADMM
works in a query-response manner as follows. At iteration
k, a query point zki is generated by the coordinator and sent
to an agent i. Each agent solves its proximal minimization
problem at its query point zki and replies with the response
vector prox 1

ρ fi
(zki ) to the coordinator. The coordinator then

updates the dual variables and generates the query points at
the next iteration. Mathematically, each ADMM iteration k
involves the following updates:

1) The coordinator updates the average of yi
ȳk+1 = argmin

ȳ∈Rp

{
h(nȳ) + (nρ/2)∥ȳ − x̄k − uk∥2

}
then sends a query zki = xki − x̄k + ȳk+1 − uk to each
agent i.

2) Each agent i updates and sends its response xk+1
i =

prox 1
ρ fi

(
zki
)

to the coordinator.
3) The coordinator calculates the average x̄k+1 =

(1/n)
∑n

i=1 x
k+1
i and updates the scaled dual vector

uk+1 = uk + x̄k+1 − ȳk+1.

This process is repeated until convergence is achieved or until
a maximum number of iterations is reached.

As discussed in Section I, a drawback of the vanilla ADMM
is that it often incurs extensive communications between the
coordinator and agents. To reduce the communication overhead
in this distributed optimization scheme, the authors of [12]
proposed an approach called STEP (STructural Estimation of
Proximal operator). The concept of the Moreau envelope of
a function f underlies the STEP approach. For brevity, we
drop the subscript i and the superscript k in the subsequent
equations. For 1/ρ > 0, the Moreau envelope f

1
ρ of f is

defined as
f

1
ρ (z) = min

x∈Rn

{
f(x) +

ρ

2
∥x− z∥2

}
. (4)

When f is a convex function, the Moreau envelope f
1
ρ is

convex and differentiable with Lipschitz continuous gradient
with constant ρ. Moreover, the unique solution to the proximal
minimization prox 1

ρ f
(z) is [21, Proposition 5.1.7]

prox 1
ρ f

(z) = z − 1

ρ
∇f

1
ρ (z). (5)

Consequently, the gradient ∇f
1
ρ (z) is all that is required to

reconstruct the optimizer of (3) following from (5).
The STEP approach estimates the unknown gradient ∇f

1
ρ (z)

at any query point z by constructing a set of possible gradients
at z based on past queries and then selecting a gradient
that is “most likely” the true gradient. The work presented

in [13] improved STEP by learning the Moreau envelopes
corresponding to the local proximal operators with GP, which
are updated online from past query data and used to predict
the gradient ∇f

1
ρ (z) for estimating the proximal operators (3)

of the agents by (5). This approach is named STEP-GP.
The STEP and STEP-GP methods only consider reducing

the number of agents communicating simultaneously but do
not consider the payload size of each transmission. The
communication expenditure can be reduced further if the
learning component is combined with quantization of the
communications between agents and coordinator. Our work
[5] presented some preliminary results on a hybrid approach
combining learning with quantization for further reducing the
communication overhead.

This paper expands on our preliminary results in [5] by the
four major contributions listed in Section I. An overview of
our proposed approach will be described in the next section.

IV. PROPOSED APPROACH OVERVIEW

Prior work: The goal of the STEP-GP approach [13] is to learn
the Moreau envelope function f1/ρi : Rni 7→ R of each agent i
by a GP, called a proxGP, from past queries with the agent. In
particular, the coordinator will keep a proxGP for every agent i,
which is trained and continuously improved on the query data
{zki , f

1/ρ
i (zki ),∇f

1/ρ
i (zki )}k, where the available derivatives

∇f1/ρi (zki ) are incorporated into proxGP training to improve
its accuracy [22]. The proxGP is used by the coordinator to
predict the gradient ∇f1/ρi (zki ) of the agent’s Moreau envelope
in response to a new query point zki at the current algorithmic
iteration k, which has a multivariate Gaussian distribution.
The agent’s proximal operator is calculated from the predicted
gradient following (5). The coordinator then decides, using a
heuristic criterion utilizing the predictive covariance matrix of
∇f1/ρi (zki ), whether an actual query should be communicated
with the agent to obtain its exact response. Our previous work
[5] proposed the use of adaptive quantization of the response
data to reduce the payload size of each transmission from agent
to coordinator. This works to further reduce communication
overhead. Our hybrid approach combines the learning-based
method of STEP-GP with adaptive quantization approaches
that reduce the payload size of each communication packet
sent by agents to the coordinator. Each agent also maintains
a proxGP identical to the proxGP at the coordinator. The
predicted mean and covariance matrix of ∇f1/ρi (zki ) for each
agent helps to adapt common quantization methods, such as
uniform quantization, to enhance their accuracy even at low
quantization resolutions.
Current work: We showed in [5], through numerical exper-
iments, that our hybrid approach could achieve significant
reduction in transmission time compared with the vanilla
ADMM without learning (by up to 99%) and with the original
STEP-GP method without quantization (by up to 88%). This
paper builds upon our hybrid approach [5] by further analyzing
and mitigating the impact of quantization errors. Our improved
hybrid approach is depicted in the diagram in Figure 1,
which describes the communication and computation processes
between the coordinator and an agent i at ADMM iteration k. In



4

ADMM

proxLGP

proxLGP

Coordinator Agent i

Estimation

Orthogonal 
Transform

Additive 
Dithering

Uniform 
Quantizer

Adpt Quantizer

Subtractive 
Dithering

Uniform 
Dequantizer

Orthogonal 
Transform

Adpt Dequantizer

Fig. 1: Flow diagram of a query and response between the
coordinator and an agent in the proposed approach.

the colored boxes are new or modified components developed in
this work compared to the approach in [5]. These improvements
and our overall approach are briefly described below.

If the coordinator determines that a communication with
agent i is necessary at iteration k, it will send the query
point zki to the agent. The Moreau envelope f

1/ρ
i (zki ) and

its gradient ∇f1/ρi (zki ) are then calculated. A regression is
performed simultaneously by the agent’s proxGP (identical
to the coordinator’s proxGP), to obtain the predictive mean
µk
i (z

k
i ) and the covariance matrix Σk

i (z
k
i ) of the agent’s

response. These values are used to parameterize the quantization
process of the exact response {f1/ρi (zki ),∇f

1/ρ
i (zki )} to reduce

the quantization error. The rationale is that if the exact
values fall with high probability inside a range (determined
by the predictive covariance matrix) around the predictive
mean, then the quantization error is reduced and diminished
as the proxGP becomes increasingly accurate, ensuring the
optimization’s convergence [16]. The quantized response{(

Q
(
f
1/ρ
i (zki )

)
,Q
(
∇f1/ρi (zki )

))}
from agent i is sent back

to the coordinator, which uses a similar dequantization process
based on the same predictive mean µk

i (z
k
i ) and covariance

matrix Σk
i (z

k
i ) to obtain the dequantized approximate response

{f̂1/ρi (zki ),∇f̂
1/ρ
i (zki )}. The dequantized values are used both

for the ADMM calculations and for updating the proxGP.

1) Our first improvement is related to the regression and
update of the proxGP. In our original method [5], the
query data were quantized by an adaptive quantization
process, but the non-Gaussian quantization errors were
not considered during the proxGP prediction and training.
This work derived a linear minimum mean square error
estimator (LMMSE) approach for GP, named LGP, to
address the impact of the quantization errors to improve
the accuracy of the regression and update of the proxGP.
The “proxLGP” blocks in Figure 1 represent the new
method for proxGP regression and update.

2) Our second improvement is related to the adaptive

quantization and dequantization processes, represented
by the “Adaptive Quantizer” and “Adaptive Dequantizer”
blocks in Figure 1. The new methods include pre-
processing the inputs by orthogonal transformation and
dithering. These steps are included to further reduce the
impact of the quantization errors.

3) In our original approach [5], the dequantized value
∇f̂1/ρi (zki ) was directly used to perform the ADMM
update, which was affected by the quantization error. To
mitigate this issue, our third improvement is an estima-
tion mechanism based on LMMSE for post-processing
the dequantized value to generate a new approximation
∇f̄1/ρi (zki )) of the true ∇f1/ρi (zki )), thereby further
reducing the impact of the quantization error. This new
process is represented in Figure 1 by the “Estimation”
block.

In the next section, we present the theoretical foundation
upon which these improvements are developed.

V. THEORETICAL FOUNDATION

A. Gaussian Process Regression with Derivative Observations

Following the definition given in [23], a GP is a collection
of random variables, any finite number of which have a joint
Gaussian distribution. Also, it is completely specified by its
mean function and co-variance function. The concept of GP is
further illustrated in the supplementary file in Figure S2.

Let us assume that we have m observations of a random
variable, and X ∈ Rm×p whose rows xi (i ∈ [1,m])
are observed inputs vectors. Considering a mean function
µ(xi) and the co-variance function ϕ(xi, x

′
i) of a real pro-

cess f(xi) ∈ R satisfying positive definite conditions as
presented in Chapter 4 of [23], the GP can be written as
f(xi) ∼ GP(µ(xi), ϕ(xi, x

′
i)).

Now, consider the case where we have extended function
values at xi ∈ R1×p including both the function value and its
gradients at xi, denoted by [f(xi);∇f(xi)], where ∇f(xi) =[
∂f(xi)

∂x
(d)
i

]
d=1,...,p

, and x
(d)
i is the d-th element of xi. In this

scenario, the GP will use values of the function and its gradient
to estimate an unknown function value and its gradient. Also,
the consideration of derivative components will modify the
way the co-variance function is evaluated. Following [22],
the covariance matrix is correspondingly expanded, for any
pair of points s, l ∈ [1,m], with the covariances between the
observations and its partial derivatives given by,

Cov

[
∂f(xs)

∂x
(ds)
s

, f(xl)

]
=

∂

∂x
(ds)
s

Cov [f(xs), f(xl)]

=
∂

∂x
(ds)
s

ϕ (xs, xl) , (6)

and the co-variances between the partial derivatives given by

Cov

[
∂f(xs)

∂x
(ds)
s

,
∂f(xl)

∂x
(dl)
l

]
=

∂2

∂x
(ds)
s ∂x

(dl)
l

Cov [f(xs),f(xl)]

=
∂2

∂x
(ds)
s ∂x

(dl)
l

ϕ (xs, xl) (7)

where 1 ≤ ds, dl ≤ p.
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In a communication affected by noise, the extended functions
at xi are given by

yi = [f(xi);∇f(xi)] + ϵn,

where ϵn ∈ Rp+1 is a vector whose elements are independent
identically distributed zero mean Gaussian noise with variance
σ2
n. Redefining the training set of m observations as D =

(X,Y ), where X = [X1;X2; . . . ;Xm] ∈ Rm(p+1)×p with
Xi = [xi;xi . . . ;xi] ∈ R(p+1)×p, and Y = [y1; y2; . . . ; ym] ∈
Rm(p+1)×1, the prior on the noisy observations becomes

Cov(Y ) = Φ(X,X) + σ2
nIm(p+1),

with Im(p+1) being the m(p+ 1)×m(p+ 1) identity matrix.
The matrix Φ(X,X) ∈ Rm(p+1)×m(p+1) will have entries
given by E[f(xs)f(xl)] = ϕ(xs, xl) where E[.] is the expected
value, E[f(xs)∇f(xl)] following (6), and E[∇f(xs)∇f(xl)T ]
following (7).

Given a new input x∗ ∈ R1×p, we want to predict the
extended function value and its gradient depicted by the vector
y∗ = [f(x∗);∇f(x∗)]. The predicted value of y∗ will be given
by the conditional mean µ(x∗) denoted by

µ(x∗) = Φ(X∗, X)(Φ(X,X) + σ2
nIm(p+1))

−1Y (8)
where X∗ ∈ R(p+1)×p contains a copy of x∗ in each of its
rows. The matrix Φ(X∗, X) is given by
E
[
[f(x∗);∇f(x∗)][f(x1),∇f(x1)T , . . . , f(xm),∇f(xm)T ]

]
,

with its entries given by E[f(x∗)f(xi)] = ϕ(x∗, xi),
E[f(x∗)∇f(xi)], or E[∇f(x∗)∇f(xi)T ], which will follow
(6) and (7) respectively. The uncertainty of such prediction
given by the conditional co-variance
Σ(x∗) = Φ(X∗, X∗)−

Φ(X∗, X)(Φ(X,X) + σ2
nIm(p+1))

−1Φ(X,X∗),
(9)

where the matrix
Φ(X∗, X∗) = E

[
[f(x∗);∇f(x∗)T ][f(x∗),∇f(x∗)]

]
will have its entries given by E[f(x∗)f(x∗)] = ϕ(x∗, x∗),
E[f(x∗)∇f(x∗)], or E[∇f(x∗)∇f(x∗)T ] which will follow
(6) and (7), respectively.

B. Adaptive Uniform Quantization

We consider a mid-tread type of uniform quantization [24]
where the input-output relation of the quantizer Qu is given by

Qu(y; y, q) = y + q

(⌊
y − y

q

⌋
+

1

2

)
, (10)

in which q > 0 is the quantization window length, y is the mid-
value, and ⌊y⌋ denotes the integer closest to y towards 0. Here,
q = l

2b
where l is the range of the quantization interval and b

is the bit resolution of the quantizer. Defining ŷ = Qu(y; y, q),
then the quantization error (or quantization noise) is defined
as ϵQ = y − ŷ. The statistics of the quantization error for this
uniform quantizer are characterized in the following result [25].

Lemma 1 ([25]): If the input y of a uniform quantizer
defined in (10) follows a Gaussian distribution, y ∼ N (µy, σ

2
y),

then the probability density of the quantization error fϵQ(ϵ) is

given by: fϵQ(ϵ) = 1
q

(
1 +

∑∞
i=1 cos(

2πiϵ
q ) exp (− 2π2i2σ2

y

q2 )
)

if −q/2 ≤ ϵ ≤ q/2, and fϵQ(ϵ) = 0 otherwise. The mean of

the quantization error is E[ϵQ] = 0 and its variance given by

Var(ϵQ) =
q2

12

(
1 +

12

π2

∞∑
i=1

(−1)i

i2
exp (−

2π2i2σ2
y

q2
)

)
(11)

Remark 1: It can be seen in Lemma 1 that as σy/q increases,
the discrepancy between the uniform noise model (1/q) and
the actual quantization noise reduces as far as the first-order
statistics are concerned. As seen in [25], if σy > q, then
the quantization error ϵq approximately follows a uniform
distribution given by

ϵQ ∼ U [−q/2, q/2]. (12)
Furthermore as shown in [25], when σy/q ≥ 1, the correlation
between the quantizer’s input and the quantization error
becomes negligible. The results presented in [25] assumed
an infinite number of quantization levels.

In the next subsection, we present our proposed adaptation
for the uniform quantizer which will adapt its mid-value and
windows length so the conditions presented in Lemma 1 and
its subsequent Remark can be satisfied.

1) Proposed Uniform Quantization Adaptation: We propose
a quantizer which adapts the standard (non-adaptive) uniform
quantizer. Given the quantizer’s input y = f(x) being a sample
of a Gaussian distribution N

(
µy, σ

2
y

)
, we adapt a uniform

quantizer by setting its mid-value y = µy and its range l =
2cσy , for some given c > 0. The proposed quantizer (denoted
by Qua(y;µy, σy, c, b) has parameters that are adapted for a
quantization resolution appropriate for the most likely values of
f(x). The proposed quantization adaptation is further illustrated
in the supplementary file in Figure S1.

2) Adaptive Uniform Quantization with Vector Input:
Consider the case where the input to the quantizer is a Gaussian
random vector y with conditional mean vector µ(x) and
conditional co-variance matrix Σ(x). The previously presented
adaptive quantization scheme must be adjusted to handle the
multi-dimensional nature of the input. We propose two schemes
described below: one ignores the correlations among the input
values and the other takes these correlations into account.

a) Adaptive Scheme Ignoring Correlation: Quantization
is performed element-wise, using the corresponding elements
of with its corresponding elements of the conditional mean
vector µ(x) and the diagonal of the co-variance matrix Σ(x)
for adaptation. Therefore, we have a vector of window lengths
q with the ith entry given by

qi =
2c
√

Σ(x)ii
2b

(13)

where Σ(x)ii is the ith entry of the diagonal of Σ(x).
Condition 1: The quantizer Qua(y;µ(x),Σ(x), c, b) has its

parameters set such that σy > q so the quantization error
distribution can be approximated and the correlation between
such error and the quantizer’s input becomes negible as
presented in Remark 1.

Under Condition 1, the quantization error ϵQ can be ap-
proximated to follow a uniform distribution. This leads to the
following proposition.

Proposition 1: Under the Adaptive Scheme Ignoring Cor-
relation and Condition 1, an adaptive uniform quantizer
Qua(y;µ(x),Σ(x), c, b) will have a quantization error vector
ϵQ whose components are assumed to be uncorrelated. This will
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lead to a correlation expression, defined as ∆un = E[ϵQϵ
′
Q],

being a diagonal matrix with diagonal ∆un(ii) =
q2i
12 , with the

entries of vector q as defined in (13).
b) Correlated Adaptive Scheme: The use of an orthogonal

transformation of the quantizer’s input y allows us to consider
the correlation between its elements, allowing us to perform
quantization over the transformed input similarly as in the
previously defined Adaptive Scheme Ignoring Correlation.

Following the same notation as in the previous scheme, the
orthogonal transformation to the quantizer’s input is expressed
as

yA = A(y − µ(x)) (14)

where A is the transformation matrix. The conditional mean of
y is subtracted to have a zero-mean quantizer’s input. Then, the
way A is determined will define our orthogonal pre-filtering
of the quantizer’s input.

Pre-filtering: The transformation matrix A used in (14) is
obtained by applying an eigenvalue decomposition of matrix
Σ(x), in which Σ(x) = UΛU ′, with Λ being a diagonal matrix
with the eigenvalues of Σ(x) and U being a square matrix
whose columns are eigenvectors of Σ(x). The matrix A can be
expressed in two ways; A1 = (Σ(x))−1/2 or A2 = U ′, where
(Σ(x))1/2 is a matrix such that (Σ(x))1/2(Σ(x))1/2 = Σ(x).
The use of A1 will result in a whitening procedure where the
result will be a zero-mean unit variance vector with independent
components. The use of A2 will result in a decoupling procedure
where the result will be a zero-mean vector whose variances
are determined by the eigenvalues in Λ.

Following this pre-filtering, yA will be element-wise quan-
tized given by:

Qua(y
A; 0,Σw, c, b) = yA + ϵQ (15)

where Σw represents the identity matrix (when A = A1) or a
diagonal matrix with entries given by the eigenvalues of Σ(x)
(when A = A2).

Proposition 2: Under the Correlated Quantization Scheme,
Condition 1, and the proposed Pre-filtering, an adaptive
uniform quantizer Qua(y

A;µ(x),Σ(x), c, b), where the input
vector is transformed following (14), have a quantization
error vector ϵQ whose components are correlated with each
other. This will lead to a correlation expression, defined
as ∆co = E[ϵQϵ

′
Q], which is independent of the choice of

transformation matrix A and is given by ∆co = c2

3(2b)2
Σ(x).

Proof: The proof is presented in the supplementary file in
Section II-A.
C. LMMSE Regression with Quantization

In this subsection, we consider a GP regression as presented
in Section V-A, but when the training set D is affected by
adaptive quantization. In this scenario, we do not have access
to the exact extended values yi but a quantized version of them
ŷi = [Qu(f(xi));Qu(∇f(xi))T ] + ϵin, also expressed as

ŷi = [f(xi);∇f(xi)T ] + ϵin + ϵiQ (16)
where ϵiQ refers to the quantization error vector for the
observation i and ϵin is a vector whose entries follow the
same Gaussian distribution with zero mean, σ2

n variance at
observation i. Such Gaussian noise is not a physical noise but
an artificial one added to avoid possible matrix singularity.

The added non-Gaussian quantization noise invalidates the
Gaussian noise assumption of the GP regression expressed in
(8). In this case, the regression cannot be a Minimum Mean
Square Estimator (MMSE) anymore, so we must compute the
conditional mean which requires a more involved computation.
To overcome this challenge, we adopt a Linear Minimum Mean
Square Error Estimator (LMMSE). This allows us to balance
accuracy and complexity of the estimator while preserving
the advantages of GP. With this premise we will derive two
estimators under two scenarios regarding the training set D.

1) Linear GP Regression (LGP-R): This estimator is used to
predict the extended values of an input x∗ given a training set
where the observed extended values are affected by quantization.
This LMMSE is constructed under the following condition.

Condition 2: The estimator has an input x∗ ∈ Rp and a
training set containing m past observations with quantized
extended values D = (X, Ŷ ), with X ∈ Rm(p+1)×p and Ŷ ∈
Rm(p+1)×1. Such training set will be used to estimate the
corresponding extended values at x∗ given by y∗. The quantizer
used over the elements of Ŷ is performed element-wise and
fulfills the conditions presented in Remark 1.

In this case we only have access to quantized values of the
extended values. For a new input x∗ we want to predict y∗,
leading to the following result.

Theorem 1: Following Condition 2 the LGP-R Estimator has
its predicted mean vector

µ(x∗) = Φ(X∗, X)(Φ(X,X) + σ2
nIm(p+1) +∆)−1Ŷ

and predicted covariance matrix

Σ(x∗) = Φ(X∗, X∗)−
Φ(X∗, X)(Φ(X,X) + σ2

nIm(p+1) +∆)−1Φ(X,X∗)

where X∗ ∈ R(p+1)×p contains a copy of x∗ in each of its rows,
the entries of the matrices Φ(X∗, X∗), Φ(X∗, X), and Φ(X,X)
are as detailed in Subsection V-A, ∆ = E[ϵQϵ

′
Q] contains the

information of the uniform quantization error of all extended
values observations of the training set D, and the entries
corresponding to each observation in ∆ are added block-wise
following the expression given by ∆un in Proposition 1 or
∆co in Proposition 2 (depending on the quantization scheme
selected).

Proof: The proof is presented in the supplementary file in
Section II-B.

2) Linear GP Approximation (LGP-A): Consider the case
where we perform adaptive uniform quantization on the
extended values at x∗, resulting in the quantized version of y∗
given by ŷ∗. Such adaptive quantization was adapted using the
conditional mean and conditional covariance given by LGP-R.
It is possible to approximate the real value y∗ if ŷ∗ and the
statistics that adapt the quantizer are known. To do so, we
propose the construction of a LMMSE named LGP-A to be
performed after the quantization process which relies on the
following condition.

Condition 3: The estimator has an input x∗ ∈ Rp, a
training set containing m past observations, and its extended
function values follow a zero-mean multivariate Gaussian
Distribution. Also, it has a training set containing past
observations and the quantized extended values of x∗ leading
to the set D = ([X;x∗], [Ŷ ; ŷ∗]), with X ∈ Rm(p+1)×p and
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Ŷ ∈ Rm(p+1)×1. Such training set will be used to estimate
the corresponding function values and its gradient at x∗ given
by y∗. The quantization over the elements of Ŷ and ŷ∗ is
performed element-wise and the quantizer fulfills Condition 1.
The estimation could be performed by updating the training set
with the new input and the quantized extended values. Input x∗
could then be reinserted to the estimator presented in Theorem
1. To avoid such redundancy we consider an approximator that
deals with a zero-mean input ŷ∗ −µ(x∗), and since ŷ∗ already
has the information of the past training set, we then have the
following result.

Theorem 2: Following Condition 3 LGP-A estimates the
target value y∗ by

ȳ∗ = B(ŷ∗ − µ(x∗)) + µ(x∗)

where B = Σ(x∗)(Σ(x∗) + ∆p+1 + σnIp+1)
−1, with µ(x∗)

and Σ(x∗) as presented in Theorem 1 and ∆p+1 is given by
∆un in Proposition 1 or ∆co in Proposition 2 depending on
the quantization scheme selected.

Proof: The proof is presented in the supplementary file in
Section II-C.

VI. PROPOSED APPROACH REFINED

A. Proposed Adaptive Uniform Quantization Scheme

This section combines the overview presented in Section IV
with the mathematical derivations presented in Section V to
present our complete proposed approach in more detail.

In Figure 1, upon receiving the query point zki ∈ R1×p from
the coordinator (left side), agent i (right side) solves the prox-
imal minimization problem (3) (box prox 1/ρfi) and obtains
the exact values of f1/ρi (zki ) ∈ R and ∇f1/ρi (zki ) ∈ Rp×1.
Simultaneously, it uses the regression process, depicted in
the block ’proxLGP’, to obtain the conditional mean µk

i (z
k
i ),

which stores the predicted values of f1/ρi (zki ) and ∇f1/ρi (zki ),
and the conditional covariance matrix Σk

i (z
k
i ). We can adopt

the same adaptive uniform quantization scheme presented in
Section V-B as the exact values follow a Gaussian distribu-
tion (under the LGP model). We will denote the quantized
values of the query response as [f̂

1/ρ
i (zki );∇f̂

1/ρ
i (zki )] =

Qua([f
1/ρ
i (zki );∇f

1/ρ
i (zki )];µ

k
i (z

k
i ),Σ

k
i (z

k
i ), c, b)). The out-

put of the quantizer is transmitted from the agent (right side)
to the coordinator (left side). The dequantized values f̂1/ρi (zki )

and ∇f̂1/ρi (zki ) are used by the ADMM algorithm and to
update the corresponding ’proxLGP’ of agent i.

B. LGP-R based Regression in our Proposed Approach

The ‘proxLGP’ block on the coordinator side of Figure 1
runs at every iteration and its resulting covariance matrix is
used to determine whether to send zki to agent i.

Using the quantization scheme Qua (defined in Section V-B)
and following (13) , if c is chosen such that 2c < 2b, for any
element r of the quantizer input the condition

√
Σk

i[rr](z
k
i ) >

qki[r] of Remark 1 is met. The condition for the correlation
between the quantizer’s input and the quantization error to be
negligible from Remark 1,

√
Σk

i[rr](z
k
i )/q

k
i[r] ≥ 1, is fulfilled

when b is large enough. We assume the same parameters for the
next derivation, which will result in the adaptive quantizer Qua

satisfying the conditions in Remark 1. In that case, Condition 1
for Qua holds then Condition 2 will also hold. Hence, we can
use the previously derived regression scheme LGP-R presented
in Theorem 1 as the regression scheme to be used in this work.
Now, defining g1/ρi (zki ) = [f

1/ρ
i (zki );∇f

1/ρ
i (zki )] we have that

given the new query point zki the predicted value of the vector
g
1/ρ
i (zki ) using LGP-R, will be given by
µk
i (z

k
i ) = Φ(Zk

i∗, Z
k
i )(Φ(Z

k
i , Z

k
i ) + σ2

nIm(p+1) +∆i)
−1Ĝk

i

(17)
where Zk

i∗ ∈ R(p+1)×p contains a copy of zki in each of its rows,
Zk
i is the training input set containing queries sent to agent i

up to time k in the set {zji }j∈Ji
, J k

i contains the indices of the
iterations where a query was sent to agent i by the coordinator
up to the current algorithmic iteration, m is the number of
elements in set J k

i , Ĝk
i is the quantized training target set

containing the local quantized proximal minimization problem
results sent from agent i to the coordinator up to time k in the
set {Qua(g

1/ρ
i (zji );µ

j
i (z

j
i ),Σ

j
i (z

j
i ), c, b)}j∈Ji

, σ2
nIm(p+1), ∆i

are defined in Theorem 1, and the entries of Φ(Zk
i∗, Z

k
i ) and

Φ(Zk
i , Z

k
i ) are detailed in Subsection V-A with a covariance

function given by the square exponential kernel function.
Following the same notation, we have that the covariance

matrix given by the LGP-R will be

Σk
i (z

k
i ) = Φ(Zk

i∗, Z
k
i∗)−

Φ(Zk
i∗, Z

k
i )(Φ(Z

k
i , Z

k
i ) + σ2

nIm(p+1) +∆i)
−1Φ(Zk

i , Z
k
i∗)
(18)

The matrix ∆i will be updated block-wise by inserting the
corresponding quantization error covariance matrix of the query
round, which follows Proposition 1 or Proposition 2 depending
the quantization scheme used. Henceforth, we will use ∆k

i

to refer to the resulting quantization error covariance matrix
obtained after a query process in iteration k, which will be
then added to ∆i.

C. LGP-A Aproximation in our Proposed Approach
In Figure 1 we can see that the coordinator receives the

quantized version ∇f̂1/ρi (zki ) of the exact value ∇f1/ρi (zki ). To
improve the accuracy of the gradient values used in the ADMM
updates at the coordinator, we estimate these values with a
LMMSE estimator rather than using the inexact quantized
values directly. The estimator derived in this subsection is
different from that in subsection VI-B because it is applied
only when a query is performed, which only uses the newly
added entry in the training set. The result is further used by
the ADMM process.

After a query undergoes a communication round, we have
the quantized value of g1/ρi (zki ), ĝ

1/ρ
i (zki ), sent from the agent,

and ∆i has been updated with the block ∆k
i . Hence, Condition

3 holds. Therefore, we can obtain the desired approximation
ḡ
1/ρ
i (zki ) following the derivation from Theorem 2, which gives

us
ḡ
1/ρ
i (zki ) = (Bk

i (ĝ
1/ρ
i (zki )− µk

i (z
k
i )))) + µk

i (z
k
i ) (19)

where Bk
i = Σk

i (z
k
i )(Σ

k
i (z

k
i ) + σnIp+1 +∆k

i )
−1.

D. Dithering
From Remark 1 and (13), we have that the correlation

between the quantization noise and the input is negligible
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when the quantization bit resolution (b) becomes larger and
we fix a small value for c. If b is too small, we can introduce
dithering to randomize the quantization error and break the
correlation between this error and the quantizer input.

A recent study ([26]) explores the use of quantization
with dithering to determine which distribution the substractive
dithering follows. The work presented in [27] shows that the
use of dithering with quantization could be improved if an
orthogonal transformation was performed on the quantizer input
prior to the quantization process. We thus adopt dithering as part
of quantization after orthogonal transformation is performed
at the quantizer’s input.

When the uniform quantizer is used with a zero-mean Gaus-
sian input, the dithering variable dki will be a random number

coming from a uniform distribution dki[r] ∼ U(−qki[r]
2 ,

qki[r]
2 ),

where the window length qki[r] is as defined in (13). The
dithering will be performed element-wise, so dki will have
the same dimension as the quantizer input. Following the
orthogonal transformation as in Section V-B2, the quantizer
input with dithering is given by

g
A[d]
i (zki ) = gAi (z

k
i ) + dki (20)

where gAi (z
k
i ) = A(g

1/ρ
i (zki )− µk

i (z
k
i )), with A as presented

in the Pre-filtering. Then, gA[d]
i (zki ) will be quantized and

sent to the coordinator. The coordinator then performs the
dequantization process and subtract the noise added to the
input before adding back its mean. The value ĝ

1/ρ
i (zki ) is

given by
ĝ
1/ρ
i (zki ) = A−1((g

A[d]
i (zki ) + ϵkQi − dki ) + µk

i (z
k
i ) (21)

where ϵkQi is the quantization noise for agent i at iteration k.
In the next section, we will test different ways of integrating

learning and adaptive quantization methods in a numerical
example.

VII. NUMERICAL SIMULATIONS

In this section we test the methods proposed through this
work by solving a sharing problem where the agent’s sub-
problems are quadratic. The specifics of the considered sharing
problem, the simulation settings, and the results obtained are
presented next.

A. Sharing Problem

1) Problem Definition: Our testing problem is based on the
application presented in [7]. In this example, a dynamic sharing
problem where the problem’s variables change at each iteration
is presented and solved via ADMM. In our work, those varying
variables are fixed and do not vary at each algorithmic step.
We consider the following sharing problem:

minimize
n∑

i=1

(xi − θi)
TΥi(xi − θi) + ζ∥

n∑
i=1

yi∥1

subject to xi − yi = 0

(22)

where for i = 1, · · · , n, variables xi, yi ∈ Rp, θi ∈ Rp,
Υi ∈ Rp×p positive definite, and ζ > 0 are given problem
parameters.

As presented in [7], the problem in (22) can be applied
to data flow in communication networks or currents in power

grids, where there are n subsystems and p quantities distributed
over such subsystems. The vector xi describes the p quantities
at subsystem i, and the goal is to determine the solution vectors
xi, i = 1, 2, . . . , n.

2) Generation of Variables θi and Υi: The details are
presented in Section III-A of the supplementary file.

3) Solution with ADMM: The problem presented in (22)
has the same form as (2) in Section III based on which the
ADMM updates for this case are expressed as
xk+1
i = argmin

xi∈Rp

{
fi(xi) + (ρ/2)∥xi − zki ∥22

}
ȳk+1 = argmin

ȳ∈Rp

{
ζ∥nȳ∥1 + (nρ/2)∥ȳ − x̄k+1 − (1/ρ)λk∥22

}
λk+1 = λk + ρ(x̄k+1 − ȳk+1) (23)
where fi(xi) = (xi − θi)

TΥi(xi − θi), x̄k = (1/n)
∑n

i=1 x
k
i ,

ȳk = (1/n)
∑n

i=1 y
k
i , and zki = xki − x̄k + ȳk − (1/ρ)λk.

Since the functions fi and the l1 norm are strongly convex,
the ADMM updates for xk+1

i and ȳk+1 are solutions to
unconstrained convex optimization problems. Thus, those
problems can be solved by calculating the derivatives of the
objective functions in (23), and setting them equal to zero.
Following this, xk+1

i can be expressed by the closed form
solution
xk+1
i = (2Υi+ρIp)

−1(2Υiθi+ρ(x
k
i − x̄k+ ȳk)−λk), (24)

where Ip is the p× p identity matrix.
Similarly, the ȳ update can expressed as

ȳk+1 =


(x̄k+1 + λk/ρ)− ζ

ρ , if x̄k+1 + λk/ρ > ζ
ρ

0, if |x̄k+1 + λk/ρ| ≤ ζ
ρ

(x̄k+1 + λk/ρ) + ζ
ρ , if x̄k+1 + λk/ρ < − ζ

ρ
(25)

B. Simulation Implementation

We consider two cases where n ∈ {10, 30}. The problem
described in (22) is solved with four different methods:

1) Direct: this method uses a convex solver to solve the
problem directly. The knowledge of the true solution
is used to construct the comparative metric which is
introduced in the following subsection.

2) Sync: this algorithm uses ADMM with proximal operator
as in (23), which simplifies to (24) and (25) with ρ = 10.

3) STEP-GP: the algorithm proposed in [13], which com-
bines ADMM with proximal operator with GP regression.

4) STEP-LGP: the hybrid algorithm proposed in this paper,
which combines the regression algorithm developed in
Section VI-B, the LMMSE approximation presented in
Section VI-C, and the adaptive quantization method
developed in Section VI-A.

For each of the above algorithms, different quantization
methods, or no quantization at all, are considered as follows:

• Exact: this method does not employ any quantization but
uses 64-bit floating point numbers.

• UniQuant: this uniform quantization adaptation scheme is
proposed in [16] to quantize the communications between
agents in a connected network using the Proximal Gradient
Method (PGM). In case the quantizer’s input is a vector the
quantization is performed element-wise. For each element
of the quantizer’s input, an initial quantizer’s range is
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TABLE I: Elements associated with each of the proposed methods.

GP Regression LGP Regression Adpt Uni Quant Decoupling Whitening Dithering
Sync:UniQuant
STEP-GP:Exact

STEP-LGP:UniAd
STEP-LGP:UniAd-Dec

STEP-LGP:UniAd-DecDit
STEP-LGP:UniAd-Whit

STEP-LGP:UniAd-WhitDit

set which decreases at a linear rate over the algorithmic
iterations and the quantizer’s mid-value is set to be the
previous quantized value.

• UniAd: this is the adaptive uniform quantization method
as presented in Section VI-A and performed element-wise
following the Uncorrelated Adaptive Scheme as presented
in Section V-B2a.

• UniAd-Dec: this is the adaptive uniform quantization
method as presented in Section VI-A and following
the Correlated Quantization Scheme as presented in
Section V-B2b with decoupling.

• UniAd-DecDit: same as UniAd-Dec but adding the dither-
ing procedure as presented in Section VI-D.

• UniAd-Whit: this is the adaptive uniform quantization
method as presented in Section VI-A and following the
Correlated Quantization Scheme with whitening.

• UniAd-WhitDit: same as UniAd-Whit but adding the
dithering procedure as presented in Section VI-D.

In our simulations, we consider the following com-
binations: Sync:Exact, Sync:UniQuant, STEP-GP:Exact,
STEP-LGP:UniAd, STEP-LGP:UniAd-Dec, STEP-LGP:UniAd-
DecDit, STEP-LGP:UniAd-Whit, and STEP-LGP:UniAd-
WhitDit. The algorithmic components of each of the proposed
combinations are summarized in Table I.

The simulations were implemented in MATLAB. The
solution of the minimization problems (22) are obtained directly
using a convex solver from the YALMIP toolbox [28]. For the
regression training and inference, we use the GPstuff toolbox
[29]. The computation was conducted with high performance
computational resources provided by Louisiana State University
(http://www.hpc.lsu.edu).

C. Metrics and Considerations

1) MAC Metric: To consider a more realistic communication
process, we include a simulation component to reflect the
channel contention. By modifying the simulator in [30], we get
that the total transmission time will be Txt =

∑N
k=1 T

k
round,

where N is the number of iterations taken to reach convergence,
and T k

round is the expected transmission time in one iteration
round. The specifics of how this metric was obtained are
presented in Section III-B of the supplementary file.

2) ADMM Termination Criterion: We propose a termination
criterion for ADMM using the concept of primal-residual as
shown in [3], having the form:

∥xk − yk∥∞ ≤ ϵp(1 + ∥λk/ρ∥∞) (26)
where xk, yk, and λk are the variables used in the ADMM
(see Section III) and ϵp is an adjustable tolerance whose value

will affect the trade-off between communication reduction and
accuracy.

3) Performance Metric: To compare our results, we propose
the Log Optimality over Transmission time (LOT) performance
metric

LOT = − log(|Jgt − J∗|/Jgt)/Txt (27)

where Jgt is the true optimal value obtained by the Direct
method, J∗ is the objective value obtained by a particular
approach, and Txt the total transmission time defined in Section
VII-C1. This metric reflects both communication cost and
efficacy of a given approach. In particular, we want both the
absolute error in the numerator and the transmission time in
the denominator to be small, hence a higher LOT value is
better.

4) Querying Mechanism: The coordinator decides if a query
should be sent to agent i using a heuristic criterion utilizing
the maximum component of the diagonal of the covariance
matrix of the gradients of the Moreau Envelope. Specifically,
if max

(
Var

(
∇f1/ρi (zki )

))
>
(
ψk
i

)2
then communication is

needed, otherwise it is not. The threshold ψk
i is adapted at the

coordinator side based on the setting of an initial threshold
which will decrease at each iteration according to a decay
rate α, such that 0 < α < 1. At k0, which is the iteration
where the GP regression is used for the first time, the initial
threshold for agent i (ψk0

i ) is calculated following ψk0
i =

ιmax
(
Var

(
∇f1/ρi (zki )

))
, where 0 < ι < 1. At iteration

k > k0, no matter the communication decision made by agent
i, the threshold will be updated as ψk

i = ψk0
i (α)k−k0 .

D. Simulation Results with p = 5

In this subsection we present the results for 10 and 30 agents
when the dimension of the variables is set to be p = 5. We
also set the variable ι for the querying mechanism described
in Section VII-C4 to be 0.6 for all agents. Each algorithm
with the different combinations of quantization methods was
run 100 times with different sets of randomly generated θi
and Υi, and the results are shown in terms of the median
statistic among all simulations. We used such metric to mitigate
the effect of outliers. The median is taken considering only
the convergent cases for each method across the considered
quantization levels. We consider a case to be non-convergent
when the ADMM algorithm do not stop before reaching the
maximum number of iterations manually set by us. In our
simulations, we considered a maximum iteration count of 250
for a network of 10 agents and 300 when considering 30 agents.
This set of results considered values of η = 0.2, ϵ = ζ = 1,
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ρ = 10, p = 5, a tolerance value of ϵp = 10−6, and x0i =
z̄0 = λ0 = 0.

1) Results for 10 agents: Fig. 2 (left) shows the results
of the median of the 100 simulations for ADMM, STEP-GP
and STEP-LGP based methods using the metric presented in
Section VII-C3 through the various quantization resolutions
tested. The minimum resolution for which any quantization
method achieved convergence was 5 bits.

In terms of the LOT metric, STEP-GP presented a better
performance in all cases compared to the baseline approaches
Sync:UniQuant and Sync:Exact. Also, it can be seen that start-
ing from a resolution of 9 bits the performance of any STEP-
LGP based method was better than STEP-GP, Sync:UniQuant,
and Sync:Exact, with the peak of performance occurring
at 10 bits for STEP-LGP:UniAd-DecDit. For resolutions
below 9 bits, STEP-LGP:UniAd outperformed the STEP-GP
case starting from 7 bits while STEP-LGP:UniAd-Dec and
STEP-LGP:UniAd-DecDit did it starting from 8 bits. For 8
and 7 bits, it is STEP-LGP:UniAd which achieved the best
overall performance while STEP-LGP:UniAd-Whit and STEP-
LGP:UniAd-WhitDit could not beat the STEP-GP algorithm.
Overall, STEP-LGP:UniAd performed consistently good for
all the presented resolutions with STEP-LGP:UniAd-Dec and
STEP-LGP:UniAd-DecDit presenting the peak of performance
starting from a quantization resolution of 9 bits.

2) Results for 30 agents: The performance in this case is
different than the 10 agents case according to Fig. 2 (right)
in terms of the LOT metric. It can be seen that STEP-GP
presented a better performance in all cases compared to the
baseline approaches Sync:UniQuant and Sync:Exact, however
the difference in performance is not as notorious as in the pre-
vious case. Similarly to the 10 agents case, STEP-LGP:UniAd-
DecDit presented the peak of performance but this time it
does for the 9 bits case. Between the 5-8 bits interval, STEP-
LGP:UniAd-Whit and STEP-LGP:UniAd-WhitDit could not
outperformed STEP-GP, Sync:UniQuant, or Sync:Exact, while
the rest of methods using LGP regression always outperformed
Sync:Exact and were all able to outperform STEP-GP and
Sync:UniQuant starting from the 8 bits case. For 9 and 10
bits, all LGP-based methods presented better performance than
STEP-GP with STEP-LGP:UniAd-Dec and STEP-LGP:UniAd-
DecDit presenting the better LOT values by a significant margin.
Between 11 and 14 bits, the best performance was always
attained by a method involving quantization. However, it is
noted that the margin between STEP-GP and the methods using
LGP regression was significantly reduced compared to the 10
agents case.

E. Simulation Results with p = 10

In this subsection we discuss the results for 10 and 30 agents
when the dimension of the variables is set to be p = 10. The
initialization parameters and constant variables considered are
the same as in the previous subsection. The corresponding
graphs are presented in Figure S3 in the supplementary file.

1) Results for 10 agents: We generated results of the
median of 100 simulations for ADMM, STEP-GP and STEP-
LGP based methods using the metric presented in Section
VII-C3 through the various quantization resolutions tested. The

minimum resolution which any quantization method achieved
convergence was 5 bits.

In terms of the LOT metric, STEP-GP presented a better
performance compared to Sync:Exact but it was outperformed
by Sync:UniQuant in the cases where such method had a
quantization resolution between 5 and 10 bits. Also, it is
observed a stable performance of all the methods using LGP
regression through all the quantization resolutions tested as
shown in Figure S3 (left) of the supplementary file. In all the
cases, those methods consistently beated STEP-GP. The peak
of performance was attained by STEP-LGP:UniAd-Whit at 7
bits beating by a small margin its own result for the 9 bits case.
Through all the results it is either STEP-LGP:UniAd-Whit or
STEP-LGP:UniAd-WhitDit the method that presented the best
performance, with the only exception being the 6 bits case.
Starting from 10 bits, the methods using whitening presented
a significant better performance compared against all the other
methods. Finally, STEP-LGP:UniAd, STEP-LGP:UniAd-Dec,
and STEP-LGP:UniAd-DecDit presented a similar behavior
through the different quantization resolutions.

2) Results for 30 agents: Also, we generated the results
for 30 agents following the same procedure as in the previous
subsection.

In Figure S3 (right) of the supplementary file we can see
that the performance in this case was similar than the 10 agents
case in terms of the LOT metric. The most notorious difference
was that STEP-GP was outperformed by Sync:UniQuant for
all the tested quantization resolutions. In all the cases, LGP-
based methods consistently beated STEP-GP. Different to
the 10 agents case, the methods STEP-LGP:UniAd-Whit and
STEP-LGP:UniAd-WhitDit did not present the same notorious
improvement in performance compared to the rest of methods,
however they still attained the best performance for the 7 bits
case.

F. Tuning

The presented results apart from the parameters explicitly
mentioned that change upon cases, commonly share most of
the initial parameters. Such approach is fair for comparison
purposes, however we believe that a proper tuning of the initial
parameters could lead to better results. We acknowledge that
real life applications do not allow tuning parameters extensively,
nonetheless we wanted to show what happens when tuning
one of the initial parameters is allowed. In this subsection we
varied the initial querying threshold by tuning the variable ι,
which for all the previous simulation was set to 0.6. For the
10 agents case with p = 5, we ran simulations varying ι in the
interval between 1 and 0.4. For each trial, we used 5 different
sets of randomly generated θi and Υi, and for each set we
ran simulations for Sync:Exact, STEP-GP, STEP-LGP:UniAd,
STEP-LGP:UniAd-Dec, and STEP-LGP:UniAd-DecDit.

As shown in Fig. 2 (left), the median values for the LOT
metric at 7 and 8 bits were better for STEP-LGP:UniAd
compared to STEP-LGP:UniAd-Dec and STEP-LGP:UniAd-
DecDit. When compared to STEP-GP, STEP-LGP:UniAd
presented higher LOT results for 7 and 8 bits while STEP-
LGP:UniAd-Dec and STEP-LGP:UniAd-DecDit had better
performance only in the 8 bits case. In Table II we present
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Fig. 2: Performance in the LOT metric of the adaptive quantization methods at different bit resolutions for 10 agents (left) and
30 agents (right) with p = 5. The plots show the median LOT of 100 simulations for different sets of parameters θi and Υi.

the best value of LOT that we achieved for all the ι used for
quantization levels fixed at 7 and 8 bits. For the 7 bits case,
contrary to the results in Fig. 2 (left), we can see that STEP-
LGP:UniAd and STEP-LGP:UniAd-Dec beated STEP-GP in
3 of the 5 cases considered, while STEP-LGP:UniAd-DecDit
did the same in 4 cases. Only by comparing between the
quantization-based algorithms we got that STEP-LGP:UniAd
did not achieve the highest LOT value in any case, STEP-
LGP:UniAd-Dec was the best for sets 3 and 4, and STEP-
LGP:UniAd-DecDit got the best results for sets 1, 2, and 5.

For the cases following a quantization level of 8, the
quantization-based methods always outperformed STEP-GP
with the only exception being STEP-LGP:UniAd-Dec for Set
3. In this case, STEP-LGP:UniAd only outperformed the other
quantization-based algorithm in Set 2 and 4, STEP-LGP:UniAd-
Dec did not achieved the highest LOT value in any case, and
STEP-LGP:UniAd-DecDit got the best results for sets 1, 3,
and 5.

As a general observation, excluding the Set 5, all the methods
that had their initial threshold tuned presented a higher value of
LOT than its corresponding median value presented in Fig. 2
(left). The results presented in Table II show the potential of
fine tuning initial parameters.

G. Overall Remarks

The behavior of methods using whitening transformation
reflects that a more complex algorithm can achieve the best
results under certain conditions but it lacks the robustness
shown (especially at lower quantization bits) by the less
complex method STEP-LGP:UniAd. Furthermore, a proper
tuning of the initial parameters can significantly improve
the overall performance of the tested algorithms in terms of
the trade-off between communication reduction and accuracy.
The LGP-based algorithms were able to further reduce the
communication expenditure compared to the base STEP-GP
algorithm.The best behavior in terms of performance and

robustness of any of the proposed quantization-based algorithms
is achieved for a resolution greater than 8 bits.

The results showed the potential of our proposed methods
to achieve a really good accuracy while significantly reducing
the communication cost in comparison to the baseline methods
Sync:Exact, Sync:UniQuant, and STEP-GP. Even the less com-
plex proposed method STEP-LGP:UniAd is good enough for
reducing significantly the communication cost while reaching
an acceptable accuracy level with a consistent performance.
The peak of performance in any of the testing scenarios was
achieved by a quantization-based method using orthogonal
transformation, either Decoupling or whitening. However, as
shown in the previous subsection the elements that are part of
the nature of the problem affect the relative performance of
the proposed methods. For that reason, further research needs
to be done to determine under what conditions each of the
proposed methods achieve the best performance.

VIII. CONCLUSION

In this paper we developed a hybrid approach that combined
the Gaussian Process-based learning approach with an adaptive
uniform quantization approach to achieve further reduction of
the communication cost required in distributed optimization.
The resulting quantization error did not follow a Gaussian
distribution, so we proposed a new regression algorithm. This
algorithm, inspired by GP, resulted in a Linear Minimum Mean
Square Estimator named LGP-R, which considered the resulting
quantization error statistics. Communication was also reduced
by refining the uniform quantizer with an orthogonalization
process of the quantizer input to handle the inherent correlation
of the quantizer’s input components, and with dithering to
ensure the uncorrelation between the quantizer’s introduced
noise and the quantizer’s input. Simulations of a distributed
sharing problem showed that our hybrid approaches signifi-
cantly decreased total communication cost when compared to
baseline methods, being able to find the global solution at even
low quantization resolutions.
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TABLE II: Best result obtained for 10 agents with p = 5 in terms of the LOT metric from simulations varying the the
initial querying threshold by tuning the value of ι in the interval [0.4, 1]. Such tuning was performed for the STEP-GP,
STEP-LGP:UniAd, STEP-LGP:UniAd-Dec, and STEP-LGP:UniAd-DecDit methods for fixed quantization resolutions of 7 and
8 bits.

Quantization resolution b = 7 Quantization resolution b = 8

Set 1 Set 2 Set 3 Set 4 Set 5 Set 1 Set 2 Set 3 Set 4 Set 5
Sync:Exact 0.12077 0.11357 0.11704 0.05357 0.01589 0.12077 0.11357 0.11704 0.05357 0.01589
STEP-GP 0.46526 0.41836 0.50458 0.23658 0.07632 0.46526 0.41836 0.50458 0.23658 0.07632

STEP-LGP:UniAd 0.52190 0.39249 0.41624 0.29317 0.10001 0.48892 0.53054 0.51621 0.32744 0.11247
STEP-LGP:UniAd-Dec 0.51851 0.36936 0.42839 0.29719 0.09726 0.50445 0.48677 0.49199 0.32325 0.11474

STEP-LGP:UniAd-DecDit 0.54340 0.46426 0.38651 0.29297 0.10678 0.54909 0.48731 0.53442 0.30638 0.11748
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Fig. S1: Diagram representing the proposed adaptation of the uniform quantizer using the statistics of the Gaussian input y.
The uniform quantizer’s mid-point is set as the mean of y and the range depends on the variance of y.

In this attachment we present supplementary information to the one presented in the main document ”Communication-efficient
ADMM using Quantization-Aware Gaussian Process Regression”.

I. SUPPLEMENTARY ILLUSTRATIONS

A. Illustration on the Adaptive Uniform Quantization presented in Section V-B1

The proposed quantization adaptation of a mid-thread uniform quantizer presented in Section V-B1 is illustrated in Figure S1.
Such a figure presents a quantizer with 8 quantization levels in which the quantizer’s input y will be expressed by 3 bits at the
quantizer’s output. The illustration shows how the statistics of the quantizer’s Gaussian input y are used to set the mid-value ȳ
and the range l of the uniform quantizer. Given the quantizer’s input y ∼ N

(
µy, σ

2
y

)
, we adapt a uniform quantizer by setting

its mid-value y = µy and its range l = 2cσy, for some given c > 0. The proposed quantizer (denoted by Qua(y;µy, σy, c, b)
has parameters that are adapted for a quantization resolution appropriate for the most likely values of y. The quantization levels
will be constructed by setting uniform quantization intervals around the mid-value where the length of each interval is given by
q = 2cσy/2

b. Depending on which interval the quantizer’s input belongs to, it will be assigned one of the 8 different 3-bits
binary numbers considered in this case.

B. Illustration on the Gaussian Process concept presented in Section V-A

In Figure S2 the concept of GP is depicted. The distribution of a Gaussian process is the joint distribution of infinitely many
random variables. Every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear
combination of them is normally distributed. The blue lines in Figure S2 represent such a collection of random variables. The
crosses in the graph represent the observed values of the function f(x) and we can see that the many random variables all
converge to those points. This shows that for a given set of training points, there are potentially infinitely many functions that
fit the data. Gaussian processes assign a probability to each of these functions and the mean of this probability distribution then
represents the most probable characterization of the data. The black curve in Figure S2 is the mean function of the GP. Finally,
the use of a probabilistic approach allows us to incorporate the confidence of the prediction into the regression result. Such
confidence region is represented in the gray area in the illustration and uses the second-order statistics of the joint distribution
to be constructed. It is noticeable that the farther we are from a point of the training set, then the mentioned region becomes
bigger making the predictive mean more unreliable.

II. MATHEMATICAL PROOFS

A. Proof of Proposition 2

The dequantized value ŷ will be ŷ = A−1Qua(y
A; 0, σw, c, b) + µ(x) , but can be also expressed as

ŷ = A−1[A(y − µ(x)) + ϵQ] + µ(x) = y +A−1ϵQ = y + ϵ̂Q (1)
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Fig. S2: Diagram representing the GP regression.

Analyzing the auto correlation of ϵ̂Q we have:
E[ϵ̂Qϵ̂

′
Q] = (A)−1E[ϵQ ϵ′Q]((A)−1)′ = (A)−1ΛϵQ((A)−1)′ (2)

where E[ϵQ ϵ′Q] is the auto correlation of the quantization error and ΛϵQ is a diagonal matrix with entries given by 1
12 q̃

2.
If A1 is used then q̃ will be q̃ = 2c

2b
Ip+1 = Γ(b, c)Ip+1, where Γ(b, c) = 2c

2b
.

On the other hand, if A2 is used then q̃ = 2c
2b

√
Λ = Γ(b, c)

√
Λ. Therefore we will have that

E[ϵ̂Qϵ̂
′
Q] = A−1ΛϵQ(A

−1) =
Γ2(b, c)

12
(A−1Λ̃ϵQ(A

−1)′) (3)

with Λ̃ϵQ being Ip+1 or Λ depending on the selection of A.
Finally, we have that since A−1Λ̃ϵQ(A

−1)′ = Σ(x) then no matter the selection of A the result will be

E[ϵ̂Qϵ̂
′
Q] =

Γ2(b, c)

12
Σ(x) = ∆ (4)

B. Proof of Theorem 1

The proposed LMMSE will be given by the linear combination
µ(x∗) = HŶ (5)

Then, if (5) is a LMMSE then it must follow the orthogonal principle which will be given by E[(µ(x∗) − ŷ∗)(Ŷ )′] = 0.
From this point we can obtain an expression for H

E[(HŶ − ŷ∗)(Ŷ )′] = 0

HE[Ŷ (Ŷ )′] = E[ŷ∗(Ŷ )′]

HE[(Y + ϵn + ϵQ)(Y + ϵn + ϵQ)
′] = Φ(x∗, X) (6)

Since ϵQ is uncorrelated from y and ϵn is independent from the rest, all cross products will be turn to zero by the expectation.
Therefore we can simplify the expression to

H[Φ(X,X) + E[ϵQϵ
′
Q] + σnIm(p+1)] = Φ(x∗, X) (7)

Defining E[ϵQϵ
′
Q] = ∆,we have the expression

H = Φ(x∗, X)[Φ(X,X) + ∆ + σnIm(p+1)]
−1 (8)

Now, the error covariance of the estimator will be given by
Σ(x∗) = E[(ŷ∗ − µ(x∗))(ŷ∗ − µ(x∗))

T ] (9)
Σ(x∗) = E[(ŷ∗ −HŶ )(ŷ∗ −HŶ )T ] (10)

Expanding this expression and operating the expectations we get

Σ(x∗) = Φ(X∗, X∗)−
HTΦ(X,X∗)− Φ(X∗, X)H −HTΦ(X,X)H

Finally, introducing the expression of H in (8) we get

Σ(x∗) = Φ(X∗, X∗)−
Φ(X∗, X)[Φ(X,X) + σ2

nIm(p+1) +∆]−1Φ(X,X∗)
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C. Proof of Theorem 2

The expression for our estimator will be defined as
ȳ∗ − µ(x∗) = B(ŷ∗ − µ(x∗)) (11)

where B is the matrix determined by resorting to the orthogonal principle. Using the orthogonal principle for this LMMSE like
in the LGP case the expression for B will be

E[(B(ŷ∗ − µ(x∗))− (ŷ∗ − µ(x∗)))(ŷ∗ − µ(x∗))
′] = 0

B E[(ŷ∗ − µ(x∗))(ŷ∗ − µ(x∗))
′] = E[(ŷ∗ − µ(x∗))(ŷ∗ − µ(x∗))

′] (12)

So, inserting the definition of µ(x∗) and Σ(x∗) from Theorem 1 into (12) will lead to the simplified version
B = Σ(x∗)[Σ(x∗) + σnIp+1 +∆p+1]

−1 (13)

III. SUPPLEMENTARY INFORMATION TO NUMERICAL RESULTS

A. Details on the Calculation of Variables θi and Υi in Section VII-A2

In [1] the variables θi and Υi are updated at each iteration of the ADMM algorithm. In this work, those variables are fixed by
following the variable’s initialization for the first iteration made in [1]. In such, to calculate each θi we first create θ0i which is
a p-dimensional vector with entries randomly generated and uniformly distributed on [-1,1]. Then, the value of θi to be used is

θi = θ0i + ηui (14)
where η is some small positive number, ui is a p-dimensional vector for agent i whose entries are randomly generated and
uniformly distributed on [-1,1].

Next, to calculate each Υi we first create Υ0
i as a symmetric p×p matrix whose entries are randomly generated and uniformly

distributed on [-1,1]. Then, we generate Υ̃i = Υ0
i + ηEi, where Ei is a symmetric p× p matrix whose entries are randomly

generated and uniformly distributed on [-1,1]. Subsequently, Υi is constructed as

Υi =

{
Υ̃i, if λmin(Υ̃i) > ϵ

Υ̃i +
(
ϵ− λmin(Υ̃i)

)
Ip, otherwise

(15)

where λmin(Υ̃i) denotes the smallest eigenvalue of Υ̃i and ϵ > 0 is some positive constant. The procedure in (15) is performed
to ensure that Υi is positive definite.

B. Details of MAC Metric presented in Section VII-C1

Assuming that the coordinator communicates with the agents wirelessly following the IEEE 802.11 specification, a MAC
layer simulator was implemented. The 802.11 CSMA/CA simulator presented in [2] was chosen because of its simplicity, which
was modified to our purposes. The simulator implemented in MATLAB will return the number of total transmissions, successful
transmissions, and an efficiency value defined by ξ = st/tt, where st is the successful transmissions observed and tt the total
amount of transmissions performed. The simulation was run offline 1000 times to obtain an average efficiency ξ. Once the
average values are obtained for different payloads and number of agents, those values will be used with the results given by the
distributed optimization simulation to calculate the communication time for each round. In particular, at the k-th iteration, the
coordinator will receive a certain amount of simultaneous responses which are expressed in the variable T k

simul. The expected
transmission time in one iteration round will be T k

round = T k
simul/ξ

∗ , where ξ∗ is the average efficiency in the MAC simulation
for the given scenario. The total transmission time will be Txt =

∑N
k=1 T

k
round, where N is the number of iterations taken to

reach convergence. This metric is not only affected by the total number of communications that were performed but also the
number of agents communicating at each iteration and the payload size, thereby making it a more robust metric to compare the
performance of the proposed methods.

C. Complementary Numerical Results Graphs

In Fig. S3 we present the results for 10 and 30 agents when the dimension of the variables is set to be p = 10 discussed in
Section VII-E.

IV. SUPPLEMENTARY STATISTICAL RESULTS FOR 30 AGENTS p = 10

The results presented up to this point were only considering the median among the 100 simulation performed for each case.
Such approach is useful to visualize the general trend among all cases, however there is information lost by only considering
such statistic. For that reason we also generated boxplots to get more insight about the data sets distribution. Such boxplots
show how the data of our 100 simulations is spread around the median and in between the first and third quartile. In this
subsection, we are going to discuss boxplot result for the data sets coming from 30 agents with p = 10. Because not all methods
can be presented in a single graph we decided to present the graph comparing only four methods.
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Fig. S3: Performance in the LOT metric of the adaptive quantization methods at different bit resolutions for 10 agents (left) and
30 agents (right) with p = 10. The plots show the median LOT of 100 simulations for different sets of parameters θi and Υi.
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Fig. S4: Boxplot comparing the methods STEP-GP:Exact, LGP:UniAd, LGP:UniAd-Dec, and LGP:UniAd-DecDit for 30 agents
with p = 10 in terms of the LOT metric for different resolutions. The results presented gather the information out of 100
simulations for different sets of parameters θi and Υi. Since STEP-GP:Exact is not affected by quantization it is presented with
a single boxplot with gray color.

Fig. S4 shows the boxplots comparing STEP-GP, STEP-LGP:UniAd, STEP-LGP:UniAd-Dec, and STEP-LGP:UniAd-DecDit
for the case where we have 30 agents with p = 10. The Sync:Exact was not shown in the graph since it did not have much
variation among the 100 simulations, not giving much more information than the one already presented in the median plots.
Since STEP-GP:Exact is not affected by quantization it is presented with a lone boxplot. Comparing STEP-GP:Exact with
STEP-LGP:UniAd, we can see that the former presents less spread of its data while STEP-LGP:UniAd has a significant spread
for the 7 to 14 bits cases. Also, for all bit resolution STEP-LGP:UniAd-Dec and STEP-LGP:UniAd-DecDit present slightly
more variation than STEP-LGP:UniAd.
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