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Abstract

Abstract—Estimation of individual treatment effect (ITE) for different types of treatment is a common challenge in therapy as-

sessments, clinical trials and diagnosis. Deep learning methods, namely representation based, adversarial, and variational, have

shown promising potential in ITE estimation. However, it was unclear whether the hyperparameters of the originally proposed

methods were well optimized for different benchmark datasets. To solve these problems, we created a public code library con-

taining representation-based, adversarial, and variational methods written in TensorFlow. In order to have a broader collection

of ITE estimation methods, we have also included neural network based meta-learners. The code library is made accessible for

reproducibility and facilitating future works in the field of causal inference. Our results demonstrate that performance of most

methods can be improved using automatic hyperparameter optimization. Additionally, we review the methods and compare

the performance of the optimized models from our library on publicly available datasets. The potential of hyperparameter

optimization may encourage researchers to focus on this aspect when creating new methods for inferring individual treatment

effect.
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Review of Deep Learning Methods for Individual
Treatment Effect Estimation with Automatic

Hyperparameter Optimization
Andrei Sirazitdinov , Marcus Buchwald , Jürgen Hesser , Vincent Heuveline , Members, IEEE

Abstract—Estimation of individual treatment effect (ITE) for
different types of treatment is a common challenge in therapy
assessments, clinical trials and diagnosis. Deep learning methods,
namely representation based, adversarial, and variational, have
shown promising potential in ITE estimation. However, it was
unclear whether the hyperparameters of the originally proposed
methods were well optimized for different benchmark datasets.
To solve these problems, we created a public code library contain-
ing representation based, adversarial, and variational methods
written in TensorFlow. In order to have a broader collection of
ITE estimation methods, we have also included neural network
based meta-learners. The code library is made accessible for
reproducibility and facilitating future works in the field of
causal inference. Our results demonstrate that performance of
most methods can be improved using automatic hyperparameter
optimization. Additionally, we review the methods and compare
the performance of the optimized models from our library on
publicly available datasets. The potential of hyperparameter
optimization may encourage researchers to focus on this aspect
when creating new methods for inferring individual treatment
effect.

Index Terms—Causal Inference, Deep Learning, Individual
Treatment Effect (ITE) Estimation.

I. INTRODUCTION

CAUSAL inference addresses the question of what would
be the outcome if instead of one treatment, an alternative

one was applied. In the general context of individual treat-
ment effect estimation, this requires modifying the treatment
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prescription to measure differences in outcomes. Sources of
data for causal inference include randomized control trials
(RCT) and observational studies. An elementary problem in
this case is the lack of the unseen or counterfactual treatment
outcomes [1]. In RCT, a person is assigned to the treatment - or
control group at random, which supports the assumption that
the treatment assignment does not depend on the individual
characteristics of the patient. In the case of an ideal RCT with
a sufficiently large patient set, one might easily compute a
conditional average treatment effect. It acts like an individual
treatment effect, as the distributions of patients with different
features in the treatment group and in the control group are
sufficiently similar. In reality, RCT is limited through ethical
and financial aspects. For example, it is unethical to assign
surgical interventions to random participants. Observational
studies on the other hand rely on existing patient data, i.e.
clinical records, and are as such easier to conduct [2]. The
main drawback of observational studies is that treatment
assignment is highly correlated with subject characteristics.
Especially if the treatment assignment algorithm is unknown,
potential hidden factors impede the estimation of ITE [3]. In
this case, computation of the treatment outcome is biased.

In consequence, to make a prediction of treatment outcome
in observational studies possible, we rely on three assumptions
[4]. The first assumption is called unconfoundness. It presumes
the absence of hidden, i.e. non-available, variables influencing
both treatment and outcome. The second assumption is posi-
tivity, which states that there must be a non-zero probability
of receiving a treatment. This means that, a priori, one cannot
infer whether a patient belongs to the treatment or control
group based on one’s covariates. As a consequence, the
counterfactual outcomes from all subspaces of the covariate
space can be inferred [5]. The third assumption is consistency
meaning for patients with similar characteristics receiving the
same treatment, the same outcome is expected.

The main problem of observational studies is group im-
balance. Study cases often include significantly more control
patients than treated. Another problem lies in a highly non-
linear dependency between covariates and outcome for most
real-world datasets [6]. In this case we can not rely on classical
methods of outcome prediction such as linear regression.
Neural networks have performed exceptionally well in the
case of nonlinear and linear relationships between input and
outcome. They are used in many areas, such as working with
text or images [7].

In this paper, we provide an overview of a variety of estab-

https://orcid.org/0000-0001-9718-2637
https://orcid.org/0000-0002-6415-8611
https://orcid.org/0000-0002-4001-1164
https://orcid.org/0000-0002-2217-7558


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. –, NO. –, MONTH 202X 2

lished neural networks based methods used for ITE estimation.
We review their architectures and evaluate them on publicly
available datasets. Strong and weak points of each architecture
are discussed. Finally, a summary of the results is provided.
We also offer an extensive causal inference library and outline
future directions for building ITE estimation methods based on
neural networks.

II. RELATED WORK

Recently, causal inference methods utilizing neural net-
works enjoy increasing popularity [8]–[14]. These can be
divided into representation based, adversarial and variational
methods. Representation based methods use neural networks
to transform data into often lower-dimensional latent space.
This facilitates inference as representations for treated and
untreated subjects are located closer to each other compared
to input space [8], [9]. Adversarial based strategies employ
Generative Adversarial Networks (GAN) [15]. They learn
to generate artificial treatment predictions while simultane-
ously being trained to discriminate between them and the
true outcomes in a competing strategy to improve outcome
estimation performance [10], [12]. Variational methods [11],
[13], [14] use variational autoencoders [16] to convert the
input into latent space and then using the latter to sample
the treatment outcomes, including uncertainties. Such methods
rely on Directed Acyclic Graphs (DAG) representing the data
generation process.

The methods called meta-learners [17] such as S-Learner,
T-learner, X-learner and R-learner are also designed to infer
causal effect. They can be combined with any type of machine-
learning algorithms including neural networks. There was
an attempt to evaluate neural network-based meta-learners
performance on the IHDP benchmark dataset [18], but until
now it was unclear how such methods perform on other
popular test datasets, namely, ACIC [19], and JOBS [20].

This review work complements two excellent and extensive
overviews of causal inference methods by Yao et al. [4] and
Koch et al. [21]. The former focused on categorizing existing
causal inference methods. The latter discussed in detail the
representation based neural networks as well as GAN based
strategies and how they can be used for ITE estimation. In
contrast to these reviews, our study gives an overview on
how neural network methods for ITE estimations perform
on various benchmark data sets. Further contributions of this
article are presented below:

1) Publication of an extensive library of ITE estimation
methods in TensorFlow that can be used for benchmark-
ing or developing new methods.

2) Comprehensive benchmarking of meta-learners com-
bined with neural networks on popular test datasets
and comparison to other state-of-the art ITE estimation
methods.

3) Improvement of several originally proposed models by
varying the architecture of the main body and the
treatment conditional branches, utilizing automatic hy-
perparameter optimization.

III. METHODS

A. Problem Formulation

Suppose observational data D = {[xi, yi, ti]}Ni=1 consists
of N subjects, where xi ∈ X with X ∈ RM is a set of M
covariates, ti ∈ T with T ∈ {0, 1} is the observed binary
treatment, and yi ∈ Y with Y ∈ R is the factual outcome.
Using the potential outcomes framework [22], let Y 1 be the
potential outcome for subjects assigned to treatment group, and
Y 0 be the potential outcome for people assigned to a control
group. For simplicity, we assume that factual (observed), and
counterfactual (unobserved) treatment outcomes are continu-
ous. Since the results of both treatments are never observed
simultaneously, we cannot calculate the individual treatment
effect as Y 1 − Y 0. Instead, as in [23], we assume that there
are no hidden confounders and that the data are independent
of each other and estimate the Conditional Average Treatment
Effect (CATE):

CATE(xi) = E[Y 1 − Y 0|X = xi]

= E[Y 1|X = xi]− E[Y 0|X = xi]

= τ(xi).

(1)

To evaluate the outcome prediction on a synthetic or
semisynthetic dataset with ground-truth ITE denoted as τ̂(xi)
available for each individual, we compute the Precision in
Estimating Heterogeneous Effect (PEHE) as:

ϵPEHE =
1

N

N∑
i=0

(τ(xi)− τ̂(xi))
2. (2)

In case the factual outcomes are available for the training
set, but the test outcomes Y 0

RCT and Y 1
RCT are from the RCT,

we can compute the policy risk [24] with:

Rpol = 1− E[Y 1|π(X) = 1]P (π(X) = 1)

+ E[Y 0|π(X) = 0]P (π(X) = 0),
(3)

where π(X) = 1 if Y 1
RCT −Y 0

RCT > 0 and π(X) = 0, in the
other way.

B. Meta-learners

We have chosen to implement meta-learners [17] as they are
often used as building blocks of more advanced models and
present basic architectural concepts to estimate counterfactual
outcomes from treatment conditional input data. Meta-learners
are strategies that can be combined with any regression or
classification method. We include them in the review in order
to show how they work with deep learning methods.

Single learner or S-Learner employ a single estimation
function µ(·), in our case a fully connected neural network,
to predict the counterfactual outcomes. During the training,
S-Learner receives as input covariates X concatenated with
an observed treatments T . In the case of continuous outcomes
the neural network weights are then updated to minimize the
Mean Squared Error (MSE) between prediction and ground
truth values Y :

LS = E[(µ(X, T )− Y )2] (4)
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During the inference, causal effect is computed as τ(xi) =
µ(xi, 1)−µ(xi, 0)) where we set the treatments to be one or
zero respectively.

T-learner estimates response surfaces for each unique treat-
ment value. In binary case, two causal estimators µ0(xi) =
E[Y 0|X = xi, ti = 0] and µ1(xi) = E[Y 1|X = xi, ti = 1]
are trained on the treatment specific covariates and outcomes
[17]. The loss of the T-Learner is given by:

LT = E[(1− T )(µ0(X)− Y ))2 + T (µ1(X)− Y )2] (5)

Like T-Learner, X-Learner first estimates response functions
µ0(xi) and µ1(xi). After that, the imputed treatment effects
are computed as: D0

i := µ1(x
0
i )−y0i and D1

i := y1i −µ0(x
1
i ),

where x1
i , x0

i and y1i , y0i are observed covariates and outcomes
for treated and untreated. Next, one computes τj(xi) =
E[Dj |X = xi] with j ∈ {0, 1} using machine learning
models. Then CATE is inferred from τ(X) = g(X)τ0(X) +
(1− g(X))τ1(X), in which the propensity score g(X) is the
treatment probability for a given set of covariates.

The R-Learner [25] also learns to estimate µ(xi) and g(xi)
with machine learning methods. The main difference is that
the CATE estimator τ(xi) is additionally trained using neural
networks. The loss is given by:

LR = E[(Y − µ(X)− (T − g(X)τ(X))2] (6)

The disadvantage of S-Learner is that in the case of a
multidimensional covariance space, the distinct role of the
treatment variable T can be neglected, since the treatment
variable is equated to xi as an additional covariate. This can
lead to a zero bias in treatment weights, leading to treatment
assignments being ignored [17]. T-Learner is prone to loss
of efficiency due to increased variance, since the data is
grouped and processed strictly independently of each other,
which prevents processing-independent representation in the
latent space. X-learner relies on multiple estimators, moreover
imputing the counterfactual variables inevitably increases the
chance of accumulating errors. Representation based methods
allow addressing the shortcomings of the aforementioned
meta-learners.

C. Representation Based Methods

Shalit et al. [8] proposed a representation learning algo-
rithm that reduces the distribution mismatch in the latent
representation space called Counterfactual Regression (CFR),
removing the bias caused by the imbalance between treatment
and control groups. This method shows promising results, and
is often considered cutting edge in this field.

Unlike meta-learners, it employs a hybrid architecture where
all covariates are used as input. The body of the network con-
sists of representation layers agnostic to treatment, followed
by two treatment conditional branches or heads. Each head is
only trained with samples matching the observed treatment.
For binary treatment, the loss of a CFR model consists of
two parts. The first part coincides with the loss of T-Learner
(5), where µ0(·) and µ1(·) are the outcomes of treatment
conditional branches. The second part is an additional loss
term minimizing a distance based Integral Probability Metric










Fig. 1: The TAR-Net architecture by [8]. We added
independent tunable hyperparameters for number of hidden

units and fully connected layers respectively in the treatment
conditional heads.

(IPM) of the two latent distributions ϕ(X|T = 0) and
ϕ(X|T = 1). The chosen IPMs include the Wasserstein Metric
[26], [27], and the Mean Maximum Discrepancy (MMD) [28].
We denote the corresponding methods as CFR-Wass and CFR-
MMD. The total loss of the CFR model is presented below:

LCFR = LT + α IPM(ϕ(X|T = 0), ϕ(X|T = 1)), (7)

where α > 0 is a group balance regularization. A variant of
CFR with α = 0 is called a Treatment-Agnostic Representa-
tion Network (TAR-Net) (see figure 1).

Instead of tackling group imbalance, Shi et al. [9] proposed
the Dragon-Net architecture to adjust the TAR-Net architecture
through an extra head for estimating the individual propensity
scores g(X). The underlying assumption is that the treatment
effect is independent of the covariates xi that are solely rele-
vant for predicting outcome, but not the treatment. However, to
prevent a direct propagation of estimation errors of g(X) into
the outcome model, the Dragon-Net learns an advantageous
trade-off between predictive accuracy and the propensity-score
representation. The objective is adjusted by the weighted Cross
Entropy (CE) [29] loss between g(X) and the actual treatment
assignment, with α > 0 being a hyperparameter:

LDN = LT + αCE(g(X), T ), (8)

Having a similar architecture to Dragon-Net, the third IPM
based approach uses a propensity score to weight the impact
of each conditional treatment branch during IPM calculation.
According to [30], the introduction of these weightings pro-
vides more consistent guarantees in the event of significant
disparities in treatment assignment. We refer to the weighted
IPM method as CFR-Weight. As stated by [24] enforcing
distribution equality with IPMs can be prone to information
loss. Thus, the authors introduced Deep Kernel Learning
ITE (DKLITE), a Bayesian model approach which optimizes
the treatment effect estimation for minimum counterfactual
variance by defining the upper bound of the ITE loss through
the negative model likelihood and the posterior counterfactual
variance. DKLITE, unlike CFR methods, does not use IPMs
to ensure the balanced representation of treated and untreated
subjects. The authors argue that enforcing domain invariance,
i.e. equality between densities in latent representations of
treated and control group, is unnecessary and can even be
harmful in a high-dimensional space with a limited number
of observations. Instead, they suggest learning representations
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that cluster counterfactual data around representation of factual
data, thus adjusting for the covariate shift. The algorithm first
transforms the input through a fully connected neural network
ϕ into the hidden space. After that, the result is passed through
a kernel function. Next, the mean and variance of the hidden
space distribution are calculated and are used for so-called
variance and likelihood losses Lvar and Llike respectively.
Additionally, reconstruction loss Lrec is computed as MSE
between input data X and the outcome of a network ϕ−1.
The final loss is given below:

LDKLITE = Llike + α1 Lvar + α2 Lrec, (9)

where α1 > 0 and α2 > 0 are hyperparameters.

D. Adversarial Methods
Adversarial learning methods, in which two networks are

simultaneously trained to compete against each other through
coupling their loss objectives [15], can also be applied to the
problem of ITE estimation. A typical Generative Adversarial
Net (GAN) consists of generator and discriminator networks.
The purpose of the generator network is to create samples as
if they came from the target distribution. The discriminator
network is trained to distinguish generated samples from real
ones. The better the generated samples, the harder it is to
distinguish them from the real ones for the discriminator
network.

Yoon et al. [12] proposed to account for unobserved data
by utilizing the GAN framework. The method GANITE
(Generative Adversarial Nets for inference of Individualized
Treatment Effects) developed by them consists of two blocks.
The goal of the first block also called counterfactual block is to
impute the missing counterfactual information using covariates
as well as treatment and factual outcomes as input. The
generator GCF (X, Y, T ) creates outcomes Ỹ = {Ỹ 0, Ỹ 1}.
The discriminator DCF (X, Ȳ ), where Ȳ = {Y, Ỹ } is a
vector of factual and predicted by generator outcomes, is
trained to maximize the probability of detecting the factual
outcomes in Ȳ , whereas the goal of the generator is to
fool the discriminator by creating predictions similar to real
ones. The losses for training discriminator and generator in
counterfactual block are presented below:

LD = −L(DCF )

LG = MSE(Y, Ỹ ) + αL(DCF ),
(10)

where α > 0 is a hyperparameter. This results in a complete
set of both factual and counterfactual outcomes, which is
furthermore employed for training the second so called ITE-
block. The goal of the ITE-block is to take information from
the counterfactual block and use it as a guide to predict
the outcomes solely based on the covariates. The ITE-block
uses a generator GITE(X) to create counterfactual outcomes
Ŷ = {Ŷ 0, Ŷ 1} based on the covariates. In the original paper,
the quality of the prediction is then additionally verified by a
discriminator trained to distinguish ITE after prediction with
counterfactual block and ITE-block, but we omit it as a for
the purpose of this paper an ITE discriminator is not needed.
Loss for the ITE-block is presented below:

LITE = MSE(Ŷ 1 − Ŷ 0, Ȳ 1 − Ȳ 0). (11)

Z

Y

X T

T

ZC

Y

XZT ZY

Fig. 2: DAG of CEVAE (left) and TEDVAE (right)

E. Variational Methods

Another approach is to learn latent variables, i.e. hid-
den confounders, through input covariates using variational
autoencoders (VAE). As a probabilistic graphical model of
Bayesian character, VAE approximates the observed distri-
bution p(X|Z) (decoder) conditioned on latent variables
Z sampled from the latent posterior distribution q(Z|X)
(encoder). Both the decoder and encoder are simultaneously
trained to maximize the evidence lower bound [31]. In the
context of causal inference problem, VAE are adapted to
DAGs in Figure 2, defining the process by which observations
are drawn. Louizos et al. [11] proposed a Causal Effect
Variational Autoencoder (CEVAE) that samples the proxy
covariate distribution p(X|Z), binary treatment distribution
p(T |Z) and the outcome p(Y |T,Z) from hidden variables.
The inference network learns the posterior approximation
through the complete input set q(Z|X, Y, T ). The overall
training objective is determined through the variational lower
bound of the model with the addition of auxiliary distributions
q(T |X) and q(Y |X, T ). The loss of CEVAE is presented
below:
LCEVAE =Eq(Z|X,Y,T )[logp(X, T |Z) + logp(Y |T,Z)

+ logp(Z)− logq(Z|X, Y, T )]

+ logq(T |X) + logq(Y |X, T )

(12)

Zhang et al. [13] adapted the ideas of CEVAE and proposed
a model called Treatment Effect Disentangled Variational
AutoEncoder (TEDVAE). Unlike CEVAE, which learns the
combined latent representation to infer X, Y , and T , TEDVAE
separates the latent factors into three independent factors: ZT ,
ZY , and ZC . The instrumental factor ZT affects only the
treatment prescription, ZY only affects the outcome, and ZC

is a confounding factor affecting both treatment and outcome.
Each disentangled factor is not a single value, but a distribution
learned by separate encoders qT (ZT |X), qC(ZC |X) and
qY (ZY |X). The parameters for each distribution come from
fully connected neural networks.

The TEDVAE inference model consists of a decoder
pX(X|ZT ,ZC ,ZY ) reconstructing X , two disjoint decoders
pY (Y |T = 1,ZC ,ZY ), pY (Y |T = 0,ZC ,ZY ) predicting
counterfactual outcomes, and pT (T |ZT ,ZC) recovering the
assigned treatment. The loss function is given by:

LTEDVAE =LELBO(X, Y, T )

+ αT EqT qC [logpT (T |ZT ,ZC)]

+ αY EqY qC [logpY (Y |T,ZY ,ZC)],

(13)
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where αT > 0, αY > 0 are hyperparameters, and
LELBO(X, Y, T ) is:

LELBO =EqT qCqY [logpX(X|ZT ,ZC ,ZY )]

−DKL(qT (ZT |X)||pT (ZT ))

−DKL(qC(ZC |X)||pC(ZC))

−DKL(qY (ZY |X)||pY (ZY )).

(14)

Here qT (ZT |X), qC(ZC |X) and qY (ZY |X) are Gaussian
or Bernoulli distributions depending on a binary or continuous
outcome variable, for which the mean and variance are pa-
rameterized by neural networks. Priors pT (ZT ), pC(ZC), and
pY (ZY ) are represented by Gaussian normal distributions, and
DKL is a Kullback-Liebler divergence (KL) between them.

IV. EXPERIMENTS

Due to the lack of datasets with ground truth treatment
effect, in order to evaluate the model performance, we use
open source semisynthetic benchmark datasets. We select
datasets from the corresponding articles of methods reviewed
in the previous section. The multiplicity of datasets from
different sources allows for a broad comparison of models in
terms of dimensionality, modeling counterfactual outcomes,
the presence of hidden confounding factors, and proxy vari-
ables.

IHDP is based on a randomized control trial by Brooks-
Gunn et al. [32] as part of the Infant Health and Development
Program. It encompasses 747 instances, each of which con-
tains 25 covariate variables that determine the characteristics
of preterm infants with significantly low birth weight and their
environment, such as information about parents. Treatment
is an intensive child care program that includes home visits
by physicians and specialists for a predetermined period of
time. Counterfactual outcomes are randomly generated across
predefined response surfaces using probabilistic models. For
this work, the predefined modeling of counterfactual outcomes
is similar to the procedure of Hill et al. [33], in which setting
”A” generates a result that depends linearly on covariates,
and setting ”B” is a non-linear model, since the result of the
control group is determined through an exponential function of
covariates. We denote the datasets created using settings ”A”
and ”B” as IHDPa and IHDPb respectively. For both settings,
approximately 18% of the samples belong to the treatment
group, indicating a significant class imbalance. We use 100
simulated IHDP datasets for each setting.

The JOBS dataset [20] is a combination of a National
Supported Work Program randomized control trial and an
observational study. The data consists of 3212 cases described
by 8 covariates that define demographics and financial income
in 1974 and 1975. Subjects assigned to the treated group
undergo special professional training. The outcome under
study is employment status. The included subgroup from RCT
enables evaluation of the causal effect of ”ground truth”. The
problem was first described by Shalit et al. [8] and is adopted
accordingly. Among the considered datasets, JOBS shows the
highest imbalance between treatment and control, with only
10% of the samples belonging to the treatment group. We

create 100 train/test splits of the dataset to evaluate the model
performance.

Dataset ACIC was published in the Atlantic Causal Infer-
ence Conference 2016 [19]. It is derived from linked birth
and infant mortality data [34]. The dataset is based on IHDP
data and contains 4802 observations with 58 covariates each.
With a fixed set of observations, the dataset contains 77
simulated subsets of data with varying degrees of confidence
in the correlation between treatment prescription, actual and
counterfactual outcome, and non-linearity of treatment effect.
For all subsets, the sample fraction of treatment groups is about
30%. It should be noted that overlap violations occur in the
dataset, i.e. propensity score can reach extreme values close
to 0 or 1 for certain covariates.

The methods described in Section III are considered in
this work. While this only covers a subset of all treatment
evaluation models using neural networks, we have focused on
established methods with available code repositories. Thus,
the goal of this work is not to create a complete library of
all treatment evaluation models, but to list and quantify the
differences between the established ITE estimation strategies
and to encourage readers to use the results of our public library
for their own research.

A. Implementation Details

For IHDPa, IHDPb, and JOBS datasets, all models were
tuned on the first sub-dataset using the Random Search Tuner
by Keras [35] as well as a TensorFlow callback function
with EarlyStopping and ReduceLROnPlateau. Since ACIC
encompasses 77 different datasets, each containing various
numbers of sub-datasets, 77 models were tuned on the first
data file of each of the ACIC sub-datasets.

Due to the large number of models and different datasets,
direct hyperparameter optimization, namely searching on a
fixed set of parameters and training the resulting models on
the entire dataset, as done by [12] was not feasible. Moreover,
it often showed worse performance compared to the Keras
tuner Random Search strategy, since only individual sets of
hyperparameters were taken into account. Any optimization
algorithm can be prone to converging into a local minimum,
so it is critical to evaluate different ranges of parameter values.

The models were tuned on a set of specified parameters as
well as on architectural features such as the number of layers
and nodes per layer. Further modifications of training param-
eters, e.g. kernel initializer and patience of Keras callbacks,
were investigated.

Hypertuning was utilized to find an optimized set of hy-
perparameters which includes the number of layers, number
of nodes, batch size as well as learning rate. In addition,
we fixed the number of tuning epochs to 50 for all models
and used a validation split value of 0.2. Validation loss was
used as an early stop criteria during tuning to prevent model
overfitting. For meta-learners and GANITE each sub-model
was tuned separately. In particular, for GANITE, the learning
rate was fixed for the generator and discriminator model.
Likewise for representation based models such as TAR-Net,
CFR-Wass and CFR-MMD, we tuned the number of hidden
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TABLE I: Results and their 95% confidence intervals of each
model on IHDP test dataset. The results of best performing

models are marked in bold.

Model IHDPa(
√
ϵPEHE) IHDPb(

√
ϵPEHE)

S-Learner 0.41± 0.05 2.24± 0.06

T-Learner 0.51± 0.04 2.10± 0.06

R-Learner 0.68± 0.06 2.19± 0.05

X-Learner 0.75± 0.06 2.49± 0.08

TAR-Net 0.37± 0.02 1.96± 0.05

Dragon-Net 0.53± 0.03 2.02± 0.05

CFR-MMD 0.40± 0.06 2.06± 0.06

CFR-Wass 0.36± 0.04 2.10± 0.06

CFR-Weight 0.45± 0.05 1.97± 0.06

DKLITE 0.37± 0.03 2.11± 0.06

CEVAE 0.89± 0.10 2.81± 0.07

TEDVAE 0.54± 0.06 2.28± 0.07

GANITE 0.49± 0.04 2.27± 0.07

layers and units for the main body and each of the treatment
heads (see Figure 1). For CFR-Weight, we additionally tuned
the parameters of propensity branch. For DKLITE, again, the
encoder and decoder components were tuned independently on
four hyperparameters. The latent dimension of the presentation
space was tuned as well.

In the case of variational methods, we optimized the number
of hidden layers and units in encoders and decoders. In ad-
dition, for CEVAE, the same two parameters were configured
separately for the architectural parts encoding the covariance,
treatment, and distribution of results in the inference network.

After finding the correct hyperparameters, the model was
trained without using a validation split. During training, the
learning rate was reduced when reaching a plateau for the
training loss. We note that during the tuning process test
dataset was not used.

B. Results

The results of trained models are presented in tables I and II.
To ensure reproducibility, hyperparameters as well as im-
plementation details of the tuned models are reported in
https://github.com/causal-lab-miism/deep ite library.

The considered models perform differently on the binary
response dataset JOBS as well as on the regression problems
given by the IHDPa, IHDPb and ACIC datasets.

S-Learner handles IHDPa, ACIC and JOBS well, which
indicates high inference ability in case of a simple depen-
dency between covariates and treatment outcomes. This is
confirmed by the relatively low performance on IHDPb,
modeled using the exponential response function. In contrast,
T-Learner shows good ITE estimation capabilities for complex
mappings, as it performs comparatively well on IHDPb, but
outputs inferior results for binary, linear, or versatile datasets.
Although R-Learner and X-Leaner give acceptable results on

TABLE II: Results and their 95% confidence intervals of
each model on ACIC and JOBS test datasets. The results of

best performing models are marked in bold.

Model ACIC (
√
ϵPEHE) JOBS (RPol.)

S-Learner 2.29± 0.09 0.23± 0.01

T-Learner 2.83± 0.09 0.25± 0.01

R-Learner 2.33± 0.09 0.24± 0.02

X-Learner 2.34± 0.10 0.24± 0.02

TAR-Net 2.38± 0.08 0.21± 0.01

Dragon-Net 2.81± 0.09 0.24± 0.01

CFR-MMD 2.43± 0.08 0.24± 0.02

CFR-Wass 2.68± 0.08 0.23± 0.01

CFR-Weight 2.60± 0.08 0.23± 0.01

DKLITE 2.28± 0.08 0.24± 0.02

CEVAE 2.89± 0.10 0.27± 0.02

TEDVAE 2.38± 0.08 0.24± 0.02

GANITE 2.34± 0.09 0.23± 0.01

ACIC, S-Learner performs better than both of them on IHDPa.
However, R-Learner outperforms S-Learner on IHDPb indi-
cating an advantage of the R-Learner in inferring ITE for
highly non-linear data exclusively.

Among the representation based methods, TAR-Net, CFR-
Wass and DKLITE showed similar and best performances
on the IHDPa dataset across all methods, even partially
outperforming the model results presented in the original
papers. TAR-Net and CFR-Weight give slightly better results
on IHDPb than the other methods, highlighting the versatility
of the representational based methods for ITE estimation.
CFR-MMD shows a PEHE performance deficit for IHDPa

compared to CFR-Wass, but has a slightly better PEHE for
IHDPb and a noticeable advantage for ACIC dataset. The
same reasoning holds for the CFR-Weight model. As for the
variational group, TEDVAE demonstrated superiority over the
CEVAE method, which showed one of the lowest perfor-
mances among the tested models on all presented datasets.
Finally, GANITE showed good performance for JOBS, was
ranked average compared to the other models for IHDPa as
well as IHDPb and performed well for the ACIC dataset.

V. DISCUSSION

Our results show that a simple multilayer perceptron in
the form of an S-Learner model is able to achieve notice-
able performance without a conditional treatment outcome
assessment built into the architecture. In comparison, splitting
treatment and control outcomes by employing two learners as
implemented by T-Learner shows inferior performance on all
datasets compared to S-Learner, which takes all covariates,
including the treatment variable, as input data. This confirms
the deterioration of T-Learner due to the increase in outcome
variance because of the separation of input data into treatment
and control samples, especially when there is a large imbalance
between them.

https://github.com/causal-lab-miism/deep_ite_library
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Adapting multiple estimators, as done in R-Learner, shows
similar behavior, although more independent estimators may
lack the ability to generalize. Other meta-learners, performed
better compared to X-Learner, which may be due to two
non-exclusive reasons. X-Learner includes training of five
networks, which firstly intensifies the error accumulation in
estimates and secondly prevents convergence to the global
minimum in both hyperparameter tuning and training. This
leads to the conclusion that for low-dimensional data, the per-
formance of advanced meta-learners is significantly degraded
due to increased variance, accumulated errors, and a more
complex optimization landscape.

The treatment-agnostic TAR-Net approach shows state-of-
the-art and consistent counterfactual estimation performance
compared to most other models, demonstrating the benefit
of a shared hidden representation space for both treatment
groups. The results of DKLITE further indicate that correctly
adjusting the differences in the covariate distribution of treated
and untreated subjects can help to estimate the counterfactual
outcome more precisely in a variety of cases, such as repre-
sented by ACIC. The results of CFR models across all datasets,
especially ACIC and JOBS, suggest that, compared to TAR-
Net, forced overlapping of latent representation distributions
for both the treatment and control group might be beneficial
but as stated by Zhang et. al [24] it can lead to an increase in
the complexity of finding optimal hyperparameters, resulting
in a inferior performance. Given the results, the Dragon-
Net architecture does not benefit from including a propensity
estimate in the loss function; on the contrary, it limits the
accurate estimation of ITE compared to TAR-Net. A possible
reason for this could be the fact that the treatment probability
is not determined, i.e. not derived from covariates for most
datasets. As a consequence, the network is cluttered with
redundant noise information that degrades hyperparameter
tuning and training. Similar observations can be made when
comparing the performance of the CFR-Weight model with
the results of TAR-Net on some datasets. This leads to the
conclusion that the correct choice of IPM is highly dataset
dependent and should be explored independently for any given
case.

The poor results of CEVAE may point to a complex
landscape of its hyperparameters. Another possible reason
for the reported results could be due to increased number
of consecutively estimated distributions in the inference net-
work compared to TEDVAE, which introduces more statistical
error. However, TEDVAE by itself was unable to consis-
tently achieve noticeable PEHE results on regression prob-
lem datasets, which again suggests that either the variational
autoencoder approach is difficult to optimize with respect
to the best set of hyperparameters, or that estimating and
sampling of the disentangled conditional posterior distributions
is an inferior approach compared to i.e. representation based
methods.

GANITE achieved comparable results with other methods,
justifying the generative approach for ITE. In addition, the
potential of generative models for ITE estimation may not be
fully exploited, since only one model was taken into account.

It is important to note that better results do not prove overall

superiority over other models, but indicate a tendency to make
consistent ITE estimates for a given dataset structure under
automatic hyperparameter tuning. In addition, higher perfor-
mance implies reduced hyperparameter optimization complex-
ity.

VI. CONCLUSIONS

In this study, we reviewed deep learning methods within
the task of assessing ITE and discussed their advantages
and disadvantages, given the difficulty of tuning to optimal
architectural and training parameters, as well as the ability
to provide accurate ITE estimates. We applied the methods
to different datasets and compared their performance under
random search hyperparameter tuning strategy. Finally, we
created an open source causal inference library written in
TensorFlow to encourage readers to use the library for their
own research or other applications in the field of causal
estimation, and to use and adapt it for benchmarking purposes.

The results show that none of the methods in the group of
meta-learners are generally superior to other methods. Among
all the other methods, DKLITE, CFR-Nets and TAR-Net stood
out because the algorithms were able to consistently infer
state-of-the-art ITE scores on test datasets. This indicates a
high level of generalizing ability of the models. However, it is
important to note that other models can outperform TAR-Net
and DKLITE on different datasets. For example, S-Learner
performs very well on ACIC, leading to the suggestion that
for various complex datasets, a simple architecture has the
advantage of having a simplified tuning complexity.

Overall, we conclude that under automatic hyperparameter
optimization, models of the representation based group out-
perform all other models for the current dataset selection,
i.e. they have shown to better converge during tuning and
training. Though the results are not sufficient to classify
models in a dataset independent hierarchical sense, but rather
to compare them under the task of tuning and training on the
considered datasets, the results also indicate that automatic
hyperparameter tuning strategy might lead to an enhanced
ITE estimation ability of the models. The benefits provided
by hyperparameter optimization may encourage researchers
to focus on this aspect when creating new methods for ITE
estimation.

For future work, it might be interesting to further refine
the representation based methods build on the TAR-net, CFR-
Net or DKLITE approaches. Alternatively, the potential of
generative models for ITE may not be fully exploited so
far and therefore may also be the focus of future research.
In addition, it would be interesting to combine the methods
presented in our library into an automatic causal inference
library similar to [36].
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