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Abstract

A completely automatic and accurate detection algorithm for the delamination on tunnel concrete lining surfaces from laser

3D point cloud data is proposed. A Mobile Mapping System (MMS), which mounts laser sensors and a positioning system,

is utilized to measure the geometry of tunnel lining surfaces highspeed. The proposed algorithm consists of 4 steps: removal

of tunnel profile components, detection of peaks of anomalies, localization of anomaly areas, classification of delamination and

appendages. On tunnel linings, there are many appendages such as cables, lights, signs, and water guides to mask the features

of delamination. In the article, a novel 3D feature was introduced to realize the accurate classification. An automatic SVM

algorithm was developed using real tunnel lining data and manual inspection results, showing an accurate delamination map.
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Abstract 

A completely automatic and accurate detection algorithm for the delamination on tunnel concrete lining surfaces from laser 3D point 

cloud data is proposed. A Mobile Mapping System (MMS), which mounts laser sensors and a positioning system, is utilized to measure 

the geometry of tunnel lining surfaces highspeed. The proposed algorithm consists of 4 steps: removal of tunnel profile components, 

detection of peaks of anomalies, localization of anomaly areas, classification of delamination and appendages. On tunnel linings, there 

are many appendages such as cables, lights, signs, and water guides to mask the features of delamination. In the article, a novel 3D 

feature was introduced to realize the accurate classification. An automatic SVM algorithm was developed using real tunnel lining data 

and manual inspection results, showing an accurate delamination map.  

Keywords: Mobile Mapping System (MMS); Delamination; Tunnel Linings; Laser 3D Point Cloud Data; Support Vector Machine (SVM) 

 

1.  Introduction  

 

To maintain enormous amounts of aging infrastructure 

stocks, non-contact and highspeed monitoring techniques 

are indispensable [1]-[3]. One of the important social 

concerns is pop out of tunnel concrete linings, which 

threatens the safety of road users. To prevent severe 

accidents, road administrators need to detect delamination 

before it advances to peeling.  

In practice, delamination of concrete structures is 

detected by a hammering test. The problem is it is labor-

intensive. Covering huge areas of tunnel lining surfaces 

by manual inspection is not feasible. Furthermore, 

inspection results are subjective, demanding skilled 

inspectors to accurately detect damages. InfraRed (IR) 

camera method detects delamination by the difference of 

surface temperature [4]. It needs the difference of 

temperature between day and night.  An automatic 

sounding system records acoustic signals [5]. A laser 

sounding system hits light to evaluate dynamic 

characteristics of delaminated concrete surfaces [6]. A 

non-destructive monitoring method inside concrete  

structures by neuron sources is being developed [7]. 

These methods need special instruments, inspection time 

and costs. Our research group is utilizing Ground 

Penetrating Radar (GPR) mounted on vehicles, though it 

is difficult in principle to detect millimeter order thickness 

cracks by the frequency range of typical commercialized 

measurement systems [8].  

To solve the problem, a Mobile Mapping System 

(MMS) was utilized in the research. Ranging lasers and a 

GNSS/IMU positioning system are mounted on a 

ordinary MMS (Fig. 1) [9]. The advantages of an MMS 

are highspeed and a high-resolution grid data of altitude 

(height) of an infrastructure surface can be measured. As 

reported in our previous research works, when 

delamination advances to a certain extent, it causes at 

least a several tens centimeter area and several millimeter 

height deformations [10],[11]. Our claim is at that stage 

delamination is detected as a positive peak of a local 

displacement from laser 3D point cloud data.  

In terms of the previous research about laser method, 

Kim et al. conducted the quality assessment of precast 

concrete. They estimated areas of spalling by an edge  
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detection algorithm [12]. Yoon et al. illustrates utility 

cables on tunnel lining using laser data as a feasibility 

study [13]. Our group first proposed an automatic 

algorithm to detect delamination on concrete surfaces 

adopting signal and image processing approaches 

[10],[11]. The characteristic of the algorithm is the 3D 

geometries of anomalies are accurately extracted to 

calculate feature values, detecting delamination and 

showing their shapes on a 3D map.  

The problem of the research [10]-[13] is, the 

environment of a real tunnel lining is complicated, 

including many appendages and ambiguous features such 

as cables, lights, signs, water guides and noises as shown 

in Fig. 2. There are at most several areas of delamination 

in a 100 m section. They are subtle in their nature, 

resulting in an unacceptable number of false detections. It 

is necessary to increase accuracy by adding feature values 

to discriminate artificial objects of appendages. The other 

problem is there were five parameters to threshold. It is 

arbitrary to decide the thresholding ranges of parameters 

and may not have generality when applied to other tunnel 

measurement data. Deep learning algorithms to classify 

delamination and appendages is straightforward though 

large training data, at least ten thousand to one hundred 

thousand features are needed [14]-[17] to conduct reliable 

training. The automatic estimation of classification 

criteria of parameters by simple machine learning method 

is necessary.  

 

 

2.  Contributions of the research  

 

In response to the discussions above, the contributions 

of the research are summarized below.  

1) To accurately detect delamination, besides 

maximum height, area and occupancy, the ‘straightness’ 

of an outline of a 3D object was defined by Hough 

transform to eliminate artificial objects of tunnel 

appendages. Straightness is a novel index in the context 

of pattern analysis research. 

2) Support Vector Machine (SVM), one of the most 

typical and simple machine learning algorithms was 

trained by real tunnel measurement data to realize 

automatic detection. 

 

 
 

Fig. 3.  Flowchart of the algorithm. The algorithm is based on [10], 

[11]. This research deals with the extraction of 3D features and 

automatic detection of delamination by SVM.  
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Fig. 1.  Mobile mapping system (MMS) for obtaining laser 3D point 

cloud data.  

 

    
(a)                                                  (b) 

 

Fig. 2.  Appendages on real tunnel lining surfaces. (a) Cables and light. 

(b) Sign.  
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The rest of the paper is organized as follows: Section 

3 introduces the concept of the algorithm of the previous 

research [10],[11] and proposal of this research; Section 

4 describes the configuration of the utilized system and 

training and validation data; Section 5 proposes the novel 

3D feature for automatic detection. Section 6 shows the 

detection result by SVM and discusses the optimized 

SVM model. Parametric studies were conducted showing 

constructed dividing planes; Section 7 summarizes the 

findings of the research to conclude the article.  

 

3.  Concept of the algorithm and proposal of the 

research  

 

The concept of the whole algorithm is summarized in 

Fig. 3 by a flowchart and Fig. 4 and Fig. 5 show the image 

of the calculation step 1 to step 3 and part of step4. Most 

of the ideas are explained in [10], [11]. The cross-sections 

and inclinations of tunnels, profiles have meter-order 

scales in horizontal and height directions. Appendages are 

centimeter-order scales. Delamination is centimeter-order 

in areas and millimeter-order in a height direction. To 

detect small delamination, profiles were removed from 

raw data. In travel (longitudinal, running) and 

circumferential (transverse, lane width) directions, 

profiles were estimated by time series analysis updated by 

a Kalman filter (Fig. 4, step1) [18], [19].  

Hilbert transform was applied to each measurement 

line to draw an envelope (step2) [20],[21]. Peaks of 

anomalies were detected by the difference between data 

and envelopes. The threshold of difference was set 5 mm 

to detect several millimeter deformations. The algorithm 

also considers peeling and other types of damages. In this 

research, only positive peaks were extracted to target 

delamination. Reference lines were estimated by 

changing points and extrema. To evaluate areas, detected 

sections were overplot on a map (step3). Morphology  

transform was applied to smooth areas and remove noises 

[22],[23].  

Reference lines were interpolated by reference planes 

to extract the 3D shapes of anomalies (Fig.5). 3D features 

were calculated. The details of the features are explained 

in section 5. By thresholding feature values, delamination  

 
 

Fig. 4.  Extraction of anomalies from laser measurement data [11]. (a) Raw tunnel lining data. (b) After removal of a tunnel profile. (c) Candidate 

anomaly areas. Corresponding step 1 to step 3 are also shown.  

 

(c) Detected anomaly areas(a) Raw data

(b) Anomalies
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Fig. 5.  Extraction of 3D shapes of features by reference planes. (a) 

Raw data. (b) Extracted 3D shape [11].  

 

(a) Raw Data

(b) Extracted 3D Shape

step 4: Extraction
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is distinguished from appendages. The proposal of this 

research is related to step 4. In addition to maximum 

height, area and occupancy, the straightness of anomalies 

is newly defined to discriminate artificial objects. A 

classification algorithm based on SVM is applied for 

automating the detection process. Detected delamination 

is displayed on a 2D delamination map and 3D quarter 

view map with its 3D shape. 

Fig. 4 (a) displays the raw data of data No. 1. A curved 

surface corresponds to the ceiling of the tunnel. Profiles, 

especially cross-sections of tunnels are dominant in 

tunnel laser data. Fig. 4 (b) shows a map after subtracting 

estimated profiles from the raw data. Peaks of anomalies 

were observed. The peaks of cables were continued in a 

travel direction while lights were local displacements. 

Even at this step, delamination is not obvious because of 

the peaks of the appendages. Fig. 4 (c) exhibits 

circumscribed rectangles of all the detected anomalies 

after Hilbert transform and Morphology transform. All 

the features were detected including cables, lights, signs, 

water guides and delamination.  

 

4.  Measurement system and data 

 

4.1.  Measurement system  

 

A measurement system shown in Fig. 1 is utilized. A 

laser sensor irradiates light at each scanning angle and 

vehicle position. The system adopts two laser sensors to 

accelerate measurement. Electric signals are converted to 

optical signals by Laser Diode (LD). Distance is 

calculated by the phase delay of transmitted and received 

sinusoidal waves of light. The further details of the 

principles are out of scope of the research.  

Measured distance, called 3D point cloud data, is 

converted to grid altitude data referring to the GNSS/IMU 

positioning system. The most important measurement 

condition is the horizontal resolutions of grid data and 

corresponding speed of the vehicle. The research adopted 

a 2 cm resolution. The MMS scans the surfaces of tunnels 

10 km/h - 20 km/h to achieve the 2 cm resolution. 50 km/h 

- 60 km/h the resolution is 5 cm, which is not favorable 

for the proposed algorithm. Optimization of the 

measurement conditions remains as future works. 

 

 
                 (a)                                                                                                        (b) 

 

Fig. 6.  Delamination of data No. 1 [11]. (a) Frequency analysis of data and delamination areas detected by manual inspection. Yellow areas are 

characteristic features emphasized by frequency analysis. (b) Sizes of delamination were measured for references.  

delam. (step)

t=15mm

①

②

③ delam.

t=11mm

④
size Φ1=

930mm

Φ2=300mm

size

Φ=40mm delam.

t=30mm

size

Φ1=250m

m

Φ２
=110mm

⑤ delam.
t=10mm

⑥ delam.
t=7mm

① delam.
② delam.

cable

cable

sign

light

light

water

guide

③ delam. (step)

aggregation

behind cable

④ delam.

⑤ delam.

(free lime)
⑥ delam.

delam.

t=3mm

Table  1 

Manual inspection target tunnels and laser data for training and validation of SVM. 

 

Tunnel Data No. Location (in Japan) Construction method year 
Section length 

(travel by circum.) 

No. of delam. 

(No. of delam. and 

append. features) 

Tunnel 1 

No. 1 

Nagano pref. Sheet piling 1975 

20 m by 15 m 6 (38, 688) 

No. 2 25 m by 12 m 6 (48, 273) 

No. 3 25 m by 15 m 2 (6, 408) 

Tunnel 2 No. 4 Nagano pref. NATM 1991 22 m by 12 m 0 (0, 138) 

Tunnel 3 No. 5 Kanagawa pref. Sheet piling 1963 60 m by 12 m 2 (78, 484) 
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4.2.  Data  

 

Table 1 summarizes manual inspection results and 

measurement data utilized in the research. Three tunnels, 

five sections from data No. 1 to No. 5 were measured. 

Sections No. 1 - No. 3 are the same tunnel. Locations are 

around the capital area of Japan. Tunnel 3 is two hundred 

kilometers distant from other tunnels. Construction 

methods and years are also different to demonstrate the 

applicability of the method. The tunnels are old, ranging 

from 30 years to 60 years.  

Manual inspections were conducted. The total number 

of delamination is 16. No delamination was detected in 

data No. 4 except for appendages. Most of the tunnels 

include multiple areas of delamination, which 

necessitates dense condition monitoring and assessment. 

Fig. 6 shows the inspection result of the data No.1. Step-

like deformations and delamination caused by free lime 

are also the targets of the research. Aggregation behind 

cables cannot be detected in principle and is not the target 

of the research. To match the positions of manually 

detected delamination with laser measurement data, 

features of appendages were utilized. Frequency analysis 

was applied to emphasize several tens centimeter scale 

features following the previous research [11],[24]. 

Frequency analysis is based on short time Fourier 

transform. The positions of delamination detected by 

manual inspections were shown referencing characteristic 

features such as cables, lights and signs (Fig. 5 (a)). Laser 

measurement points do not exactly correspond to 

manually detected areas to calculate and validate areas of 

delamination.  

Sizes of damages were also measured for references. 

Delamination is ambiguous, however, to measure exact 

maximum height and areas. The performance of the 

algorithm was evaluated by detected delamination in 

corresponding areas and falsely detected areas outside the 

areas as will be explained in section 6. The validation of 

estimated 3D shapes is not the scope of the research. In 

the previous research [10], the error was pointed out to be 

within 20 %.  

 

 

5.  Proposal of 3D features  

 

Fig. 7 shows the examples of extracted 3D features.  

Fig. 7 (a) - (d) correspond to delamination, cable, light 

and water guide respectively. Characteristic features are 

apparent for each type of an object. Considering Fig. 7 (a) 

- (d), four features were defined. Fig. 8 (a) shows the 

delamination case. Three features were adopted from the 

discussions in [11]. The maximum height and areas of 

features were calculated. These two features are the basic 

information of the scales of features. The sizes of 

appendages are larger than delamination while too small 

features can be ignored as noises. Fig. 8 (b) explains the 

occupancy of features. Features were projected onto 

horizontal, circumference-height and travel-height planes, 

which were perpendicular to vertical, circumferential and 

travel directions respectively. Circumscribed rectangles  

 
(a)                                                                    (b)                                                                          (c) 

 

Fig. 7.  Extracted 3D shapes. (a) Cable. (b) Light. (c) Water guide. Yellow and blue areas show higher and lower altitude hereafter.  

 

 

 
 

Fig. 8.  Extraction of 3D features. (a) Quarter view. (b) Side view. 

Maximum height, area and occupancy are defined here. Occupancy is 

estimated from a top view and two side views.  

(a) Quarter view

(b) Side view

Maximum

height h

Area s

Occupancy O
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were drawn for each projected area. Occupancy is the 

ratio between the area of the rectangle and projected 

feature. The concept of occupancy is to simply evaluate 

the shapes of 3D features. From Fig. 6, cables are wall-

like shaped. Lights and signs are box-like shaped. Water 

guides and repair patches are U-shaped or box-shaped 

depending on whether features are connected to adjacent 

features or not. Delamination is convex. The occupancy 

of box and wall is high, while U-shaped objects are low 

in a perpendicular direction. The occupancy of a convex 

is middle on all the projected planes. By thresholding 

higher and lower occupancy, delamination is detected 

reducing the detection of appendages and repair-related 

objects.  

Straightness is a simple index proposed in this research. 

The idea is the profiles of artificial objects are composed 

of straight lines, while delamination has complicated 

profiles. Fig. 8 explains the process of evaluating 

straightness. Fig. 9 (a) displays the area of the 

delamination of Fig. 8. Fig. 9 (b) shows the profile of the 

area. Three projected areas can be considered in the same 

way as occupancy. Therefore, straightness is defined in 

three directions. Fig. 9 (c) is the Hough transform of the 

profile of Fig. 9 (b). Too coarse a profile image, e.g. only 

several pixels by several pixels, will fail in extracting 

peaks in a Hough space. Therefore, images were up-

sampled 10 times in both axes. In the Hough space, each 

peak corresponds to each straight line. Longer lines are in 

the image, higher peaks are in the Hough space.  

In the Hough space, 𝑛 highest peaks were detected as 

lines. 𝑛 = 5  was adopted. The summation 𝐼  of peak 

values 𝑝𝑘 of extracted 𝑛 peaks was calculated.  

 

𝐼 =∑ 𝑝𝑘
𝑛

𝑘=1
 (1) 

 

The ratio between 𝐼 and total number of pixels 𝐿 of the 

profile is defined as straightness 𝑆.  

 

𝑆 = 𝐼/𝐿 (2) 

 

Longer and more lines are, lager 𝑆 is. 𝑛 is the parameter. 

Too small and too large 𝑛 will fail in delineating lines. 

On the other hand, 𝑛 was confirmed not sensitive to the 

detection result. It is possibly because relative values of  

𝑆 were compared in SVM and polygons with too many 

edges did not exist.  

Fig. 10 shows the examples of a circle and square to 

explain the characteristics of straightness. From Fig. 10 

(a), 𝑆 of the square is about 1.1. When all the pixels in an 

image belong to one of the 𝑛  straight lines, one pixel 

increases a peak by one. Consequently, 𝑆 ≅ 1.0 . 

Theoretically, in the case of polygons with the number of 

edges smaller than or equal to 𝑛, 𝑆 = 1. Because of the 

intersections of edges and limited resolutions of images, 

calculated 𝑆 is slightly larger than 1.0. Fig. 10 (b) shows 

a polygon with the infinite number of edges, a circle, 

indicating 𝑆 = 0.3. 𝑆 of any profiles is between a polygon 

and a circle. 𝑆 of complicated winding and jaggy profiles 

are small and profiles composed of several straight lines 

are large. From Fig. 9 (c), 𝑆 = 0.5  in the case of the 

delamination of Fig. 8. The profile is close to a circle and 

far from artificial objects.  

 

 
(a) 

 

 
(b) 

 

Fig. 10.  Examples of straightness of profiles. (a) Square. (b) Circle. 

Left figure is profile and right one is Hough transform. Calculated 

straightness is also shown.  

Square: S = 1.05

Extracted peaks

Circle: S = 0.33

No clear peaks

 
      (a)                                                                           (b)                                                                           (c) 

 

Fig. 9.  Extraction of straightness. (a) Area of a feature. The area is the delamination of Fig. 8. (b) Profile of the feature. Profile image is up-sampled. 

(c) Hough transform of the profile. Five concentrated peaks are extracted to calculate straightness in this case.  

 

Extracted peaks

S = 0.51
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One of the most important characteristics of a feature 

value is scale-invariance. Straightness clearly holds scale-

invariance. Straightness holds rotation-invariance. On the 

other hand, occupancy does not hold rotation-invariance. 

The successful detection result of delamination indicates 

most of the analyzed appendages were placed along a 

travel or circumferential direction, e.g. cables. SVM may 

automatically construct rotation-invariant features from 

input feature vectors.  

The area and maximum height of a feature are related 

to the scale of the feature. Occupancy is related to the 

geometry of the area of the feature. By considering the  

three directions, 3D geometries are approximately 

evaluated. However, any polygons with the same areas 

within circumscribed rectangles will show the same 

occupancy. Straightness is related to the geometry of the 

profile of the feature. Considering all the four features, 3D 

shapes are appropriately evaluated.  

Summarizing the above discussions, features about 

scales, maximum height ℎ and area 𝑠, features about the 

geometries of areas, occupancy in three directions 𝑂𝑦𝑧, 

𝑂𝑧𝑥 , 𝑂𝑥𝑦 , features about the geometries of profiles, 

straightness in three directions 𝑆𝑦𝑧, 𝑆𝑧𝑥, 𝑆𝑥𝑦, four features  

 

 
(a)                                                                                                            (b) 

 

Fig. 11.  Detection result of delamination of data No. 1 (a) Top view of 3D mapping result, corresponding to delamination map. (b) Quarter view 

of 3D mapping result, showing 3D shapes of anomalies. Red cross points represent the highest positions in detected areas with estimated height.  

 

 
(a) (b) 

 

Fig. 12.  Detection result of appendages, which are the remaining areas of delamination detection result of Fig. 10. (a) Appendage map. (b) Quarter 

view of 3D mapping result.  
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with eight parameters are introduced. An integrated 

feature vector 𝐹 is defined below.  

 

𝐹 = (ℎ, 𝑠, 𝑂𝑦𝑧, 𝑂𝑧𝑥, 𝑂𝑥𝑦, 𝑆𝑦𝑧, 𝑆𝑧𝑥, 𝑆𝑥𝑦) (3) 

 

Using a feature vector as an input to SVM, a machine 

learning model was trained to automatically construct the 

judging criteria of features.  

 

 

6.  Automatic detection by SVM  

 

6.1.  Detection results  

 

SVM is one of the simplest classification algorithms 

with less calculation cost, training data and clear 

classification criteria among other machine and deep 

learning methods such as random forests and neural 

networks [14]-[17], [25]-[26]. Each feature vector is 

mapped onto a point in a feature space with the same 

dimension as feature vectors. SVM classifies feature 

vectors into certain categories by building criteria. It 

draws optimized linear dividing planes in the feature 

space by maximizing the distance between the planes and 

vectors. The vectors which are close to the dividing plane 

and contribute to the construction of the plane are called 

support vectors.  

In the research, the parameters of SVM were trained 

by the data shown in Table 1. Data No. 1 of the tunnel 1 

was used for validation data. Other four data from No. 2 

to No. 5 was used for training data. Areas corresponding 

to delamination referring to manual inspection results 

were used as delamination data and others as appendage 

data. To consider the importance of large area 

delamination, feature vectors were replicated according to 

the areas of features. The ratio of the total numbers of 

detected features between training and validation data is 

about 3.4 : 1. Cross validation is the most accurate 

evaluation method. However, because the number and 

area of delamination vary among the tunnels, it is difficult 

to divide data No.1 - No. 5 into any other desirable data 

sets. The data set was produced to hold the generality of 

the algorithm.  

Fig. 11 shows the SVM detection result of data No.1 

whose manual inspection result is shown in Fig. 6. The 

optimization of the SVM model is discussed in the 

following section. Fig. 11 (a) shows the detected areas of 

delamination, which was extracted from all the features 

shown in Fig. 4 (c). Fig. 11 (a) indicates the target 

delamination No. 1, No. 3 - No. 5 were successfully 

detected in appropriate positions compared with Fig. 6 (a). 

The positions of delamination No. 2, No. 6 were shifted, 

possibly because of the shift in laser data or deformations 

around the delamination were detected. The total detected 

areas are 22,540 cm2  while 16,100 cm2  is  true 

delamination areas among detected areas. 72 % of 

detected areas are actual delamination. In the context of 

deep learning, Intersection over Union (IoU) is the 

evaluation criterion of matched areas, which is 30 % to 

40 % in the case of up-to-date region proposal models 

[27]-[29]. 72 % is highly precise. By the proposed SVM 

algorithm, detected regions were localized from 

3,000,000 cm2 to 22,540 cm2, about 0.8 %. Fig. 11 (b)  

 
(a) 

 

Fig. 13.  Effect of kernel functions on classification accuracy (black) 

and AUC (gray). Linear is no kernel and polynomial is third order.  
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(a) 

 

Fig. 14.  Effect of feature parameters on accuracy and AUC.  

 

 
(a) 

 

Fig. 15.  Comparison of PR curves of previous (blue) and proposed 

(red) SVM models.  
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Table  2 

Combination of used feature parameters for each SVM model. 

 

SVM model Used features 

No. 1 

(Height-Area) 
(ℎ, 𝑠) 

No. 2 

(Previous) 
(ℎ, 𝑠, 𝑂𝑦𝑧 , 𝑂𝑧𝑥, 𝑂𝑥𝑦) 

No. 3 

(Proposed) 
(ℎ, 𝑠, 𝑂𝑦𝑧 , 𝑂𝑧𝑥, 𝑂𝑥𝑦, 𝑆𝑦𝑧) 

No. 4 

(All) 
(ℎ, 𝑠, 𝑂𝑦𝑧 , 𝑂𝑧𝑥 , 𝑂𝑥𝑦 , 𝑆𝑦𝑧 , 𝑆𝑧𝑥, 𝑆𝑥𝑦) 
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shows the quarter view of the estimated 3D shapes to 

visualize the delamination.  

Fig. 12 shows the areas and 3D map of appendages, 

which remains after removing delamination from all the 

features. Wall-like features of cables aligned in a travel 

direction are apparent. Lights between cables, a sign and 

a water guide were successfully detected as appendages. 

These features were useful to locate the positions of 

delamination during repair works and analyze the causes 

of delamination.  

 

6.2.  Parametric study  

 

6.2.1  Kernel function  

The important hyper parameter of an SVM model is 

the choice of a kernel function. Kernel function is a 

nonlinear conversion applied to input feature vectors, the 

effect of which is equivalent to drawing nonlinear 

dividing planes in a feature space. The Kernel function 

improves the performance of SVM. Fig. 13 shows the 

comparison of different kernel functions. Polynomial is 

third order. Accuracy is the rate of correctly classified 

data among all the data. The data is unbalanced. Area 

Under the Curve (AUC) of a Precision-Recall (PR) curve 

is also compared. Accuracy and AUC are not necessarily 

corresponding with each other [30]. Compared to an 

ordinally linear SVM, RBF increases the AUC by about 

0.3, while the polynomial function decreases accuracy 

and AUC. The most appropriate kernel function depends 

on the problem. RBF kernel was adopted.  

6.2.2  Feature parameters  

Input feature vectors were defined by Eq. (3). To 

evaluate the effect of introducing parameters, SVM 

models were compared changing used feature parameters. 

Table 2 shows the configuration of each SVM model. 

Model No. 1 (height-area) considers only the scales of 

anomalies. Model No. 2 (previous) is the model of the 

previous research introducing occupancy [11]. Model 

No.3 (proposed) considers straightness of profiles on a 

horizontal plane. Model No.4 (all) additionally includes 

straightness in travel and circumferential directions. 

Accuracy is not compared in the previous research. Fig. 

14 compares the accuracy and AUC of each model. The 

more feature parameters, the larger accuracy is. 

Considering sizes, occupancy and straightness, the most 

accurate SVM model is developed. Accuracy of the 

proposed model was improved by about 6 % compared 

with the previous model. However, proposed and all 

models show the same accuracy. Straightness may be 

redundant; Only considering 𝑆𝑦𝑧  may be enough. AUC 

has fluctuation. The profiles of anomalies in travel and 

circumferential directions are various and may be biased 

in different tunnel data. Increasing parameters may cause 

failure in training. Fig. 15 indicates the AUC of the 

proposed model is improved compared with the previous 

model.  

To visualize the characteristics of obtained SVM 

criteria, Fig. 16 shows the scatter plots of two parameters 

and classification criteria constructed by SVM. In Fig. 16,  

 
(a)                                                                                                 (b) 

 

    
(c)                                                                                                 (d) 

 
Fig. 16.  Scatter plots of feature parameters. Two features were chosen to plot one scatter plot. Red circles are delamination and blue cross points 

are appendages. Each line shows the contour of probability p = 0.1, 0.4, 0.8, corresponding to the dividing plane of SVM. (a) Height-Area. (b) 

Occupancy Oyz - Ozx. (c) Occupancy Oyz - Oxy. (d) Occupancy Oyz - Straightness Syz.  
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delamination is red circles and appendages are blue cross 

points. In SVM training, posterior probability was fitted 

considering the distance between a dividing plane and 

feature vectors. The contours of posterior probability   

𝑝 = 0.1, 0.4, 0.8 are shown. From Fig. 16 (a) - (d), there 

are trends in the distribution of feature vectors and curves 

of probability. From Fig 16 (a), most of the feature vectors 

are concentrated on small height and areas. From contours, 

there are strict limit ranges in height. It is suggested there 

are two groups of small height - small area delamination 

and large height - large area ones. From Fig. 16 (b) - (d), 

most of the 𝑂𝑦𝑧 is concentrated on 1 and from contours 

there are minimum and maximum 𝑂𝑦𝑧 limit ranges. This 

is because delamination is represented by convex peaks 

showing medium occupancy. There is a slight correlation 

between 𝑂𝑦𝑧 and other parameters, which also determines 

the shapes of contours.  

 

6.2.3  Probability threshold 

The probability of delamination 𝑝 is assigned to each 

feature vector, which is the only parameter of detection 

by SVM. Fig. 17 compares the delamination map 

changing the minimum probability threshold 𝑃  (𝑝 > 𝑃 

holds) from 0.1 to 0.8. Smaller 𝑃  means safer side 

evaluation and larger 𝑃 is vice versa. From Fig. 17 (a) and 

(b) the whole delamination is detected while false 

detection increases in the case of 𝑃 = 0.1. On the other 

hand, from Fig. 16 (c), some delamination is missing in 

the case of 𝑃 = 0.8. There is a tradeoff between false 

detections and missing areas. In data No. 1 there are 

various height and areas of delamination in a 20 m section. 

Therefore, 𝑃 = 0.4 is valid. In a practical sense, missing 

delamination may not be favorable. In that case, 𝑃 < 0.4 

is appropriate.  

 

 

7.  Conclusions  

 

The automatic and accurate SVM detection algorithm 

for the delamination on tunnel concrete lining surfaces  

from laser 3D point cloud data was developed. The 

algorithm consists of 4 steps: estimation of infrastructure 

profiles, detection of anomalies by Hilbert transform, 

localization of areas by Morphology transform, 

discrimination of delamination from appendages. In the 

research, step 4 was modified to achieve accurate and 

automatic detection. The introduction of a novel feature, 

straightness and automatic detection by SVM were the 

contributions of the research. Defining the straightness of 

the profiles of features, artificial objects such as cables 

and lights were characterized. SVM was trained using 

data of real tunnel concrete lining surfaces. Including 

straightness improves accuracy by 6 % and AUC by 0.3 

compared with the previous model. A parametric study 

was conducted to optimize the model and show the most 

appropriate probability threshold.  

For future works, the algorithm can also be applied to 

the detection of peeling and road potholes. Damages of 

concrete walls of other types of infrastructures are 

possible applications. The accurate estimation of tunnel 

cross-sections from infrastructure profiles extracted in 

step 1 to monitor tunnel deformations is considered. 

There is a limitation in measurement vehicle speed. 

Measuring the same tunnel multiple times may improve 

the data quality. The inclusion of laser luminance data and 

optical camera images may increase the accuracy. The 

developed algorithm is being applied to large-scale tunnel 

surface data to conduct further detailed regional and 

statistical analysis.  
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      (a)                                                                      (b)                                                                      (c) 

 

Fig. 17.  Delamination maps of the optimized SVM model with different probability threshold 𝑃. (a) 𝑃 = 0.1. (b) 𝑃 = 0.4. (c) 𝑃 = 0.8.  

Delamination ①

③

②

④

⑥
⑤

Delamination

①

③

②

④

⑥
⑤

Delamination

①

③

②

④

⑥
⑤

Delamination

Missing

Missing



  

 

11 

Declaration of Competing Interest 

 

None. 

 

 

References 

 
[1] The World Bank, “Population ages 65 and above,” USA. [Online]. 

Available: https://data.worldbank.org/indicator/SP.POP.65UP.T 

P.TO.ZS, Accessed on: Oct. 11, 2021.  

[2] Ministry of Land, Infrastructure, Transport and Tourism, 

“Statistics about Road (in Japanese),” Japan. [Online]. Available: 

https://www.mlit.go.jp/road/soudan/soudan_10.html, Accessed 

on: Oct. 11, 2021. 

[3] Ministry of Land, Infrastructure, Transport and Tourism, “Road 

tunnel regular inspection manual (in Japanese),” Japan. [Online]. 

Available: https://www.mlit.go.jp/road/sisaku/yobohozen/tenken 

/yobo3_1_9.pdf, Accessed on: Jun. 13, 2022. 

[4] T. Omar and M. L. Nehdi, “Remote sensing of concrete bridge 

decks using unmanned aerial vehicle infrared thermography,” 

Automation in Construction, No. 83, pp. 360-371, 2017, DOI: 

https://doi.org/10.1016/j.autcon.2017.06.024.  

[5] S. Blaney and R. Gupta, “Sounding of subsurface concrete 

defects using frequency response of flexural vibration,” Cement 

and Concrete Composites, No. 92, pp. 155-164, 2018, DOI: 

https://doi.org/10.1016/j.cemconcomp.2018.06.006. 

[6] N. Yasuda, N. Misaki, Y. Shimada and D. Yamaoka, “Detection 

and characteristics estimation of defects in concrete structures 

using laser ablation-induced vibration,” Tunnelling and 

Underground Space Technology, Vol. 103, No. 103460, 2020, 

DOI: https://doi.org/10.1016/j.tust.2020.103460. 

[7] Y. Otake, “Non-destructive Infrastructure Testing by Compact 

Neuron Source,” IEEJ Journal, Vol. 139, No. 5, pp. 296-299, 

2019, DOI: https://doi.org/10.1541/ieejjournal.139.296. 

[8] T. Yamaguchi, T. Mizutani, M. Tarumi and D. Su, “Sensitive 

damage detection of reinforced concrete bridge slab by “time-

variant deconvolution” of SHF-band radar signal,” Institute of 

Electrical and Electric Engineers Transactions of Geoscience and 

Remote Sensing, Vol. 57, No. 3, 2019. pp. 1478-1488, DOI: 

https://doi.org/10.1109/TGRS.2018.2866991.  

[9] Aero Asahi Corporation, “Roads: mobile mapping system (in 

Japanese),” Japan. [Online]. Available: https://www.aeroasahi.co. 

jp/spatialinfo/social_infra/road/, Accessed on: Oct. 11, 2021. 

[10] Mizutani, T., Yamaguchi, T., Kudo, T., Yamamoto, K., Ishida, T., 

Nagata, Y., Kawamura, H., Tokuno, T., Suzuki, K. and 

Yamaguchi, Y.: Quantitative Evaluation of Peeling and 

Delamination on Infrastructure Surfaces by Laser Signal and 

Image Processing of 3D Point Cloud Data, Automation in 

Construction, No. 133.104023, 2022, DOI: https://doi.org/10. 

1016/j.autcon.2021.104023. 

[11] Mizutani, T., Yamaguchi, T., Kudo, T., Yamamoto, K., Ishida, T., 

Nagata, Y., Kawamura, H., Tokuno, T., Suzuki, K. and 

Yamaguchi, Y.: Detection of delamination and peeling on 

infrastructure surfaces by time series analysis and 3D feature 

extraction of laser 3D point cloud data, Journal of the Japan 

Society of Civil Engineers, (under review, to be published).  

[12] M. K. Kim, J. C. P. Cheng, H. Sohn and C. C. Chang, “A 

framework for dimensional and surface quality assessment of 

precast concrete elements using BIM and 3D laser scanning,” 

Automation in Construction, No. 49, pp. 225-238, 2015, DOI: 

https://doi.org/10.1016/j.autcon.2014.07.010. 

[13] J. S. Yoon, M. Sagong, J. S. Lee and K. S. Lee, “Feature 

extraction of a concrete tunnel liner from 3D laser scanning data,” 

NDT&E International, No. 42, pp. 97-105, 2009, DOI: https://doi. 

org/10.1016 /j.ndteint.2008.10.001. 

[14] K. Simonyan and A. Zisserman, “Very deep convolutional 

networks for large-scale image recognition,” International 

Conference on Learning Representations, California, USA, May. 

2015, DOI: http://arxiv.org/abs/1409.1556. 

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, 

D. Erhan, V. Vanhoucke and A. Rabinovich, “Going deeper with 

convolutions,” Institute of Electrical and Electronics Engineers 

Conference on Computer Vision and Pattern Recognition, 

Massachusetts, USA, Jun. 2015, DOI: https://doi.org/10.1109/ 

CVPR.20 15.7298594. 

[16] I. Goodfellow, Y. Bengio and A. Courville, “Deep Learning,” 1st 

ed., The MIT Press, Massachusetts, USA, 2016, ISBN: 97802620 

35613. 

[17] C. M. Bishop, “Pattern Recognition and Machine Learning,” 1st 

ed., Springer, Berlin, Germany, 2006, ISBN: 9780387310732.  

[18] M. N. Chatzis, E. N. Chatzi and A. W. Smyth, “An experimental 

validation of time domain system identifi-cation methods with 

fusion of heterogeneous data,” Earthquake Engineering and 

Structural Dynamics, Vol. 44, No. 4, pp. 523-547, 2014, DOI: 

https://doi.org/10.1002/eqe.2528.  

[19] D. L. Hall and J. Llinas, “An introduction to multisensor data 

fusion,” Proceedings of the IEEE, Vol. 85, No. 1, pp. 6-23, 1997, 

DOI: https://doi.org/10.1109/5.554205. 

[20] A. V. Oppenheim and R. W. Schafer, “Discrete-Time Signal 

Processing,” 3rd ed., Pearson, London, UK, 2010, ISBN: 9780 

131988422.  

[21] L. Cohen, “Time-Frequency Analysis,” 1st ed., Prentice Hall, 

New Jersey, USA, 1995, ISBN: 013594532I.  

[22] R. M. Haralick, S. R. Sterberg and X. Zhuang, “Image Analysis 

Using Mathematical Morphology,” Institute of Electrical and 

Electric Engineers Transactions on Pattern Analysis and Machine 

Intelligence, Vol. PAMI-9, No. 4, pp. 532-550, 1987, DOI: 

https://doi.org/10.1109/TPAMI.1987.4767941.  

[23] R. A. Peters, “A New Algorithm for Image Noise Reduction 

Using Mathematical Morphology,” Institute of Electrical and 

Electric Engineers Transactions on Image Processing, Vol. 4, No. 

5, pp. 554 - 568, 1995, DOI: https://doi.org/10.1109/83.382491. 

[24] H. Hirano, T. Mizutani, T. Ishida, S. Annaka, and K. Suzuki, 

“Evaluation of Local Deterioration of Pavement Surface by 

Spatial Frequency Analysis based on Short-Time Fourier 

Transform,” Japanese Journal of Pavement Engineering, Vol. 74, 

No. 3, pp. I_113-I_120, 2018, DOI: https://doi.org/10.2208/jsce 

jpe.74.I_113. 

[25] D. F. Llorca, R. Arroyo and M. A. Sotelo, “Vehicle Logo 

Recognition in Traffic Images using HOG Features and SVM,” 

Institute of Electrical and Electronics Engineers International 

Conference on Intelligent Transportation Systems, Hague, 

Netherlands, Oct. 2013, DOI: https://doi/org/10.1109/IT 

SC.2013.6728559. 

[26] Y. Shao and R. S. Lunetta, “Comparison of Support Vector 

Machine, Neural Network, and CART Algorithms for the Land-

cover Classification using Limited Training Data Points,” Journal 

of Photogrammetry and Remote Sensing, No. 70, pp. 78 - 87, 

2012, DOI: https://doi.org/10.1016/j.isprsjprs.20 12.04.001. 

[27] S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards 

Real-Time Object Detection with Region Proposal Networks,” 

Institute of Electrical and Electronics Engineers Transactions on 

Pattern Analysis and Machine Intelligence, Vol. 39, No.6, pp. 

1137 - 1149, 2017, DOI: https://arxiv.org/abs/15 06.01497. 

[28] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu 

and A. C. Berg, “SSD: Single Shot MultiBox Detector,” 

European Conference on Computer Vision, Amsterdam, 

Netherland, Oct. 2016, DOI: https://arxiv.org/abs/1512.02325. 

[29] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only 

Look Once: Unified, Real-Time Object Detection,” Institute of 

Electrical and Electronics Engineers Conference on Computer 

Vision and Pattern Recognition, Nevada, USA, Jun. 2016, DOI: 

https://doi.org/10.11 09/CVPR.2016.91. 

[30] J. M. Lobo, A. Jimenez-Valverde and R. Real, “AUC: a 

misleading measure of the performance of predictive distribution 

model,” Global Ecology and Biogeography, No. 17, pp. 145 - 151, 

2007, DOI: https://doi.org/10.1111/j.1466-8238.2007.00358.x. 

 

 

 


