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Abstract

This paper introduces a paradigm shift regarding vocal learning simulations, in which the communicative function of speech

acquisition determines the learning process and intelligibility is considered the main measure of learning success. Thereby, a

novel approach for artificial early vocal learning is presented that utilizes deep neural network-based phoneme recognition in

order to calculate the speech acquisition objective function. This function guides a learning framework that involves the state-

of-the-art articulatory speech synthesizer VocalTractLab as the motor-to-acoustic forward model. It is shown that in this way an

extensive set of German phonemes consisting of most German consonants and all stressed vowels can be produced successfully.

The synthetic phonemes were rated as highly intelligible by human listeners in a listening experiment. Furthermore, it is shown

that visual speech information, such as lip and jaw movements can be extracted from video recordings and be incorporated

into the learning framework as an additional loss component during the optimization process. It was observed that this visual

loss did not increase the overall intelligibility of phonemes. Instead, the visual loss acted as a regularization mechanism that

facilitated the finding of more biologically plausible solutions in the articulatory domain.
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Abstract—This paper introduces a paradigm shift regard-
ing vocal learning simulations, in which the communicative
function of speech acquisition determines the learning process
and intelligibility is considered the main measure of learning
success. Thereby, a novel approach for artificial early vocal
learning is presented that utilizes deep neural network-based
phoneme recognition in order to calculate the speech acquisition
objective function. This function guides a learning framework
that involves the state-of-the-art articulatory speech synthesizer
VocalTractLab as the motor-to-acoustic forward model. It is
shown that in this way an extensive set of German phonemes
consisting of most German consonants and all stressed vowels can
be produced successfully. The synthetic phonemes were rated as
highly intelligible by human listeners in a listening experiment.
Furthermore, it is shown that visual speech information, such as
lip and jaw movements can be extracted from video recordings
and be incorporated into the learning framework as an additional
loss component during the optimization process. It was observed
that this visual loss did not increase the overall intelligibility
of phonemes. Instead, the visual loss acted as a regularization
mechanism that facilitated the finding of more biologically
plausible solutions in the articulatory domain.

Index Terms—Vocal learning simulation, articulatory speech
synthesis, automatic phoneme recognition.

I. INTRODUCTION

A rticulatory synthesis is a promising candidate for future
speech synthesis systems as this type of synthesis aims

to mimic the speech generation process that happens within
a human vocal tract during speech production. Thus, it has
the potential to provide both natural sounding speech and, in
contrast to current state-of-the-art neural synthesis systems,
high flexibility and the ability to control every aspect of speech
generation [1]. However, a major problem in using articulatory
synthesis is its control, which is not known a priori, i.e. speech
can only be generated with expert knowledge. Without such
knowledge, the synthesizer can only be controlled randomly
or according to certain patterns, whereas the acoustic conse-
quences are observable. This is similar to the situation human
vocal learners face when they start to explore their vocal tract.
Consequently, computational simulations of vocal learning
appear to be a promising tool in order to technically solve
the control problem of articulatory synthesizers, as well as to
answer questions in phonetics and child speech development.

A. Role of Visual Cues and Scientific Relevance

It is well known that congenitally blind children learn to
speak without significant problems [2], while congenitally deaf
children have difficulties learning to speak and require special
training to obtain such ability [3]. This indicates that the main
objective function that guides early vocal learning must be
based on acoustic information rather than visual information.
However, evidence was reported for sighted speakers to have
a finer control over articulatory speech movements [4] and
it was found that congenitally blind speakers show less lip
rounding than speakers with normal vision [5]. These findings
are in agreement with computational simulations that suggest
that fine adjustments of the lip protrusion are necessary, e.g.
to produce a clear vowel /u / [6]. It is therefore reasonable
to assume that computer simulations of the speech acquisition
process can benefit from a multi-modal (audio-visual) observa-
tion space in terms of quality or efficiency. Nevertheless, it has
not yet been demonstrated that natural, measured articulatory
speech movements of the visible articulators can actually be
incorporated into an appropriate simulation in order to learn
an extensive set of phonemes.
With the present study the current state of research is extended
by the following contributions: (i) A set of German vowels and
syllables was generated via vocal learning simulation using
the state-of-the-art [1] articulatory synthesizer VOCALTRACT-
LAB (VTL) [7]. Thereby, a novel method was used, which
incorporates phoneme recognition as the objective function.
(ii) Jaw and lip movement related information corresponding
to vowels and syllables was extracted from audio-visual data
and used in the vocal learning simulation to test the impact of
visual information on the learning process. (iii) The resulting
synthetic speech was evaluated both in terms of intelligibility
as quantified by human listeners and in terms of the biological
plausibility of the resulting articulatory states.

II. METHODS

A. Artificial Vocal Learning

In the context of this study and in general, let an artificial
vocal learning scenario be defined as follows: (i) Vocal learn-
ing is performed by an agent, which is an entity that has access
to a motor space and an observation space, the latter of which
encodes both the (acoustic) consequences of actions executed



2

0

8
kH

z b a d

0 0.5 1
Time [s]

0

8

kH
z

0 0.5 1
Time [s]

0 0.5 1
Time [s]

d a d

Fig. 1: Time (left plots) and frequency (middle plots) differences between two realizations of the word “bad” uttered by a
female (top plots) and a male (bottom plots) speaker. The right plot shows realizations of “bad” (top) and “dad” (bottom) by
a single speaker uttered with two distinct f0 contours. If the former utterance was to be imitated and the latter an attempt of
imitation, the major part of spectral difference would not come from the (incorrect) consonant but from the (actually correct)
vowel part due to the strongly unequal distribution of the spectral information in the individual phoneme segments.

within the agent’s motor space and other motor spaces, i.e.
speech by external speakers. (ii) The vocal learning process
is characterized by the agent trying to acquire motor space
states that correspond to certain observation states. If such
observation state originate from external speakers, one may
speak of imitative learning. A successful imitation preserves
the communicative intent of the utterance, but may change
its acoustic realization. On the other hand, if the observation
state of interest is a result of a motor command initiated by
the agent itself, an {action, consequence} pair can be obtained.
In that case, one may speak of the acoustic-to-motor inverse.
Such an inverse provides the possibility for a true re-synthesis
of the observation state. (iii) The learning process must be
explorative, which means it is un- or semi-supervised, as it
can only be guided by observables. The action states of action-
consequence pairs produced by possible teachers, e.g. external
speakers, however, are mostly hidden. Hence, vocal learning
can only be guided by acoustic information, visual information
and sensory feedback. Approaches like direct inversion based
on action-consequence pairs crafted by experts, i.e. copy
synthesis as done in [8]–[10] may be pragmatic and expedient
but such methods can not be referred to as vocal learning. Note
however that it would be legitimate in this frame to establish
a direct inversion between actions and consequences if the
respective pairs were previously determined by exploration,
e.g. as proposed in [11], [12].

1) Related Work: Numerous papers on the simulation of
speech acquisition have been published in recent years [6],
[12]–[21], see e.g. [22] for a more in-depth comparative
review. Some of these studies deal explicitly with phonetic
and child development issues, while the motor optimisation
problem itself is of secondary importance. Other studies,
however, focus on the level of motor learning and acoustic-to-
articulatory inversion. This is usually done by goal-directed
babbling (which means that the explorative process is not
totally random but is driven towards a target state by some kind
of loss or reward function) and involves the implicit or explicit
creation of a mapping between motor space and observation
space [18]. In the explicit case, neural networks are often
trained for direct inversion from consequence to action, or a
composite consisting of a trained inverse and a trained forward
model is used [12], which is usually referred to as distal learn-

ing [11]. Both the defined motor and observation spaces may
differ greatly among the mentioned studies. While the motor-
to-consequence models are mostly articulatory synthesizer-
based frameworks with varying degrees of realism, such as
VOCAL LINEAR ARTICULATORY MODEL [23], DIRECTIONS
INTO VELOCITIES OF ARTICULATORS [16] or VTL [7], the
observation spaces are mostly based on spectral acoustic fea-
tures such as formants, spectrograms, mel spectrograms [24],
mel-frequency cepstral coefficients (MFCC) [25], or abstracted
features obtained by embedding or dimension reduction of
acoustic or spectral input [21]. The performance of vocal
learning models is then usually evaluated by distance metrics
defined in the observation spaces, such as formant differences
or spectral distances. Sometimes it is also evaluated by the
quality of the motor trajectories or distances in the motor space
[26], although this is rather difficult because the true motor
trajectories are usually unknown. In some cases, subjective
auditory impressions are mentioned for evaluation purposes,
but none of the listed works reported systematic listening tests
with human listeners evaluating intelligibility.
With this in mind, in the context of the definition of artificial
vocal learning given here, it can be said that the aforemen-
tioned works are incomplete in the broadest sense or ignore
important conceptual prerequisites. I.e. it is often assumed
that the goal of vocal learning is imitation through acoustic
matching [12]. However, this may be a fundamental miscon-
ception, for the following technical and conceptual reasons:
First of all, as shown in Figure 1 three main technical issues
occur when trying to calculate differences between spectral
features. (i) There may be non-linear time distortions among
the goal speech and imitated speech. (ii) There will be intrinsic
frequency mismatches between goal and imitated utterances
due to differences in the vocal tract geometries of the target
speaker and imitating speaker. This is often referred to as
speaker normalization problem. (iii) There will be spectral
weighting issues that occur from the widely differing amount
of spectral information among different phonemes even if tar-
get and imitating utterances originate form the same speaker,
e.g. see right plot in Figure 1. All these issues contribute to the
fact that there is no correlation between the spectral difference
and actual perceptual difference in the general case. While
these problems may be dismissed as cosmetic, since they
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could be circumvented through complicated engineering, such
as time and frequency warping and spectral weighting etc.,
these problems are actually a symptom of a deeper conceptual
problem: Acoustic matching is not the goal of vocal learning,
but rather the goal of (true) re-synthesis. In order to achieve
such a re-synthesis with an articulatory model, the underlying
vocal tract geometry of the target speech material must be
known prior to exploration, e.g. either derived from magnetic
resonance imaging (MRI) scans, or somehow determined from
acoustics. That a mapping from acoustic material to this ge-
ometry can be established is conceivable, but an open question
for future research and it is clear that this procedure has little
to do with human vocal learning, since humans develop their
own vocal tract and do not copy those of others. Instead,
it is reasonable to assume that the goal of vocal learning is
to acquire motor states that fulfill a communicative function.
This may be motivated in the context of evolution, as humans
apparently developed the complicated process of speech in
order to be understood by others. Successful communication
requires this and successful communication is a basic prereq-
uisite for human survival. Nevertheless, in terms of artificial
vocal learning this means: (i) Imitation is not the goal but
may be a path, i.e. the fundamental paradigm of vocal learning
may not be described by “How can I reproduce an utterance
I just heard?”, but by “How can I produce an utterance in a
way that I am understood?”. (ii) The main measure of vocal
learning success should therefore be intelligibility. In previous
works, however, this measure usually plays no role. A notable
exception in this regard is the work of Rasilo and Räsänen
[19], where intelligibility is in fact included in the objective
function. However, their work involves human subjects who
guide the learning process as “caregivers” and thus is not fully
automated, which is inconvenient.

2) Approach: This work presents a simple and elegant
solution to these technical and conceptual problems. By using
automatic speech recognition (ASR) with a recurrent deep
neural network, acoustic time series inputs can be transformed
into probability distributions representing the input utterances.
The fundamental advantage over previous work is the implicit
speaker normalization gained by training on multi-speaker
data. At the same time, the computation of the loss function is
considerably simplified by the fact that it is now only based on
probability vectors which can be directly compared with each
other. On the other hand, this means that a separately trained
speech recognition model is used for the learning process.
ASR models may be used in two different ways within the
vocal learning framework. (i) A model may be used to en-
code target and imitative utterances into respective probability
distributions. Subsequently a distance between both vectors
would be calculated and used a loss in the learning process.
(ii) No target utterances are used explicitly and the model
is used to encode the acoustic signals uttered by the agent
only. Subsequently, the encodings are evaluated against the
probability unit vectors, which represent the phonetic or word-
level categories that the ASR model was trained to map to.
In this work only the second option was used, as this scenario
ideally guarantees that the categorical communicative function
of learned utterances is equal to the desired phonetic identities.
In this study a single-phoneme recognition model (described

in Section II-B) was used in order to guide the vocal learning
process. Synthetic utterances were produced using VTL with
its standard speaker model, accessed via the PYTHON front-
end VTL-PYTHON1. VTL is an articulatory synthesizer that
provides a one-dimensional aero-acoustic simulation of sound
propagation within the human vocal tract, whereby the vocal
tract shape is described through its tube cross-sectional area
function. The simulation can be controlled via a parameterized
three-dimensional vocal tract model that was derived from
MRI data, as well as three types of glottis models: a geometric
glottis, a triangular glottis and a two-mass model. Through-
out this work, the geometric glottis model was used. While
VTL provides high-level control such as phoneme-to-speech
via articulatory presets representing the German phoneme
inventory derived from MRI data, the synthesizer also allows
direct control over the motor level, which is a prerequisite
for simulating speech acquisition. In the configuration used
here, VTL provides 19 supra-glottal parameters , see Table I.
While the vocal tract dynamics in high-level control are always
governed by the TARGET-APPROXIMATION-MODEL [27]–
[29] (TAM), low-level control can in principle be executed
arbitrarily, e.g. by Dynamic Movement Primitives [30], as
done in [21]. However, throughout this work the TAM was
used exclusively to drive the VTL synthesis on the motor level.
A complete overview of the vocal learning framework used in

this study is given in Figure 2. On the left side, the optimiza-
tion procedure itself is visualized, which is performed using
the Whale Optimization Algorithm [31] (WOA), see Section
II-D. At each time step of the optimization, this algorithm
receives a single value as input (loss) and outputs a param-
eter vector containing the respective state of the articulatory
variables to be optimized. Subsequently, supra-glottal states
are then tested with regards to an externally set constriction
constraint. This means specifically, the minimum of the tube
area function Tmin corresponding to the respective articulatory
state is calculated. Supra-glottal states are referred to as open,
if Tmin ≥ 0.3 cm2, tight, if 0.3 > Tmin > 0.001 cm2 or
closed, if Tmin ≤ 0.001 cm2. Successful learning of clear
vowels requires, for example, open vowel tract states, while
learning fricatives requires tight states, since the fricative noise
sources in the VTL simulation are only activated beyond a
certain level of narrowness. Plosives require a closure within
the vocal tract, i.e. a closed state. If the calculated constriction
does not match the constriction required by the phonetic
category being learned, a large loss value of 100 (arbitrary)
is directly returned to the optimization algorithm, bypassing
the residual chain of processes. This constraint is justified
by the computationally expensive synthesis of a state. As a
consequence, the computational efficiency of the simulation is
increased. Nevertheless, if a state does fulfill the constriction
constraint, a motor score is calculated. This is a set of
parameter curves describing the temporal deformation of the
3D vocal tract model and the dynamics of the geometric glottis
within VTL. Starting from the motor score, VTL can calculate
the time evolution of the one-dimensional tube cross-sectional
area function and finally a synthetic speech waveform. Then
mel-spectrograms are calculated from the audio signal, which

1https://github.com/paul-krug/VocalTractLab-Python

https://github.com/paul-krug/VocalTractLab-Python
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Fig. 2: Schematic block diagram of the implemented framework for artificial vocal learning guided by phoneme recognition.

serve as input features for the phoneme recognition model.
This model in turn outputs a probability distribution that
describes the predicted phonetic identity of the input utterance.
The similarity of the probability vector to a corresponding
previously externally determined unit vector (intent of the
agent) is then calculated via categorical cross-entropy for each
phoneme j to be included in the loss function during the
optimization process:

LP =
∑
j

(
−

nC∑
i=1

yij · log(ŷij)
)
, (1)

which whereby the number of phonetic categories is nC = 37,
and yij and ŷij denote the i−th component of the phonetic
identity vector corresponding to a phoneme j and the related
phoneme recognition model output vector, respectively. The
phoneme loss LP is then passed to the optimization algorithm
which closes the process loop. In the case where visual infor-
mation is used, however, a second loss value is calculated from
the three visually accessible VTL parameters jaw angle, lip
protrusion and lip distance. For this purpose, the corresponding
values determined by the optimization algorithm are extracted
and compared with measured values obtained from video
recordings of speech movements (see Section II-E for details)
via the mean-square error (MSE):

LV =
1

3

∑
i∈V

(xi − x̂i)
2, (2)

where V = {JA,LP,LD} describes the set of visually
accessible VTL parameters and xi and x̂i denote the measured
values and the values proposed by the optimizing agent,
respectively. Finally a total loss is obtained from the sum:

L = LP + LV. (3)

The described framework was implemented in the PYTHON
programming language and published open source2.

2https://github.com/paul-krug/artificial-vocal-learning

Description Name Min Max Unit

Supra-glottal parameters

1 Hyoid position (horz.) HX 0.0 1.0 cm
2 Hyoid position (vert.) HY -6.0 -3.5 cm
3 Jaw position (horz.) JX -0.5 0.0 cm
4 Jaw angle JA -7.0 0.0 deg.
5 Lip protrusion LP -1.0 1.0 cm
6 Lip distance LD -0.5 2.0 cm
7 Velum shape VS 0.0 1.0
8 Velic opening VO -0.1 1.0 cm2

9 Tongue body (horz.) TCX -3.0 4.0 cm
10 Tongue body (vert.) TCY -3.0 1.0 cm
11 Tongue tip (horz.) TTX 1.5 5.5 cm
12 Tongue tip (vert.) TTY -3.0 2.5 cm
13 Tongue blade (horz.) TBX -3.0 4.0 cm
14 Tongue blade (vert.) TBY -3.0 5.0 cm
15 Tongue root (horz.) TRX cm
16 Tongue root (vert.) TRY cm
17 Tongue side elevation 1 TS1 0.0 1.0 cm
18 Tongue side elevation 2 TS2 0.0 1.0 cm
19 Tongue side elevation 3 TS3 -1.0 1.0 cm

TABLE I: Supra-glottal VTL control parameters.

B. Phoneme Recognition

A deep recurrent neural network with the architecture in-
troduced in [32] was used as the phoneme recognition model.
This model consists of five consecutive bi-directional gate
recurrent unit layers (Bi-GRU) with 256 neurons each (with
tanh activation functions), followed by a dense layer of 37
neurons with softmax, see [32]. Each dimension of the 37-
dimensional output corresponds to a single phoneme category.
In this way, the model acts as an encoder that maps the input
time series directly to a phoneme probability distribution. The
model was trained on single phoneme samples with a preced-
ing and succeeding temporal context of τC = 32ms extracted
from the combined German KIEL and BITS-US corpora, as
described in [32]. Categorical crossentropy was used as the
loss function during the training process. Logarithmized mel-
scaled spectrograms with 80 frequency bands were used as
input features. For their calculation the underlying audio sam-
ples were resampled to 16 kHz, and for the subsequent short
time Fourier transformation window length of 256 samples

https://github.com/paul-krug/artificial-vocal-learning


5

(16ms) and a hop length of 40 samples (2.5ms) were used.

C. Vocal Learning Simulations

Within the scope of this study, sets of motor states cor-
responding to the German tense vowels /a, e, i, o, u, E, 2,
y/3 and German consonants /p, t, k, b, d, g, f, v, s, z, S,
j, C, x, R, m, n, l// in the context of /a/ were acquired
via vocal learning simulations using the previously presented
framework. Although the system is in principle capable of
learning all 37 phoneme categories the recognizer was trained
on, only tense vowels and the listed consonants were consid-
ered in order to simplify the subsequent listening experiment
design. Naı̈ve listeners are usually not familiar with categories
such as lax vowels or consonants such as /Z, N/ and the
question of visual information can be addressed without this
aspect. The phoneme /h/ was excluded, since it would not
involve the optimization of supra-glottal parameters. During
the vowel learning, single static articulatory parameter vectors
were optimized including the supra-glottal parameters within
the limits as defined in Table I, excluding VO, TRX and TRY.
VO was set to −0.1 cm2, as an optimization of this parameter
is only needed if nasality is desired. TRX and TRY can be set
to arbitrary values, as VTL allows for an automatic calculation
of these values if the standard speaker file is used [26]. For
the glottal parameters, the modal voice quality settings of the
geometric glottis in VTL-Python were used. The VTL motor
score then consisted of a single articulatory TAM target vector
and the target duration was set to 200ms which is long enough
to produce a meaningful utterance and at the same time short
enough to ensure computational efficiency of the simulation.
The calculation of the VTL motor score is more complicated
in the case of consonants, because they have to be embedded
in a syllable. This means each parameter dimension features
two consecutive articulatory targets, one for the consonant and
one for the vowel. Following the idea of Krug et al. [26],
consonant related states were acquired individually, but in
acoustic accompaniment with a following vowel, which means
only consonant related parameters were optimized, while both
the acoustic realizations of the consonant and vowel contribute
to the total phoneme loss. Compared to the joint optimization
of a consonant with a vowel, e.g. as done in [25], this process
has the advantage of higher computational efficiency due to
the much smaller scope of the motor space by the reduced
number of required target parameters. The 16 supra-glottal
parameters (as described earlier) were then optimized in case
of all consonant learning simulations. The parameter VO was
included in the optimization for the nasals /m, n/. For the
voiced consonants a single modal target described the glottal
dynamics, except for /R/, which required aspiration from the
glottis in order to sound plausible. Therefore, the glottis was
slightly opened by changing the lower and upper rest displace-
ment of the vocal folds (XB and XT, respectively) from their
modal setting to 0.05 cm. In that case, glottal dynamics would
be described by two consecutive glottal targets similar to the
supra-glottal domain, whereby the glottal target onset times
were synchronous with the supra-glottal target onset times.

3For phonetic symbols, X-SAMPA notation is used throughout this work.

In the case of the voiceless consonants, however, the supra-
glottal and glottal onset times must be set asynchronously,
otherwise glottis-induced artifacts may occur in the acoustics
due to implausible voice-onset times. The onset times of the
glottal vowel targets were set to −30ms, +50ms and +60ms
relative to the onset time of the supra-glottal vowel target
for /f, s, S, C, x/, /p, t/ and /k/, respectively. The supra-
glottal target durations were 50ms and 150ms in case of the
consonant and vowel targets, respectively. For the voiceless
plosives the duration of the respective vowel target was set
to 225ms, which was needed due to the larger voice-onset
time. For the voiceless consonants, the glottal parameters XB
and XT were set to 0.1 cm, the chink area (CA) was set
to 0.1 cm2 and the relative amplitude (RA) was set to 0.
Finally, the acoustic window, which corresponds to the input
of the phoneme recognition system needed to be defined.
This is not trivial, because even though the articulatory target
boundaries are known, the acoustic phoneme boundaries are
not. With the used TAM time constant of 12ms the acoustic
signal is following the articulatory target onset with a delay of
approximately τD = 50ms. The acoustic window for a specific
phoneme was then reasonably estimated from the respective
target boundaries plus τD ± τC.

D. Optimization Method

The vocal learning process described in this study is un-
derstood as an optimization problem, where the goal is to
achieve an optimal state in a high-dimensional motor space
corresponding to a minimization of an observable objective
function. Such a high-dimensional search problem may be
solved by gradient-free, metaheuristic optimization algorithms
of which many have been published in recent years. In order
to find an algorithm well suited for the vocal learning process,
a number of candidate algorithms were tested in advance.
The PYTHON library PYMETAHEURISTIC was used for this
purpose. The algorithms defined in [31], [33]–[36] were used
to find optimal articulatory states corresponding to the vowels
/a, e, i, o, u, E, 2, y/ using the vocal learning framework
previously described, without the visual loss component. The
algorithms’ hyperparameters were not specifically tuned. The
optimizations were performed 20 times for each vowel. Each
run was stopped after 100 synthesis steps within the optimiza-
tion. Both the phoneme loss as well as the computation time
were monitored. The results for the algorithms are shown in
Figure 3. It can be seen that the runs calculated via WOA
gave the overall smallest loss values, as well as the lowest
computation time. Hence, it was selected as the optimization
algorithm in the following experiments. First, however, the
WOA hyperparameters hunting party and spiral parameter
were optimized in a grid search over the values [100, 300]
in steps of 100 and [0.0, 1.0] in steps of 0.1, resulting in
optimal values of 200 and 0.5, respectively.

E. Visual Data Acquisition

The calculation of the visual loss introduced in Equation
2 requires the input of phoneme category-related visual tar-
get parameters. Such parameters were derived from video
recordings of a speaker uttering respective speech sounds.
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Fig. 3: Results for different metaheuristic algorithms.

To accomplish this, an audio visual data set was recorded
containing vowels and syllables spoken by a 26 year old native
German male speaker. Since the visual measurements had to
be normalized to the dimensions of VTL for the calculation
of LV, it was sufficient to record a single speaker. Multiple
speakers would have been normalized to the same ranges and
sufficient variability among the parameter distributions was
already generated for a single speaker, due to the intra-speaker
variance during the phoneme and viseme production. The
previously mentioned vowels and consonants in the context
of vowel /a/ were recorded individually 10 times each.
Additionally the facial extreme positions, e.g. jaw and lips
fully closed/open, as well as lips fully spread/rounded were
recorded multiple times. The subject was required to stand
still and in a fixed position in order to avoid movements
of the recorded face in three-dimensional space, such as
rotations of the head, which would complicate the subsequent
calculation of distances based on the video material. The video
data was recorded with a resolution of 1080x1920 pixels at
a frame rate of 120 frames per second on an Apple Inc.
iPhone 11, audio was thereby recorded at a sample rate of
48 kHz. The separate audio stream was used exclusively for
the manual segmentation of the speech material. Based on
the segmentation the relevant video frames were extracted.
Subsequently, 68 facial landmarks (following the Multi-PIE
[37] or IBUG [38] standard) were extracted from each frame
using a convolutional pose machine [39] in the exact same way
as described in [40]. The model was trained using supervision-
by-registration [40] because this technique allows temporally
coherent trajectories to be determined across consecutive video
frames. Thereby, the intrinsic stability of the landmark pre-
dictions is enhanced by using optical flow as a loss function
in addition to the landmark detection loss [40]. The training
material consisted of the 300-W landmark data set [38], [41]
for the landmark detection loss and the recorded video material
for the optical flow-based loss.
The raw detected landmarks were processed as follows. The
landmarks have a standard numbering, e.g. see [38], hence,
individual landmarks are identified by the numbers 1 to 68.
Four observable pixel-coordinate-based distances Ωi (i ∈
{JVD,LHD,LVD, IOD}, see Figure 4) were calculated: a

Fig. 4: Exemplary plot of observable distances on obtained
landmarks. Right: JVD. Middle: LHD and LVD. Left: IOD.

horizontal lip distance (LHD) from the left corner of the mouth
(center of landmarks 49 and 61) to the right corner (center
of landmarks 55 and 65), a vertical lip distance (LVD) from
the upper lip (center of landmarks 51, 52, 53, 62, 63, 64)
to the lower lip (center of landmarks 57, 58, 59, 66, 67,
68), a vertical jaw distance (JVD) from the chin (center of
landmarks 8, 9, 10) to the nose (center of landmarks 28, 29,
30, 31) and an inter-ocular distance (IOD) from the left eye
(center of landmarks 37, 38, 39, 40, 41, 42) to the right eye
(center of landmarks 43, 44, 45, 46, 47, 48). Thereby, distances
were calculated between the centers of coordinate ensembles
in order to increase robustness against detection noise. Nor-
malized distances Ω̂j = Ωj · Ω−1

IOD, j ∈ {JVD,LHD,LVD}
were calculated. The division by IOD was done in order
to account for small drifts of the subject along the camera
axis, which may change the overall size of the recorded face.
The VTL parameters x ∈ {JA,LP,LD} are then calculated
from j ∈ {JVD,LHD,LVD}, respectively, via a linear min-
max-scaling, which is appropriate in case of LD, and a valid
approximation in case of JA and LP:

x(t) = m ·
|Ω̂j(t)− Ω̂min

j

∣∣∣∣Ω̂max
j − Ω̂min

j

∣∣ + b, (4)

whereby Ω̂min
j and Ω̂max

j denote the normalized minimum
and maximum distances measured from the facial extreme
positions. The slope m and offset b are determined by:

m = δx · (|xmax − xmin|+ αx) , b =

{
xmin −m, if δx = −1

xmax −m, if δx = 1.
(5)

Thereby, xmin and xmax denote the minimal and maximum
VTL values of the respective dimension x. The factor δx
was introduced to preserve the correct sign in the specific
dimensions, e.g. in case of the observables JVD and LHD
large measured values (which mean open jaw or spread lips,
respectively) correspond to negative JA and LP values, respec-
tively. Hence, δJA,LP = −1 and δLD = 1. The constant αx

allows for an additional dimension specific rescaling, which
was used for the consonants only. Thereby, αLD was set to
0.05 to ensure that the lip distance is negative for the labial
closures /p, b, m/. Further, αJA was set to 5.0 to ensure that
the JA values are close to zero in case of /s, z/. In all other
cases αx = 0. Figure 5 shows the distributions of measured
visual parameters for the different phonemes as a boxplot. The
median values of respective distributions were used as visual
target parameters during optimizations with the proposed vocal
learning framework.



7

−5

0
JA

0

1

L
P

a e i o u E 2 y p t k b d g f v z s S x C R j m n l
0

1

L
D

Fig. 5: Measured distributions for the visually accessible VTL parameters JA, LP, LD.

−7.5 −5.0 −2.5 0.0
JA

0

2

D
en

si
ty

−1 0 1 2
LD

0.0

2.5

−2.5 0.0 2.5
TCX

0

2

Baseline

Visual

VTL

Fig. 6: Articulatory distributions of states corresponding to the vowel category /i/.

F. Experiments

First, vowel and consonant learning simulations were car-
ried out as described in Section II-C. The simulations were
repeated 100 times for each of the 26 phonemes, as the explo-
ration based optimization process is non-deterministic. Hence
different outcomes were obtained for each run, which provided
an adequate statistical basis for the subsequent evaluation.
Each run was stopped after a total amount of 1000 steps that
actually involved synthesis. During optimization each state that
whose acoustic outcome was identified as the desired phoneme
category was saved for subsequent articulatory analyses. For
the purpose of consonant learning, the state with the lowest
phoneme loss corresponding to the vowel category /a/ was
selected from the set of solutions obtained from the vowel
learning experiment and used as the fixed vowel state during
the syllable production. Both experiments, vowel and conso-
nant learning, were then repeated with the additional LV loss
component to test the impact of visual information on the
learning success. All parameter settings were identical to the
experiments without visual information.
The intelligibility of the generated samples was then assessed
in a perceptual experiment. The selection of audio stimuli for
such an experiment is non-trivial for the following reasons:
(i) Since the size of the listening experiment should be kept
small in order to allow the subjects to concentrate as much
as possible during the entire participation, a representative
assessment of all the states recorded during the optimizations
is not possible due to the large articulatory and acoustic
scope of these states. (ii) During optimization, a large num-
ber of individual (articulatory) solutions are found by the
optimizing agent. Some of these solutions may preserve the
intended phonetic category while others do not, e.g. due to

recognizer misidentification. The individual solutions may also
differ strongly in their biological plausibility. While it was
found that a separation of these individual solutions in the
high-dimensional articulatory space is in principle possible
by dimensionality reduction and clustering, this technically
challenging approach was left open for future work.
With this in mind, the solutions presented in the perceptual test
were selected as follows: First, the Q1.0, Q0.75, Q0.5, Q0.25,
Q0.0 quantiles of the total loss distribution were calculated for
each phoneme within both the data from optimizations without
and with visual information. Then, for each phoneme, the
five articulatory states whose corresponding total loss values
were closest to the respective quantile were selected. That
means e.g. the samples belonging to Q1.0, Q0.5 and Q0.0

are the ones with the highest, the median and the lowest
total loss. This procedure is motivated by the fact that the
loss scale itself can be tested this way, i.e. whether, or, to
what extent lower loss values are actually related to higher
intelligibility or whether there exists a kind of overfit at very
low loss values. In addition, a complete set of optimized
phonemes was selected from the non-visual and visual data,
based on subjective auditory impressions of the 100 samples
with the lowest total loss from each run of the respective
phonemes. This manual selection M was included to estimate
the maximum achievable quality of the simulation. In addition,
the MRI-based VTL preset states were tested as a baseline.
The preset states of the phonemes were synthesized together
with the same glottal states that were also used during the
optimizations. Thus, the obtained motor scores for the VTL
presets had exactly the same lengths and time constants, as
well as glottal offsets in the case of unvoiced consonants,
which is useful for comparison. All stimuli were newly syn-
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thesized with vowel target durations of 300ms and 250ms for
single vowels and syllables, respectively. Additionally 50ms
of silence were added to the beginning of each sample. Both
modifications were done to allow for a more pleasant listening
experience during the experiment. The perception experiment
was carried out as an online multiple choice listening test.
Thereby, participants heard one of the vowels or syllables at a
time and had to choose which one they heard from the set of
8 vowels or the set of 16 syllables, respectively. Participants
could also chose the category “other” in case they did not
understand the given utterance. In total 20 subjects (13 male,
7 female) aged between 18 and 49 years (median: 28.5, mean:
29.6± 7.8) participated in the test. Participants were required
to be German native speakers.
Beside the perceptual test, the optimization results were also
analyzed within the domain of articulatory distributions. Fig-
ure 6 shows the distributions of articulatory parameters JA,
LD, TCX obtained from states that were identified by the
phoneme recognizer as the category /i/ during vowel learning.
It can be seen that the distributions from optimizations with
visual information are significantly closer to the biologically
plausible values obtained from the respective VTL preset. This
is expected to a certain degree for the visual parameters but
it is an interesting observation in case of other parameters.
To quantitatively test the degree of biological plausibility
of the baseline and visual distributions, the mean absolute
errors (MAE) between the distributions and the VTL preset
values were calculated in each dimension. Then for a certain
group G of articulatory parameters and group P of phonemes,
coefficient can be calculated via:

CP
G =

1

nG

1

nP

∑
i∈G

∑
j∈P

MAEVisual
ij

MAEBaseline
ij

. (6)

For this purpose, phonemes were grouped into vowels, voiced
and voiceless plosives, voiced fricatives plus lateral, voiceless
fricatives, nasals, and a group containing all phonemes. VTL
parameter groups were the visual parameters, all parameters,
TCX only, as well as groups of important dimensions. The
latter are of interest, since not all dimensions have an equal
impact on the obtained phonetic categories, e.g. changes in an
important dimension such as TCX may turn an /a/ into some-
thing else, while changes in a rather unimportant parameter
such as VS may not. Parameter importances were determined
by training a simple feed-forward neural network (three layers
with 32 neurons each and relu activation function followed
by a layer with 37 neurons and softmax activation function)
to map between the 19 dimensional supra-glottal articulatory
states and the 37 dimensional unit vectors representing the
intended phonetic category that the respective articulatory state
was optimized for. Performance was measured via F1 score
during 10-fold cross-validation. In each split, the permutation
feature importance [42] was calculated in terms of F1 score
decrease on randomly shuffling the input matrix 10 times. Sub-
sequently, the features were decreasingly ordered after their
importance and the knee-point (point of maximum curvature)
of the importance curve was determined using the Kneedle
algorithm [43]. Features below the knee point were regarded
as important dimensions.
Complete visualizations of all articulatory distributions, as

0 200 400 600 800 1000
Synthesis Steps

10−1

100

101

L P

Baseline

Visual

Fig. 7: Phoneme loss averaged across all categories and runs
shown for the baseline and visual optimizations.

well as all audio samples used in the listening experiment
can be found in the supplementary materials4.

III. RESULTS

Figure 7 shows the phoneme loss component of the total
loss averaged across all optimization runs as a function of
synthesis steps performed during optimization. The loss curves
are shown for the baseline and optimization with additional
visual information. It can be seen, that optimizations with
visual information had systematically higher loss values than
the baseline, which underlines the regularizing effect of the
visual constraints. Even though Figure 7 shows an average, this
pattern was observed consistently across phoneme categories.
Figure 8 shows the recognition rates R calculated from the
answers given by the participants of the perception experiment.
Thereby, answers were separated into several stimuli groups
that were tested during the experiment. It can be seen that the
recognition rates of stimuli corresponding to Qx are mono-
tonically increasing when x is decreasing which validates the
used phoneme loss. This effect is more prominent in the visual
data, which shows a significant difference of recognition rates
(p < 0.05 based on two-sided t-tests) between Q0.75 and Q0.0,
whereas the baseline does not. Further, one can see that the
average recognition rates for the manual selection of stimuli
M are (96.9 ± 5.0)%5 and (94.2 ± 7.6)% for the baseline
and visual stimuli, respectively. Hence, these are significantly
higher than recognition rates corresponding to Q0.0, which
are (75.0 ± 6.8)% and (83.9 ± 8.7)%, respectively. They
also outperform the VTL baseline which was, on average,
recognized correctly (87.7 ± 7.6)% of the time. Overall, no
significant difference was observed among the recognition
rates for stimuli generated with and without visual information.
From the articulatory analysis, TCX could be identified to be
the most relevant VTL parameter for the model to discriminate
between phoneme categories based on the articulatory state
input vectors, see Table II. This result seems reasonable,
given the strong impact of TCX on the tube area function.
Furthermore, the visual parameters, especially lip distance,
are often present among the important dimensions. Table II
also shows the VTL preset distance coefficients calculated
for different category groups and VTL parameter groups.
For the groups of visual dimensions and all dimensions, all
obtained coefficients are below 1.0, indicating that the visual
distributions are closer to the VTL preset shapes than the

4https://github.com/paul-krug/visual-vocal-learning
5Given uncertainties describe the 1σ interval throughout this work.

https://github.com/paul-krug/visual-vocal-learning
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Group F1
[
10−2

]
Important Dimensions CTCX CImp CVis CAll

Vowels 96.0 ± 0.2 TCX, LP, LD, HY, JA, TCY 0.74 ± 0.28 0.85 ± 0.15 0.77 ± 0.20 0.94 ± 0.09
Plosives 97.4 ± 0.4 TCX, TTY 1.09 ± 0.55 1.07 ± 0.38 0.71 ± 0.27 0.94 ± 0.14
Plosives† 89.5 ± 0.4 TCX, TCY, TS2, LD, TTY, TTX, LP 1.15 ± 0.72 0.94 ± 0.21 0.67 ± 0.22 0.97 ± 0.15
Fricatives 97.5 ± 0.2 TCX 1.13 ± 0.61 1.13 ± 0.61 0.70 ± 0.18 0.99 ± 0.13
Fricatives† 95.4 ± 0.2 TCX, TTX, TTY, LD, JA, TS3, LP, TCY 1.01 ± 0.42 0.89 ± 0.14 0.68 ± 0.16 0.96 ± 0.11
Nasals 98.9 ± 0.1 TCX, VO, LD 1.04 ± 0.57 0.90 ± 0.29 0.56 ± 0.26 0.93 ± 0.17
All 80.6 ± 0.6 TCX, LD, TTY, JA, LP, TCY, TS3, VO, TTX, HY, TS2 0.98 ± 0.20 0.92 ± 0.07 0.70 ± 0.09 0.96 ± 0.05

TABLE II: Results form the articulatory analysis. Groups of voiceless phonemes are indicated by †. Listed F1 scores refer to
the accuracy of the described forward model measured via 10-fold cross-validation (without feature permutation).

Q1.0 Q0.75 Q0.5 Q0.25 Q0.0 M VTL
0.0

0.5

1.0

R

Fig. 8: Recognition rate results from the perception experiment
with human listeners. Solid: baseline, outlined: visual stimuli.

baseline distributions, on average. For the group of important
dimensions, the coefficients are largely below 1.0. For TCX
they are below 1.0 only for the vowels. The coefficients for
the visual dimensions are significant in case of the group of
voiceless fricatives as well as the group of all phonemes in the
sense that 1.0 lies outside 1.96σ interval around the respective
measured values.

IV. DISCUSSION

A. Conclusion

In this work a novel framework for vocal learning simula-
tions was presented. The following key results were obtained
from the experiments carried out:

• Single phoneme recognition constitutes a sufficient mech-
anism to formulate a loss function that correlates with the
intelligibility quantified by human listeners.

• By using the said loss as an objective during artificial
vocal learning, highly intelligible vowels and consonants
embedded in corresponding CVs with the vowel /a/
could be generated.

• The main influence of visual information on the optimiza-
tion process can be understood as regularization – leading
to a higher degree of biological plausibility among the
optimized states.

The last point is particularly interesting as it reveals the
actual articulatory impact of the regularizing effect caused
by the visual information. This effect is reasonable, due
to the compensation possibilities through the different vocal
tract dimensions. I.e. implausible configurations of certain
dimensions can be compensated by implausible configurations
of other dimensions in such a way that still results in highly
intelligible speech. E.g., for the vowels in the baseline, a fully
open jaw angle is preferred, which is implausible for vowels
such as /i, e/. Since the visual information forces certain

configurations, this limits the possibilities for compensation
in other dimensions, so that more plausible configurations
were found on average, as demonstrated by the obtained VTL
distance coefficients.

B. Limitations and Future Work

This work has following limitations. First, consonants
were only produced in context of vowel /a/. However, to
generate continuous speech, the coarticulation model of the
VTL uses consonants in the three different contexts /a, i, u/
[7]. It can be assumed that consonants in a single context
are not sufficient to generalize to continuous speech. The
generation of these further contexts is open for future work.
With the vocal learning model presented here, the generation
of consonants in any context is possible, but /a/ is the vowel
that is easiest to generate. Consequently, consonants in the
context of other vowels may require more simulation effort.
Another limiting factor is the quality of phoneme recognition,
as worse models cause stronger confusion between individual
phoneme categories. As a result, solutions are allowed during
the simulation which do not correspond to the communicative
intent. This problem will occur especially in the case of low-
resource languages, where there is not much training material
for phoneme recognition models. Whether this problem can
be avoided by analyzing the articulatory distributions with
the help of appropriate constraints would be conceivable.
For example, consistency and minimal effort criteria could
be used to select plausible solutions from the ensemble of
correct and incorrect solutions a posteriori. Finding suitable
criteria remains an open topic for future work.
Another problem often encountered in the simulation of
syllables were articulatory artifacts or discontinuities that
form between consonants and vowels, see Figure 9. As
a consequence, the resulting syllables often sounded like
clusters, e.g. /fa/ sounding like /fRa/ or /Sa/ sounding
like /Sga/. The reason for the occurrence of these artifacts
may be the single phoneme recognition. Due to the
context independence, the following phoneme is rather
unimportant and therefore the presence of an artifact is not
evaluated negatively. On the articulatory level, however,
the artifacts arise from the fact that the consonant states
found predominantly match the vowel but are not completely
appropriate. Whether the use of phoneme recognition systems
trained on a larger acoustic intervals such as syllable-based
or continuous phoneme recognition can cause a stronger
rejection of auch states has to be tested in future work.
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