
P
os
te
d
on

25
A
u
g
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
05
06
75
5
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Reproduction of Rebar Mesh Arrangement Inside Concrete Bridge

Deck from Ground Penetrating Radar Volume Images by 3D DFT

Tsukasa Mizutani 1 and Takanori Imai 2

1Institute of Industrial Science
2Affiliation not available

October 30, 2023

Abstract

Aging of infrastructures has been a worldwide issue, and cost saving by shifting to preventive maintenance is urgent. Especially,

damage detection of concrete bridge decks is one of the most important subjects, because of the significant repair costs due to

its complicated structure. Rebars are the fundamental components of bridge decks, and they often become the trigger of bridge

decks’ damages. Previous researches have been focused on detecting the locations of rebars in cross section images acquired by

single-channel ground penetrating radar (GPR), however, no research has reproduced 3D rebar mesh arrangement from radar

volume images acquired by multi-channel GPR.This paper proposes a method that reproduces 3D rebar mesh that contains

the data of vertex location and reflection time from radar volume images. Real scale bridge deck specimens were created in

this study and reflections of electromagnetic waves were observed utilizing an on-vehicle GPR. In the proposed method, 3D

filtering based on the 3D DFT theory for the noise reduction was applied. Also, automation in detection of the rebar depth

was achieved focusing on edges of the images. As a result, 3D rebar meshes were successfully reproduced with appropriate

distribution rebar spacing. Also, the method was applied to radar data acquired from a bridge in service. The proposed method

effectively functioned for in-service bridge data, and automatically reproduced the mesh of 21m length.
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Reproduction of Rebar Mesh Arrangement Inside
Concrete Bridge Deck from Ground Penetrating

Radar Volume Images by 3D DFT
Tsukasa Mizutani and Takanori Imai

Abstract—Aging of infrastructures has been a worldwide issue,
and cost saving by shifting to preventive maintenance is urgent.
Especially, damage detection of concrete bridge decks is one of the
most important subjects, because of the significant repair costs
due to its complicated structure. Rebars are the fundamental
components of bridge decks, and they often become the trigger
of bridge decks’ damages. Previous researches have been focused
on detecting the locations of rebars in cross section images
acquired by single-channel ground penetrating radar (GPR),
however, no research has reproduced 3D rebar mesh arrangement
from radar volume images acquired by multi-channel GPR. This
paper proposes a method that reproduces 3D rebar mesh that
contains the data of vertex location and reflection time from
radar volume images. Real scale bridge deck specimens were
created in this study and reflections of electromagnetic waves
were observed utilizing an on-vehicle GPR. In the proposed
method, 3D filtering based on the 3D DFT theory for the noise
reduction was applied. Also, automation in detection of the rebar
depth was achieved focusing on edges of the images. As a result,
3D rebar meshes were successfully reproduced with appropriate
distribution rebar spacing. Also, the method was applied to
radar data acquired from a bridge in service. The proposed
method effectively functioned for in-service bridge data, and
automatically reproduced the mesh of 21m length.

Index Terms—Ground penetrating radar (GPR), multi-
channel, 3D rebar mesh reproduction, image processing, 3D DFT,
radar volume image.

I. INTRODUCTION: NEED FOR NON-DESTRUCTIVE REBAR
DETECTION OF BRIDGE DECKS BY ON-VEHICLE GPR

INFRASTRUCTURES in developed countries are rapidly
aging. In Japan, maintenance and renewal costs will be

about 300 trillion yen over the next 30 years [1]. It is estimated
that the cost can be reduced by 100 trillion yen by shifting
to preventive maintenance that detects damage in advance
and extends the service life of structures. There is an urgent
need to develop damage detection technology and to improve
the efficiency of maintenance and management through its
automation. Damage detection of concrete bridge decks is
one of the most important issues, because of the significant
repair costs due to its complicated structure. However, the
practical damage detection method of bridge decks has not
been established yet, and the inspection is currently carried
out manually by visual and sound inspection shaving off the
asphalt pavement. These inspections are time and money-

Tsukasa Mizutani and Takanori Imai are with the Institute of Industrial
Science, the University of Tokyo, Tokyo 153-8505, Japan (e-mail: mizu-
t@iis.u-tokyo.ac.jp; t-imai@iis.u-tokyo.ac.jp).

consuming for all stakeholders, including the national gov-
ernment, local governments and management companies.

Ground penetrating radar (GPR) is a non-destructive, non-
contact, and high-speed measurement technology to obtain
information under the ground and structures by emitting elec-
tromagnetic waves and observing the reflected waves. There
are two main types of GPR: the ground-coupled type that put
the antenna as close to the ground as possible, and the air-
coupled type that measures the object at a distance from the
ground. As the ground-coupled type is closer to the object,
it produces less noise and provides a clearer and deeper
image. On the contrary, the air-coupled radar can be mounted
on a vehicle and it enables high-speed data acquisition. For
example, our study utilizes the radar system that can travel at
80 km/h and acquire the data simultaneously. Especially for
the huge number of road infrastructures, it is desired that the
air-coupled radar can acquire data at high-speed and analyze
the underground in real time.

As specific applications, in the roads other than the bridges,
the detection of buried pipes and cavities has been studied
[2]–[5]. In the bridge sections, which is the target of this
research, damage map generation for the bridge decks [6]–[8]
and detection of rebar responses [9]–[13] have been carried
out. The detection of rebars is important because it is one
of the most fundamental structural component of the bridges.
For bridges that design drawings do not exist because of
their old age, structural information such as rebar spacing
can provide us with the information for determining the need
for strengthening. Another point of view is that corrosion of
the rebars is the major trigger of the damages of the bridge
decks represented by concrete segregation. Identification of the
rebar locations in the radar image and detailed analysis of the
intensity distribution would contribute to the early detection
of various damages.

It is known that the targets such as rebars and buried pipes
that can be regarded as point-like objects when seen in a
minor axis cross section, appears as hyperbolic responses in
radar images [14]–[16]. This is because the antenna’s beam
has directivity with some width, and electromagnetic waves
traveling in oblique direction are reflected and observed. The
detection of the rebar responses focusing on this hyperbolic
response is currently the mainstream. Specifically, methods
to maximize the sum of the squared error between the ideal
hyperbolic template and the radar image [7], and methods to
detect hyperbolic responses using AdaBoost and the Single
Shot Detector object detection model [10], [13] have been
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Fig. 1. Flow Chart of the Proposed Algorithm. There are mainly 5 steps; the red squares show the sections that the processing is explained in detail.

proposed. However, most of these methods are applicable to
data acquired by ground-coupled radar. This is because the air-
coupled radar does not provide isolated hyperbolic responses
of densely located objects, due to the larger distance between
the antenna and the object resulting in wide hyperbolic shapes
overlapping with each others. Because of this phenomena, re-
bar reflections are recorded as complicated images. In addition,
previous studies have mainly focused on cross section images
of depth and longitudinal direction cross section image; not
so much research have dealt with radar volume images that
contains rich spatial information of rebars.

The objective of this study is to reproduce 3D rebar mesh
that contains the data of location and reflection time from
radar volume images. Especially, we will focus on detecting
the vertices of the hyperbolic responses. Rebars are generally
placed in a certain spacing. Therefore, focusing on the pe-
riodicity of the rebar mesh in the frequency domain by 3D
filtering is effective for extracting and enhancing the rebar
mesh response. In addition, 3D processing gives us consistent
interpretation of the volume images, which is also the strength.
The composition of this study is as follows. In Section II,
measurements are conducted using real scale bridge deck
specimens with two types of rebar spacing. There will be
specific explanations of the rebar mesh reproduction algorithm
following the flow chart (Figure 1). Also, the verification is
done here by comparing the reproduced rebar meshes with
design drawings. In Section III, rebar mesh reproduction is
performed on in-service bridge data to verify the applicability
of the method.

(a) (b)
Fig. 2. (a) The utilized vehicle and the GPR antenna installed. (b) Layout of
GPR antenna elements.

II. MEASUREMENTS WITH REAL SCALE BRIDGE DECK
SPECIMENS

Measurements were conducted in the test field constructed
in Hokkaido, Japan (Figure 2). The results of applying the
method to two different rebar spacing are compared in this
section. The specimens have main rebars (longitudinal direc-
tion) at both 15 cm intervals and distribution rebars (transverse
direction) at 15 cm and 30 cm intervals each (Figures 3, 4).
They are called as Specimen I and Specimen II in this paper.
It should be noted that Specimen II contains some repair marks
on the bridge deck. The thickness of the asphalt pavement is
7.5 cm. The processing is done for a volume image that has a
length of 200 cm in the longitudinal direction and a width of
210 cm in the transverse direction, and this analysis range is
also drawn in Figure 4. The method is divided into five major
stages: A. pre-processing of the data, B. low frequency trend
removal, C. rebar response enhancement by 3D filtering, D.
rebar depth estimation, and E. rebar mesh reproduction. The
processing will be specifically explained in each section.
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Fig. 3. Rebars inside Specimen I.

(a) (b)

Fig. 4. Rebar arrangements of the bridge deck specimens.(a) Specimen I:
Both rebar spacings are 15 cm. (b) Specimen II: Main rebar spacing is at
15 cm and distribution rebar spacing is at 30 cm.

(a) (b)
Fig. 5. Changes in channel-depth cross section by clutter removal processing.
(a) Image with frequency of 470 to 3030MHz. (b) Image after clutter removal
processing.

A. Pre-processing by Frequency Band Limitation and Zero
Offset Removal

In this study, an on-vehicle air-coupled GPR is used: 29
channels are installed at 7.5 cm spacing in the transverse
direction (Figure 2b). Section II deal with the data acquired
at 1 cm spacing in the longitudinal direction. Electromagnetic
waves are transmitted and received by the Stepped-Frequency
Continuous Wave (SF-CW) method [17] at bandwidth of
50 to 3030MHz, interval of 20MHz. The low-frequency
component is noisy due to the low intensity of the transmitted
electromagnetic wave due to the antenna characteristics, so
only the components above 470MHz is used. The number

(a) (b)
Fig. 6. Comparison of cross section of volume images before and after
filtering processing. (a) Cross section of Volume I. (b) Cross section of Volume
III, after applying two 3D filters.

of data points was increased to 4096 by zero padding when
converting to the time domain to improve the time domain
resolution of the signal.

Radar data often contain clutter, which is unwanted reflec-
tion waves from objects other than the target objects. The
influence of the clutter is especially remarkable in transverse
direction that uses multiple antennas that have slightly dif-
ferent frequency characteristics. Background removal is the
method to remove clutter or stable signals from the original
radar signal [15], [16], [18]. In this study, we applied zero
offset removal to each channel; the mean components in
the distance direction were subtracted. On the other hand,
the mean components in the longitudinal direction includes
some significant components such as reflections from the road
surface and the rebars. To prevent them from being removed,
the mean components of the longitudinal direction from the
obtained signal were subtracted and its transverse direction
mean value was added again. This can remove only the high
frequency components of the clutter. The images before and
after processing are shown in Figure 5. We can confirm that
overall noise reduction in the transverse direction has been
achieved.

B. Low-Frequency Trend Removal by 3D Filtering

Due to the distance from the ground, data acquired by
air-coupled GPR gives us unclear hyperbolic responses and
contain much noise (Figure 6). 3D filtering is one of the
possible solutions that can reduce noise and emphasize the
signals’ periodicity. However, another problem is that data
acquired by an on-vehicle GPR is affected by the vibration of
the vehicle and the inhomogeneous permittivity distribution
of asphalt and concrete that causes undulation in the depth
direction. Because of this effect, reflections from asphalt
pavement, bridge deck surface, and rebars are seen as trended
curved surfaces in radar volume images, even if they are
almost flat in real. When the 3D DFT is performed to this
volume with a trend, the rebar response components appear
off-axis in the frequency domain (Appendix), and it becomes
difficult to perform appropriate filtering that can emphasize
the rebar responses in Section II-C. Therefore, in this section,
we use the 3D filtering processing to obtain curved surfaces in
the radar volume image, and resample the signals in the time
domain so that these surfaces become flat.
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The 3D filtering is done by first applying the 3D DFT to a
volume image, then multiply a filter, and performing the 3D
IDFT to the filtered frequency data. Appendix shows that the
cone-like shaped filter is effective for extracting the responses
of surfaces. Cross sections of the filter is shown in Figure 7a.
For strict cone shape being unable to extract the components
near the origin, a hyperbola was rotated around the depth
direction axis to generate the cone-like shaped filter, which
is written as:

R2

a2
+

z2

b2
= 1 (1)

where z is the coordinate of the depth direction, R is the
radius of the filter in the cross section of the z axis. a and b
represent the shape of the hyperbola. Parameter a and b were
set to a = 2m−1 and b = 9GHz respectively, according to the
inclination of the surfaces in the volume image. To prevent the
distortion by strict cut-off, the value of the filter attenuates as it
moves away from the depth direction axis. For the attenuation,
2D Hanning window was used, which is defined as follows

W (r) =

{
0.5 + 0.5 cos

(
π r

R

)
, if 0 ≤ r ≤ R,

0, otherwise.
(2)

r =
√
x2 + y2. (3)

Since the Fourier Transform assumes periodicity, the pres-
ence of discontinuities at the edges of the analyzed interval
causes Gibbs phenomenon. By inverting the data in the lon-
gitudinal and transverse direction before performing the 3D
DFT, the connectivity at the boundaries is preserved and the
smooth signal is obtained [19]. Volume III of Figure 1 plots
the depth at which the local maxima is taken at each point
for the filtered data. There are smooth surfaces such as the
pavement surface, the pavement-slab boundary surface, and
the rebar vertex surface. In some cases, the number of points
as a surface was small, or the surfaces were connected to
each other in the depth direction. Deletions were made for
sets of points that were less than 0.98 times and more than
1.02 times the product of the number of channel points and
the number of bridge axis direction data points. The surfaces
obtained in this way are used as reference surfaces, and the
average of each reference surface in the depth direction is
calculated. The signals at each position were resampled so that
the depths of the local maxima are consistent with the average
depth of each reference surface. An example using two signals
acquired at different position is shown in Figure 8. The average
depth indices of the surfaces are 236 and 332, respectively, and
the interval between the two surfaces is equally divided and
resampled so that the red dots match the indices. The number
of points between the reference points is the difference of
the average depths of the surfaces. In the case of the Figure 8,
there are 332−236 = 106 points. By performing the operations
in each interval between the surfaces, we can align the peaks
of each signal and remove the trend in the depth direction, as
shown in the right figure of Figure 8. In this way, we obtain
the detrended volume, which is the same to Volume II in the
flow chart Figure 1.

Fig. 7. Surface extraction processing by 3D filtering processing. (a) Cross
section of the cone-like shaped filter in the longitudinal and transverse and
depth direction. (b) Volume I and extracted surfaces by 3D filtering and local
maxima extraction processing. Pavement, boundary of pavement and bridge
deck, and rebar mesh surfaces are extracted.

Fig. 8. Conceptual diagrams of detrend processing. The left figures show the
signal before processing acquired at two points. The right figures show the
signal after appropriate resampling. The reference points are aligned after the
processing.

C. Emphasis of Rebar Responses by 3D Filtering

In this section, further noise reduction is done by the
filtering that emphasizes rebar responses on Volume II. Depth
indices from 251 to 650 (equivalent to 3.06 ns ∼ 7.93 ns)
were taken and interpolated so that there are 512 points in
the depth direction and 256 points in the longitudinal and
transverse direction for the purpose of using the Fast Fourier
Transform algorithm. As in Section II-B, interpolated volume
was inverted in the longitudinal and transverse direction and
subjected to the 3D DFT. In the wavenumber space, rebar
components appear on the longitudinal and the transverse
direction axes (Appendix). Extracting only these components
on the axes enables to emphasize the rebar responses more.
The filter used is shown in Figure 9. It is made by combining
two filters; the first one is for extracting the components close
to the axes. In general, due to the driving conditions and con-
struction conditions, the longitudinal direction of the vehicle
and the direction of the rebar mesh rarely coincide perfectly,
and the rebar responses are often seen at a slight angle on the
received signal. We tried to extract the rebar responses close to
the obtained signals with less distortion by using the filter that
attenuates in proportion to the angle from the axes. Normal
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Fig. 9. Sliced image of the 3D rebar emphasizing filter. The filter extracts
the components along longitudinal and transverse axes. 3D Hanning window
is used to remove high-frequency noise components.

distribution was adopted for this attenuation. When the angle
away from the axis is θ degrees, the attenuation is expressed
as follows

f(θ) =
1√
2πσ2

exp

(
− θ2

2σ2

)
. (4)

The standard deviation σ was set to 3 degrees. When only
the angle is used as a variable, the high frequencies are
emphasized more than the low frequencies. To suppress this
effect, f(θ) was divided by the distance r from a origin. To
avoid division by zero, a constant α was added to the distance

f(θ) =
1√
2πσ2

exp

(
− θ2

2σ2

)
× 1

r + α
. (5)

On the wavenumber plane, α is set to 3m−1. Another
problem with the above process is that differentiation becomes
impossible at θ = 45degrees and noise is generated after the
filter. To address this problem, a 2D Gaussian filter is applied
to maintain the overall smoothness. The standard deviation of
the Gaussian filter is set to 1m−1. The 3D filter is constructed
by piling the 2D filter up in the depth direction. The second
filter is 3D Hanning window that removes high frequency
components, which is defined as follows:

W (r) =

{
0.5 + 0.5 cos (πr), if 0 ≤ r ≤ 1,

0, otherwise.
(6)

r =

√
x2

a2
+

y2

b2
+

z2

c2
(7)

where, a,b,c are the cut-off frequency in each axis. The cut-
off frequency in the longitudinal and transverse directions
were set to 30m−1. and in the depth direction to 8GHz.
The rebar emphasized volume, which is called Volume III
shown in Figure 1, is obtained by applying the above two
filters sequentially to the 3D DFT of the interpolated signal
and performing the 3D IDFT.

D. Depth Estimation of Rebar Vertex Responses

For Volume III, at each longitudinal and transverse position,
we obtain the points that takes local maxima in the depth
direction. One of the surfaces obtained by this operation is
the one containing the rebar vertex response (Figure 1). Iden-
tifying the rebar vertex surface was achieved by focusing on

(a) (b) (c)

Fig. 10. Process of identifying the surface that includes rebar vertex response.
(a) Cross section image of interpolated volume and detected edges from
Specimen II. (b) Sum of edges in each depth and detected edge start depth
by change point detection algorithm. (c) Sum of intensity in each depth and
determined rebar vertex depth.

the complexity of the interference of the hyperbolic responses
of the rebars. Because of the interference, multiple diagonal
and vertical lines appear below the depth of the rebar vertex
in the radar image. Edge detection method was applied to
detect these diagonal and vertical lines. For each longitudinal-
depth cross section of the interpolated volume, canny edge
detection method was applied, which is a method that can
capture small edges [20]. To delete the horizontal lines of the
detected edge, morphological opening operation was applied
[21]. The structuring element used was a line that have length
of 2 pixels in vertical direction. The result for Specimen II
is shown in Figure 10a, and only diagonal edges are detected
in the radar cross section image. After edge detection and
morphological operation, the sum of the edges in each depth
was calculated. The depth that the number of the detected
edges steeply changes is assumed to be near the depth that the
rebar vertex response exists. To detect this edge start depth,
change point detection [22], [23] was used to find this depth
(10b). In this algorithm, a signal is divided at a point and
empirical estimates are computed within each section. The
deviation from the computed empirical estimate is calculated at
each point and summed for each section. The point at which
the sum of the residual errors is the smallest is defined as
the change point. Mean value was used as the statistic; it
minimizes the function below:

f(k) =

k−1∑
i=1

(xi − mean(x1, ..., xk−1))
2

+

N∑
i=k

(xi − mean(xk, ..., xn))
2

(8)

where, xi is the target signal, N is the length of the signal
and k is the splitting point. For hyperbola becomes steep as
it moves away from the vertex, the edge start depth appears
deeper than the depth of the rebar vertex depth. Of the index
where the sum of intensity of interpolated volume in each
depth takes maximal value, the index that is the closest and
shallower than the detected change point was determined as
rebar vertex depth (Figure 10c). Based on this rebar vertex
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(a) (b)
Fig. 11. Cross section of Volume I of Specimen II and locations of the
detected rebars. (a) Longitudinal cross section image. (b) Transverse cross
section image. The proposed method detected the strong intensity points that
is assumed to be corresponding to the rebar vertex response.

depth, the rebar vertex surface can be extracted from local
maxima points of Volume III (Figure 1).

E. Rebar Mesh Reproduction

The depth of the rebar vertex surface obtained in the
previous section is called the depth map. By obtaining the
intensities on Volume III at the points corresponding to the
depth map, the intensity map is obtained (Figure 1). The
mesh was reproduced by calculating the minimal value of the
second-order derivative of the intensity surface in the direction
of each longitudinal and transverse axis and overlaying one
another. The reason of using second-order derivative instead of
directly calculating the local maxima is to emphasize the high
wavenumber components corresponding to the rebar spacing
and to capture the weak changes. On the other hand, smoothing
by a moving average filter is introduced for each derivative
to remove the high wavenumber components corresponding
to noise above the target wavenumber. Since Volume III has
been subjected to 3D trend removal in Section II-B, the depth
of the reproduced rebar mesh in the Volume I data is restored
by the inverse processing of the trend removal.

Overlaying the detected rebar responses on the cross section
of Volume I confirms that only the vertices of the hyperbolas
are extracted (Figures 11a, 11b). In addition, 3D drawings are
shown in Figures 12a to 12d. The meshes are separated into
two directions by morphological opening operation. For the
confirmation of the effectiveness of the filter, meshes without
the rebar emphasizing filtering processing are shown in Figures
12a and 12b. These meshes were reproduced by focusing
directly on the local maxima of the intensity maps, because
they contained much noise. Compared to the filtered meshes of
Figures 12c and 12d, the meshes without the filtering contain
much noise and some rebars are not detected, which shows
the effectiveness of the rebar emphasizing filter. Now, it can
be noticed that the rebar mesh obtained are locally sinking or
undulating in the depth direction. This phenomenon is assumed
to be reflecting the local difference in relative permittivity.
There is probability that the damages can be detected focusing
on the sinking or rising of the rebar mesh in the future study.

Also, we want to note that for Specimen II, when the
distribution rebars are located sparsely at interval of 30 cm, the
responses by the interference of the hyperbolas were detected

(a) (b)

(c) (d)

(f) (g)

Fig. 12. Results of reproduced rebar mesh. (a)(c)(e) are the results of
Specimen I. (b)(d)(f) are the results of Specimen II. (a) and (b) show the
mesh reproduced excluding the filtering processing. (c) and (d) show the rebar
mesh reproduced by the proposed method. Overall noise is reduced compared
to the mesh without the filtering processing. (e) and (f) are the comparison
of the meshes with the design drawings of the specimens. Distribution rebars
are detected in correct spacing.

as the rebar (Figure 12d, shown in gray lines in horizontal
projection). To deal with this problem, we focused on the depth
map. Firstly, the maximum value filter is applied to the depth
map in a certain direction. Next, the median filter is applied
in the same direction for smoothing. In this way, a smooth
envelope surface along the depth map is produced. Since the
interference response appears deeper than the depth of the
rebar vertex response, the intensity was not obtained for points
that are further than a certain depth from the envelope surface
and were excluded from the mesh reproduction processing.
The process successfully removed the interference response
(Figure 12d, shown in red and blue lines).
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Fig. 13. Location of the analyzed bridge (Saitama-Prefecture, Japan). Red
rectangle shows the data acquisition range.

In Figures 12f, 12g, detected meshes and the design draw-
ings of the specimens are overlaid. For the distribution rebar,
it is recognized that the detection results match well with the
design drawings for both specimens. In the bottom part of
Figure 12g, the unwanted lines are caused by the repair marks
of the bridge deck in the test field. In the upper part, four
intervals are aligned with a spacing of 30 cm that matches
with the design drawing image. For the main rebars, left part
of Figure 12g shows coincidence with the design drawing,
however, there are not less parts that the detection is not
going well. The reason for this is assumed to be the remaining
of antennas’ directivity and frequency characteristics, though
clutter removal processing was applied in Section II-A. Also,
the fact that hyperbola is flat near the vertex is assumed to
be the reason. Although this makes it difficult to estimate the
rebar spacing of the bridges, it is certain that this algorithm
detects relatively high intensity points which include the infor-
mation of rebar reflection. Therefore, it can be inferred that the
proposed method is sufficient for detecting damages of bridge
decks. In the future, to realize the highly accurate spacing
estimation, it is required to improve the clutter removal method
and to remove the antenna characteristics to the maximum
extent.

III. APPLICATION TO IN-SERVICE BRIDGE DATA

The proposed method was applied to data obtained from
driving on a bridge under use to confirm its practicality. The
data was acquired at a bridge in Saitama-Prefecture, Japan
(Figure 13). The number of channels and a spacing of the
radar used are 25 and 7.5 [cm], respectively, thus the data can
be acquired with a width of 180 cm in the transverse direction.
In the longitudinal direction, data is acquired at intervals of
7.0 cm. As pre-processing, bandwidth limitation, zero padding,
and clutter removal described in Section II-A were performed.
Every 30 points (210 cm) in the driving direction were taken
out and analyzed for each section to generate the rebar mesh
with the total length of 300 points (21m). The 3D view and
plan view of the generated rebar mesh are shown in Figure
14a. Now, the continuity of the mesh is noteworthy. Although
the mesh is divided into 10 sections, the depth directional
connections are maintained at the boundaries, indicating that
the distortion caused by the filter is minimized.

Also, to confirm the stability among the analysis section,
spacing of the distribution rebar was calculated in each section
using the 1D DFT. The meshes obtained were converted to the

(a)

(b)
Fig. 14. Results of applying the proposed method to the in-service bridge data.
(a) Reproduced rebar mesh and the projection of the mesh. The smoothness
of the mesh at the boundary of analysis sections is noteworthy. (b) Calculated
distribution rebar spacing. Stable reproduction is achieved.

binary data, and rebars distribution rebars were extracted by
morphological opening operation. Then, Gaussian filter was
applied to make the signal smooth and to remove the harmonic
components. After that, 1D DFT in each direction was applied.
In general, the rebars of bridge decks must be installed with
a spacing of 10 cm to 30 cm [24], thus the wavenumber that
takes maximum value in this range was determined to be the
rebar spacing. The average of the calculated wavenumber of all
the rows is determined to be the distribution rebar spacing in
that section. The result is shown in Figure 14b. We can notice
less variance among the analysis section, which means that the
reproduction of mesh is carried out stably. It can be concluded
that the proposed method effectively and stably functions for
the in-service bridge data.

IV. DISCUSSION AND CONCLUSION

In this study, the automated algorithm to extract rebar vertex
responses in radar volume images of bridge decks acquired
by an on-vehicle air-coupled GPR was proposed. In Section
II, measurements using bridge deck specimens were done to
establish the method. Firstly, trend removal of the volume
images was done based on the surface extraction by the 3D
filtering method. Then, another 3D filtering was done to extract
the rebar mesh components that appears around the longitu-
dinal/transverse direction axes in the frequency domain. The
surface containing the rebar vertex response was identified by
applying edge detection and change point detection focusing
on the interference of the hyperbolic responses. The rebar
mesh was reproduced by extracting the minimal values of the
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second-order derivative in the signal intensity on the surface
in both longitudinal and transverse direction. By adding the
removed trend, the mesh was restored to the original depth.
We could confirm that the cross section of the radar image and
the detected vertex coincided. Also, for the distribution rebar,
the reproduced mesh and the design drawing of the specimens
matched accurately. For the main rebar, there were some parts
that the reproduction in real spacing was not well achieved.
However, it is sufficient for detecting damages of bridge
decks because it is assumed that proposed algorithm detects
relatively high intensity points which include the information
of rebar reflection. Therefore, for precise estimation of the
main rebars, improvements in the clutter removal method and
the antenna characteristics are desired. In Section III, the radar
data of the bridge in service was obtained and analyzed by the
proposed method. The data was 21m long and was divided
into 10 sections. It was found that the depth at the boundary
of the analysis section was maintained, which shows that the
rebar was captured with small distortion due to filtering. Also,
the calculated distribution rebar spacing was stable among the
analysis sections. From these point of views, in conclusion,
the proposed method effectively functions for the in-service
bridge data. In the future study, we expect the development
of automatic detection of damage of bridge decks, such as
concrete sedimentation and crack detection, focusing on the
intensity features around the rebar responses.

APPENDIX

THE 3D DFT OF IDEAL REBAR MESH

This appendix shows the results of the 3D DFT of ideal
rebar mesh based on the projection theorem. The 3D Fourier
Transform can be defined as natural extension of the 1D
Fourier Transform, which is written as follows:

F (u, v, w) =

∫∫∫
f(x, y, z)e−2π(ux+vy+wz)dxdydz (9)

where, (x, y, z) are the coordinates of the time domain, and
(u, v, w) are the coordinates of the frequency domain. Simulta-
neously, we consider projection of f(x, y, z) to a straight line.
Let t be the coordinate along the axis of this line, projection
can be written as:

P (θ, ϕ, t) =

∫∫∫
f(x, y, z)

δ(x sin θ cosϕ+ y sin θ sinϕ+ z cos θ − t)dxdydz

(10)

where, δ is Dirac delta function and (θ, ϕ) are the angles
of the polar coordinates. This operation is known as Radon
transform. Now, we consider the Fourier Transform of the
projection P (θ, ϕ, t). When the frequency along the straight
projection line is ω, the Fourier Transform S(θ, ϕ, ω)is

S(θ, ϕ, ω) =

∫∫∫∫
f(x, y, z)

δ(x sin θ cosϕ+ y sin θ sinϕ+ z cos θ − t)dxdydze−i2πωtdt.
(11)

(a) (b)

(c) (d)

(e) (f)
Fig. 15. The results of applying the 3D DFT to the ideal mesh and surface
volume images. (a)(c)(e) show the volumes in the time domain. (b)(d)(e) show
the results of applying the 3D FFT to the data.

When we calculate the integral of t first, the equation will
be:

S(θ, ϕ, ω) =

∫∫∫
f(x, y, z)

e−i2πω(x sin θ cosϕ+y sin θ sinϕ+z cos θ)dxdydz

= F (ω sin θ cosϕ, ω sin θ sinϕ, ω cos θ)

(12)

which means that the 1D Fourier Transform of the projection
S(θ, ϕ, ω) is equal to the components along the straight line of
the 3D Fourier Transform of the volume F (u, v, w). When the
3D Fourier Transform is applied to a plane that has constant
values only on x sin θ cosϕ + y sin θ sinϕ + z cos θ = 0, the
values appear on a line in the direction that corresponds to the
normal vector of the plane in the frequency domain. This is
called the projection theorem.

For discrete time system, the 3D DFT can be applied as
follows:

F (u, v, w) =

N1−1∑
x=0

N2−1∑
y=0

N3−1∑
z=0

f(x, y, z)e
−i2π

(
ux
N1

+ vy
N2

+wz
N3

)

(13)
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where, (x, y, z) are the coordinates of the time domain,
and (u, v, w) are the coordinates of the frequency domain.
N1,N2,N3 refers to the length of the volume in each axis.
As the 3D DFT of curved mesh shape being difficult to be
solved analytically, numerical simulation was done. Firstly, a
volume that has the same meshed-shape cross section in the
z-axis direction is considered (Figure 15a). Each side of the
volume has 301 samples and the mesh spacing is set to 20
samples. Amplitudes of the 3D DFT of this volume show
the shape shown in Figure 15b that has a value only on a
plane of z = 0. This is because, after adopting the 1D DFT
to x-axis, then y-axis of the volume, it has constant values
in z-axis. Therefore, the 1D DFT in z-axis direction has only
DC component. Simultaneously, a curved surface expressed by
rotating the sinusoidal curve around the z-axis is considered
here, which can be written as follows

f(x, y) = α cosπ
√
x2 + y2 (−1

2
≤

√
x2 + y2 ≤ 1

2
). (14)

Figure 15c and 15d show the surface and the result of the
3D DFT when α = 0.1. Based on the projection theorem,
the intensity of the components along the direction of normal
vector of the surface at

√
x2 + y2 = 1/2 is relatively strong,

thus cone-like spectrum appears. When the cone shaped filter
is adopted to the 3D spectrum of the volume, surfaces that
have the specific gradient range can be extracted.

An ideal curved mesh was generated by calculating the
product of the mesh volume and the curved surface. The mesh
and the result of the 3D DFT are shown in Figure 15e, 15f.
Convolution theorem is valid for the 3D DFT, and it can be
noticed that the spectrum of the curved mesh is expressed
as convolution of the two previous spectrums. Removing the
radar volume’s trend in Section II-C has a role of concentrating
the components on x-axis and y-axis in the wavenumber
domain. Furthermore, extracting the components only on x-
axis and y-axis can emphasize the rebar responses in the
volume.
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