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Abstract

This work presents a novel perfect reconstruction filter bank decomposition (PRFBD) for nonlinear and nonstationary time

series and image data representation and analysis. The Fourier decomposition method (FDM), an adaptive approach wholly

based on the Fourier representation, is shown to be a special case of the proposed PRFBD. The adaptive Fourier–Gauss

decomposition (FGD) proposed in this work is a variation of the FDM, which is based on the FR and Gaussian filtering.

Similarly, we also consider Butterworth filtering to develop adaptive Fourier–Butterworth decomposition (FBD). The proposed

theory can decompose any signal (time series, image, or other data) into a set of the desired number of Fourier intrinsic band

functions (FIBFs), which follow the amplitude-modulation and frequency-modulation (AM-FM) representations. A generic

filterbank representation is also provided, where perfect reconstruction can be ensured for any given set of lowpass or highpass

filters. We have performed an extensive analysis of both simulated and real-life data (COVID-19 pandemic, Earthquake

and Gravitational waves) to demonstrate the efficacy of the proposed method. The resolution results in the time-frequency

representation demonstrate that the proposed method is more promising than the state-of-the-art approaches.
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Abstract—This work presents a novel perfect reconstruction filter
bank decomposition (PRFBD) for nonlinear and nonstationary time
series and image data representation and analysis. The Fourier
decomposition method (FDM), an adaptive approach wholly based
on the Fourier representation, is shown to be a special case of
the proposed PRFBD. The adaptive Fourier–Gauss decomposition
(FGD) proposed in this work is a variation of the FDM, which is
based on the FR and Gaussian filtering. Similarly, we also consider
Butterworth filtering to develop adaptive Fourier–Butterworth
decomposition (FBD). The proposed theory can decompose any
signal (time series, image, or other data) into a set of the de-
sired number of Fourier intrinsic band functions (FIBFs), which
follow the amplitude-modulation and frequency-modulation (AM-
FM) representations. A generic filterbank representation is also
provided, where perfect reconstruction can be ensured for any
given set of lowpass or highpass filters. We have performed an
extensive analysis of both simulated and real-life data (COVID-19
pandemic, Earthquake and Gravitational waves) to demonstrate the
efficacy of the proposed method. The resolution results in the time-
frequency representation demonstrate that the proposed method is
more promising than the state-of-the-art approaches.

Index Terms—PRFB Decomposition (PRFBD), Fourier–Gauss
decomposition (FGD), COVID-19, Discrete cosine transform (DCT),
Fourier decomposition method (FDM).

I. INTRODUCTION

The Fourier theory is ubiquitous in mathematics, science,
engineering, and technology. Since its inception in 1807 [1]–
[3], it has been used in numerous applications such as flow
of heat, diffraction of electromagnetic radiation, communication,
signal and image processing, acoustics, oceanography, optics and
diffraction, quantum physics, music synthesis, and analysis of
electrical circuits. It is one of the most important theories of
modern analysis and has become an indispensable tool in treating
almost every recondite question in modern physics.

Fourier representation is the most famous tool used for
understanding the spectral content of a signal, extracting and
interpreting information, transmitting, processing, analyzing sig-
nals and systems [4]. However, many practical signals exhibit a
nonstationary character, i.e., the spectral information varies with
time, wherein a specific spectral component may be significant
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only within a small interval of time. Therefore, it is important
to develop suitable time-frequency representation (TFR) [5] of
such signals that can offer insights into the different components
present in the signal. TFR assists in the analysis of practical
signals in a wide variety of applications, including speech
processing, meteorology, and medical studies.

The short-time Fourier transform (STFT) [6] is one of the first
approaches for developing TFR by computing Fourier transform
over short intervals (time window) rather than considering the
entire signal at once. However, the length of the time window
chosen for STFT impacts the frequency resolution directly
because frequency resolution is inversely proportional to time
resolution. It is desirable to have a larger time window for slowly
varying components and vice-a-versa. The wavelet-transform [7]
provides an option to scale the basis functions (wavelets) in
order to achieve the desired resolution. However, this method
is heavily reliant on the choice of wavelet function as a single
type of wavelet might not be effective across different categories
of signals. Instead of using a fixed basis to extract signal
components, researchers have explored a variety of adaptive
signal decomposition methods to provide a signal-dependent
algorithm for extracting relevant components [8]–[15]. Design
of wavelets from a signal itself is one interesting direction [8],
[9], [16], where, for example, authors in [17] demonstrated good
performance in the application of ECG signal processing.

Empirical mode decomposition (EMD) [10] is the most pop-
ular and widely-used technique for the analysis of nonstationary
signals. It extracts the intrinsic modes of the given signal using
an iterative approach by determining the local extrema (maxima
and minima) and the corresponding envelopes. It has produced
satisfactory results across a variety of applications. However,
EMD lacks mathematical background and suffers from the
end-effect artifacts, mode-mixing, detrend uncertainty, and high
sensitivity to noise. Some variants of EMD are also explored in
the literature, such as ensemble EMD [11] and complete ensem-
ble EMD [12], to address these issues pertaining to EMD by
considering an ensemble of signals and then averaging the cor-
responding results. Although these ensemble-based approaches
add to the computational complexity yet are unsuccessful in
resolving all these issues. There have also been some attempts
to develop adaptive methods based on the wavelet transform.
Synchro-squeezed wavelet transform (SSWT) [13] considers a
combination of wavelet theory and a method of reallocation
in the time-frequency domain to select the significant modes
of the signal. Author in [18] build empirical wavelets defined
on frequency bands corresponding to the peaks in the Fourier
spectrum of a signal. It provides better signal decomposition
than the traditional wavelet transform, albeit at the cost of higher
computational complexity. Further, Q-factor is established as
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a significant parameter in [14], suggesting that the sub-band
decomposition filters should have a low Q-factor for signals with
little oscillatory behaviour and vice-a-versa. An algorithm to tune
the Q-factor has been discussed. On the other hand, variational
mode decomposition (VMD) is proposed in [15] to estimate
the principal modes concurrently by minimizing the collective
bandwidth for these modes while ensuring optimal reconstruction
of the signal.

Contrary to popular belief established in these works that
the Fourier methods are not suited for adaptive signal analysis
of practical nonstationary signals, the Fourier decomposition
method (FDM) has been proposed recently [19], [20]. The FDM
has been used in many applications such as biomedical signal
processing and COVID-19 pandemic modelling and prediction
[21]–[28]. It can be implemented efficiently using fast Fourier
transform (FFT) and has produced promising results across
a wide range of applications. However, FDM is based on
the rectangular zero-phase filterbank, which causes unwanted
fluctuations in time or spatial domain, e.g., oscillations in a
trend estimation from time series and ringing effect in an
image decomposition. Therefore, there is a need to extend the
FDM theory [29] to be used across a variety of filterbanks
exhibiting smoother transition bands for comprehensive signal
analysis while ensuring perfect reconstruction of the original
signal without the need for an exclusive filtering stage for signal
synthesis. In this work, we develop a novel method to derive
perfect reconstruction filterbanks, and it is shown that many
existing signal decomposition schemes, such as FDM, EMD,
EWT, can be considered as special cases of the generalized
model proposed here. In contrast to the FDM, we propose
an adaptive Fourier–Gauss decomposition, since the Gaussian
function has a minimum time-width product and thus provides
excellent localization properties in both time and frequency and
efficient utilization of the available bandwidth of the commu-
nication channel. Results indicate superior performance of the
proposed method as compared to the popular existing methods.

The main contributions of this study are summarized as
follows:

1) Generalized approach is proposed for the design of a
perfect reconstruction filterbank (PRFB). The PRFB can be
designed using a set of lowpass (or highpass) filters with the
desired overlap among adjacent bands by suitably selecting
the cut-off and stopband edge frequencies and stopband
attenuation.

2) An adaptive Fourier–Gauss decomposition (FGD) is defined
using the PRFB based on the generalized Gaussian model.

3) An adaptive Fourier–Butterworth decomposition (FBD) is
also developed considering the maximally flat Butterworth
filters.

4) Additionally, four different types of filters are also proposed
to obtain the desired PRFB.

5) A number of methods are discussed for obtaining desired
cut-off frequencies (such as equal frequency bands, dyadic
bands, constant high or low resonance bands, variable
resonance bands, and other desired bands) that can be
adopted in the proposed PRFB.

6) The Gram–Schmidt orthogonalization method (GSOM) is
incorporated in the proposed approach such that the set
of Fourier intrinsic band functions (FIBFs), obtained using

the PRFB, are complete as well as orthogonal. Thus the
proposed method preserves the energy of the signal in the
decomposition and time-frequency representation.

The proposed methods are able to decompose any time series,
image, and other data into a set of FIBFs, which are local,
adaptive, complete, and orthogonal by virtue of the proposed
PRFB and GSOM.

Notations: This work uses small letters for time-domain sig-
nals (e.g., d(t)–continuous time and d[n]–discrete time), and cap-
ital letters for frequency-domain signals (e.g., D(f)–continuous
frequency and D[k]–discrete frequency).

II. THE FOURIER DECOMPOSITION METHOD

The FDM is an adaptive approach for nonlinear and nonsta-
tionary time series decomposition and analysis using the zero-
phase filtering (ZPF) [19]. It decomposes a given data (or signal)
into a constant and a set of FIBFs, which are band-limited AM-
FM components. The FIBFs are zero-mean, adaptive, complete,
local, and energy preserving (EP), i.e., orthogonal or linearly-
independent non-orthogonal yet EP (LINOEP). The FDM can be
implemented using ZPF based on Fourier representations such
as discrete Fourier transform (DFT), discrete cosine transforms
(DCTs) and discrete sine transforms (DSTs); finite impulse
response (FIR) and infinite impulse response (IIR) filters, or any
other approach. In this work, we propose the FDM using the
DCT and Gaussian filtering and designate it as adaptive Fourier–
Gauss Decomposition (FGD). Let d[n] be a data sequence of
length N . The DCT type-2 of d[n] is defined as [30]

D[k] =

√
2

N
σk

N−1∑
n=0

d[n] cos

(
πk(2n+ 1)

2N

)
, 0 ≤ k ≤ N − 1,

(1)
where σk = 1√

2
for k = 0 and σk = 1 for k 6= 0. The original

sequence d[n] can be recovered using the inverse DCT (IDCT)
defined as

d[n] =

√
2

N

N−1∑
k=0

σkD[k] cos

(
πk(2n+ 1)

2N

)
, 0 ≤ n ≤ N − 1.

(2)
The set of orthogonal cosine basis functions cos

(
πk(2n+1)

2N

)
of

the DCT (1) are a class of discrete Chebyshev polynomials [30].
A set of M FIBFs from the data d[n] can be obtained as [19],
[20]

d[n] =

√
2

N

N−1∑
k=0

σkD[k] cos

(
πk(2n+ 1)

2N

)
= d0 +

M∑
i=1

di[n],

(3)
where M << N , d0 =

√
2
N σ0D[0], d1[n] =√

2
N

∑K1

k=1 σkD[k] cos
(
πk(2n+1)

2N

)
, d2[n] =√

2
N

∑K2

k=(K1+1) σkD[k] cos
(
πk(2n+1)

2N

)
, . . . , dM [n] =√

2
N

∑N−1
k=(KM−1+1) σkD[k] cos

(
πk(2n+1)

2N

)
. In other words,

FIBFs are obtained by considering the rectangular window
Gi[k] based filtering as

di[n] =

√
2

N

N−1∑
k=1

σkD[k]Gi[k] cos

(
πk(2n+ 1)

2N

)
, (4)
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where

Gi[k] =

{
1, Ki−1 + 1 ≤ k ≤ Ki,

0, otherwise,
(5)

with K0 = 0, KM = N − 1 and i = 1, 2, . . . ,M . Based on the
requirements of the application under consideration, the desired
values of K1,K2, . . . ,KM−1 can be selected.

There are many applications where we are interested in the
estimation of trend τ [n] and variability v[n] from the data d[n]
such that

d[n] = τ [n] + v[n], (6)

where τ [n] =
√

2
N

∑N−1
k=0 σkD[k]G[k] cos

(
πk(2n+1)

2N

)
and

v[n] =
√

2
N

∑N−1
k=0 σkD[k]H[k] cos

(
πk(2n+1)

2N

)
; G[k] and H[k]

are the lowpass and highpass filters, respectively, which are
defined as

G[k] =

{
1, 0 ≤ k ≤ K,
0, K + 1 ≤ k ≤ N − 1,

and H[k] = 1−G[k],

(7)
where various values of K can be selected to obtain the desired
trends and variabilities in respective time-scales. From (3) and
(6), it can be shown that

∑N−1
n=0 d[n] = Nd0 =

∑N−1
n=0 τ [n] as∑N−1

n=0 v[n] =
∑N−1
n=0 di[n] = 0,∀ i 6= 0. For example, if d[n]

is the data of COVID-19 which represents cases/deaths per day,
then sum of the estimated trend represents the total number of
cases/deaths. The fast Fourier transform (FFT) algorithm [31]
can be used to efficiently implement FDM based on the DCT.

The main problem with FDM is the use of rectangular
windows that causes unnecessary fluctuations/oscillations in the
estimated trends due to the presence of sharp discontinuities at
both ends. These fluctuations create problems in the modeling
and prediction of a physical phenomenon such as the COVID-
19 pandemic. To overcome this issue, we propose the FGD and
other similar techniques.

III. PROPOSED METHODS

In this section, we present the FGD and FBD and also provide
some other suggestions for designing the filters suitable for the
representation and analysis of one (or two) dimensional signals
(or images). Before discussing these, we propose a generalized
algorithm for designing a perfect reconstruction (PR) filterbank
(PRFB) and various methods of selecting the appropriate cut-off
frequencies.

A. Perfect Reconstruction Filterbank

In this subsection, we propose a PRFB based on Theorem 1
as follows.

Theorem 1. If there is a set of M ≥ 1 lowpass
filters {G1[k], G2[k], . . . , GM [k]} having cut-off frequencies
{fc1 , fc2 , . . . , fcM }, respectively, such that 0 < fc1 < fc2 <
· · · < fcM < Fs/2. Then, there exists a set of (M + 1) filters
{H1[k], H2[k], . . . ,HM [k], HM+1[k]} that form a PRFB, i.e.,

M+1∑
`=1

H`[k] = 1, ∀ k, (8)

and are derived from {G1[k], . . . , GM [k]} as

H1[k] = G1[k],

H2[k] = (1−G1[k])G2[k],

H3[k] = (1−G1[k])(1−G2[k])G3[k],

... (9)
HM [k] = (1−G1[k])(1−G2[k]) . . . (1−GM−1[k])GM [k],

HM+1[k] = (1−G1[k])(1−G2[k]) . . . (1−GM−1[k])×
(1−GM [k]),

where H1[k] is a lowpass (LP) filter, H2[k], H3[k], . . . ,HM [k]
are bandpass (BP) filters, and HM+1[k] is a highpass (HP) filter.

Proof. Refer to top-left of Figure 1(a) for G`[k] and bottom-left
of Figure 1(a) for H`[k].

Base Cases: (i) For M = 1, theorem is true because

H1[k] = G1[k],

H2[k] = 1−G1[k],

=⇒ H2[k] +H1[k] = 1,

and (ii) for M = 2, theorem is true because

H1[k] = G1[k],

H2[k] = (1−G1[k])G2[k],

H3[k] = (1−G1[k])(1−G2[k]),

=⇒ H3[k] +H2[k] +H1[k] = 1.

Generic Case: Considering now a generic value for M , the
proof of this theorem can be easily obtained by addition of filters
(9) in reverse order as follows:

HM+1[k] +HM [k] = (1−G1[k])(1−G2[k]) . . .

(1−GM−1[k]),
HM+1[k] +HM [k] +HM−1[k] = (1−G1[k])(1−G2[k]) . . .

(1−GM−2[k]),
...

HM+1[k] + · · ·+H2[k] = (1−G1[k]),

HM+1[k] + · · ·+H2[k] +H1[k] = 1, ∀ k. (10)

The last step follows from (9) since H1[k] = G1[k]. Thus, the
theorem is true for all integers M ≥ 1, which completes the
proof.

Remark. The PRFB presented in (8) and (9) is generic in
nature, although it has been used in this work for the design of
one dimensional discrete zero-phase filterbank. In other words,
G1, G2, . . . , GM can be any complex-valued multidimensional
(discrete or continuous) functions, for which a set of PR functions
H1, H2, . . . ,HM , HM+1 can be obtained.

One can observe that
∑M+1
`=1 H`[k] = 1, ∀ k ⇐⇒∑M+1

`=1 h`[n] = δ[n] where h`[n] = IDCT(H`[k]), is the impulse
response of the `-th filter. Using the filters H`[k], as shown in
Figure 2 and Figure 3, we obtain the decomposition of a signal
d[n] as:

d[n] =

M+1∑
`=1

d`[n], (11)
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(a) (b)

Fig. 1. A PRFB (8) obtained from (9) with Fs = 1 using the generalized Gaussian (a) LP filters {G`}9`=1 (top) and corresponding {H`}10`=1 (bottom), and (b)
HP filters {G`}9`=1 (top) and corresponding {H`}10`=1 (bottom).

where the components {d`[n] = IDCT(D[k]H`[k]), 1 ≤ ` ≤
M + 1} are generally not orthogonal. Hence, the energy of a
signal is not preserved in this decomposition.

h1[n]

h2[n]

hM+1[n]

d[n] d[n]

d1[n]

d2[n]

...

dM+1[n]

Fig. 2. The proposed PRFB such that
∑M+1

`=1 h`[n] = δ[n].

H1[k]

H2[k]

HM+1[k]

d[n] d[n]

d1[n]

d2[n]

...

dM+1[n]

DCT

IDCT

IDCT

IDCT

Fig. 3. An efficient implementation of the proposed PRFB using DCT, where
DFT can also be used. The PR is obtained by ensuring

∑M+1
i=1 Hi[k] = 1 ∀k.

Since Gram-Schmidt orthogonalization method (GSOM) is
a well known process for orthogonalizing a set of linearly
independent (LI) vectors in an inner product space, it can be
used to achieve orthogonality among the signal components. Let
D = {d1[n], d2[n], ..., dM+1[n]} be a set of (M +1) LI vectors.
A set of orthogonal vectors S = {s1[n], s2[n], ..., sM+1[n]}
spanning the same space can be generated using GSOM as

follows:

sk[n] = dk[n]−
k−1∑
i=1

ckisi[n]⇔


d1[n]
d2[n]

...
dM+1[n]

 =


1 0 . . . 0
c21 1 . . . 0

...
...

. . .
...

c(M+1)1 c(M+1)2 . . . 1




s1[n]
s2[n]

...
sM+1[n]

 , (12)

where the inner product 〈sk[n], si[n]〉 = 0, for k 6= i and
k = 1, 2, . . . ,M + 1. The coefficients cki are obtained as
cki =

∑N−1
n=0 dk[n]si[n]/

∑N−1
n=0 s

2
i [n] for i = 1, 2, . . . ,M +

1, where k ≥ i and N is the length of these signals. By
considering the sum of all the (M + 1) equations of (12), we
obtain

M+1∑
i=1

di[n] =

M+1∑
i=1

cisi[n], (13)

where ci =
∑M+1
k=i cki, which is the sum of the i-th col-

umn of the coefficient matrix of (12). Finally, we obtain a
decomposition of signal d[n] into a set of orthogonal FIBFs
{d̃1[n], d̃2[n], ..., d̃M+1[n]} with PR as

d[n] =

M+1∑
i=1

d̃i[n], where d̃i[n] = cisi[n]. (14)

Corollary 1.1. Let us consider a set of M number of high-
pass filters {G1[k], G2[k], . . . , GM [k]} with cut-off frequencies
{fc1 , fc2 , . . . , fcM } such that 0 < fcM · · · < fc2 < fc1 < Fs/2.
Then, the set of filters represented in (8) form a PRFB, where
H1[k] is a HP filter, H2[k], H3[k], . . . ,HM [k] are BP filters, and
HM+1[k] is a LP filter.

For an example, one may refer to Figure 1(b).

B. Selection of Cut-off Frequencies

The strength and utility of signal decomposition techniques
also depends on the right choice of cut-off frequencies. The
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basic idea is to divide the entire frequency range [0, Fs/2] into
a set of desired bands. Let {fc1 , fc2 , . . . , fcM } be a set of cut-
off frequencies such that 0 < fc1 < fc2 < · · · < fcM for a set
of frequency bands {[0, fc1), [fc1 , fc2), . . . , [fcM−1

, fcM ]} where
fcM = Fs/2. We can adopt the following strategies for selecting
the cut-off frequencies:

1) Equal resonance bands: The quality factor (Q-factor) is de-
fined as the ratio of centre frequency (cfi = (fci+1

+fci)/2)
to bandwidth (BW), i.e.,

Q = cfi/(fci+1
− fci),

=
1

2

(
fci+1

+ fci
fci+1

− fci

)
,

=⇒ fci =

(
2Q− 1

2Q+ 1

)
fci+1

, Q >
1

2
, (15)

for i = M − 1, . . . , 2, 1. The dyadic cut-off frequencies
correspond to Q = 1.5. Depending on the problem under
analysis, we can select the desired value of Q. The greater
the value of Q (i.e., high resonance–more sustained oscil-
lations), the narrower the band. Further, we can vary the
value of Q for each band and can obtain variable Q-factor
decomposition.

2) p-adic frequency bands: We can divide the frequency range
[0, Fs/2] as fcM−i

= Fs

2 ×
1
pi , where p > 1 is a real number,

and i = 0, 1, 2, 3, . . . ,M − 1. Here, p = 2 corresponds to a
dyadic filterbank.

3) Uniform frequency bands: In this case, we can simply divide
the [0, Fs/2] into a set of M bands with equal bandwidth,
i.e., fci = fci−1 + [Fs/(2M)] where fc0 = 0, and i =
1, 2, . . . ,M .

4) User-defined bands: In certain applications, the user can be
given the flexibility to select the desired number of bands
and their cut-off frequencies {fc1 , fc2 , . . . , fcM }. If there
is any prior knowledge about the spectral content of the
signal, the user can utilize that knowledge to select the cut-
off frequencies.

5) Signal-dependent adaptive bands: The most popular tech-
nique for the selection of frequency bands is to extract
the cut-off frequencies from the signal itself. Such algo-
rithms exhibit two desirable properties: adaptive and signal-
dependent. There are multiple ways of achieving this, such
as (i) we can obtain the frequencies corresponding to peaks
and/or troughs of the magnitude spectrum of a signal using
the Fourier transform and decide the cut-off frequencies, (ii)
obtaining equal energy bands using the Fourier spectrum,
or (iii) obtain Fourier intrinsic band functions [19] using
low-to-high or high-to-low frequency scans.

C. Proposed Filtering Strategies

1) Gaussian Filters: The impulse response of the Gaussian
lowpass filter (GLPF) is defined as

g(t) =
1

σ
√
2π

exp

(
−t2

2σ2

)
, (16)

where σ is the standard deviation (SD). The Gaussian filter (16)
can be represented in the Fourier domain as

G(f) = exp
(
−2π2σ2f2

)
= exp

(
−f2

2σ̂2

)
, (17)

where σ̂ is the SD in frequency domain, and the time-bandwidth
product, σ σ̂ = 1

2π , which is optimal (minimum) for the Gaus-
sian function. For all other functions, σ σ̂ > 1

2π . The cut-off
frequency fc at which G(fc) = 1√

a
is obtained from (17) as

fc = σ̂
√
ln(a) for a > 1. It is half power or −3 dB bandwidth

for a = 2. The lowpass Gaussian filter (LP-GF) (17) and the
corresponding highpass Gaussian filter (HP-GF) H(f) can be
written in terms of the cut-off frequency fc as

G(f) = exp

(
−
(
f

fc

)2

ln
(√
a
))

and H(f) = 1−G(f),

(18)
respectively. In order to obtain the same fc for both the LPF and
HPF, we use a = 4 which corresponds to −6 dB bandwidth. With
a sampling frequency of Fs, the cut-off frequency must satisfy
the relation fc ≤ Fs/2 in order to obtain the discrete counterpart
of this filter.

Therefore, we obtain the proposed FGD by using the following
LPF and HPF in (7):

G[k] = exp

(
−
(
k

kc

)2

ln
(√
a
))

and H[k] = 1−G[k],

(19)
respectively, with k = 0, 1, . . . , N−1, and kc = 2fc(N−1)/Fs,
where Fs is the sampling frequency. For example, Figure 4 (top)
shows four pairs of the Gaussian LPF and HPF with cut-off fre-
quencies fc1 = Fs/4, fc2 = Fs/8, fc3 = Fs/16, fc4 = Fs/32,
Fs = 1. Thus, the maximum normalized frequency is 0.5, which
corresponds to Fs/2. The Gaussian LPF and HPF obtained using
(19) provide good resolution/separation in the low-frequency
band and poor resolution/roll-off in the high-frequency band.
This is required in many of the applications, wherein most of
the energy is concentrated in the low frequencies. However, if an
application requires good resolution in the high-frequency band,
we can use the following filters

G[k] = 1−H[k], H[k] = exp

(
−
(
N − 1− k
N − 1− kc

)2

ln
(√
a
))

,

(20)
which provides poor resolution/roll-off in the low frequency
band. For example, these LPF and HPF are shown in Figure
4 (bottom) with cut-off frequencies fc1 = Fs/4, fc2 = 3Fs/8,
fc3 = 7Fs/16, and fc4 = 15Fs/32. Since all these filter are
zero-phase, filter coefficients are non-negative real numbers, i.e.,
G[k] ∈ R≥0 (or R+) and H[k] ∈ R≥0.

We can use the generalized Gaussian filter to resolve the poor
roll-off of the filters discussed in (19) and (20). The generalized
Gaussian LPF (GG-LPF) can be defined as

G(f) = exp

(
−
(
|f − µ|
α

)m)
, (21)

where both the scale parameter α and the shape parameter m
are positive real numbers, while the location parameter µ ∈ R.
The GG-LPF (21) and GG-HPF with µ = 0 can be written as

G(f) = exp

(
−
∣∣∣∣ ffc
∣∣∣∣m ln

(√
a
))
, (22)

G[k] = exp

(
−
∣∣∣∣ kkc
∣∣∣∣m ln

(√
a
))

and H[k] = 1−G[k].

(23)
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Algorithm 1: Proposed FGD algorithms to obtain FIBFs
di[n] from data d[n] such that d[n] =

∑M
i=1 di[n] + τ [n]

in order of: (OPTION-A) highest to lowest frequency
components, and (OPTION-B) lowest to highest fre-
quency components. In these algorithms, we have used
the normalized sampling frequency, i.e, Fs = 1, which
can be replaced by the actual value, as per the application.

% OPTION-A, set desired
cut-off frequencies s.t.;

% 0 < fcM < · · · < fc2 <
fc1 < Fs/2;
Fs = 1; N = length(d[n]);
kc1 = 2fc1(N − 1)/Fs;
D[k] = DCT(d[n]) from (1);
Obtain LP-GF G1[k] with kc1

from (19);
T1[k] = D[k]G1[k];
D1[k] = D[k](1−G1[k]);
d1[n] = IDCT(D1[k]) from

(2);
for i = 2 to M do

kci = 2fci(N − 1)/Fs;
Obtain LP-GF Gi[k] with
kci from (19);
Ti[k] = Ti−1[k]Gi[k];
Di[k] =
Ti−1[k](1−Gi[k]);
di[n] = IDCT(Di[k])

from (2);

τ [n] = IDCT(TM [k]);

% OPTION-B, set desired %
cut-off frequencies s.t.;

% 0 < fc1 < fc2 < · · · <
fcM < Fs/2;
Fs = 1; N = length(d[n]);
kc1 = 2fc1(N − 1)/Fs;
D[k] = DCT(d[n]) from (1);
Obtain LP-GF G1[k] with kc1

from (19);
T1[k] = D[k]G1[k];
D1[k] = D[k](1−G1[k]);
τ [n] = IDCT(T1[k]) from (2);
for i = 2 to M do

kci = 2fci(N − 1)/Fs;
Obtain LP-GF Gi[k] with
kci from (19);
Ti[k] = Di−1[k]Gi[k];
Di[k] =
Di−1[k](1−Gi[k]);
di−1[n] = IDCT(Ti[k])
from (2);

dM [n] = IDCT(DM [k]);

A set of nine GG-LPF (with normalized frequencies
fc = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, varying
m = 8, 16, 24, 32, 40, 48, 56, 64, 72 and a = 2) and a set of
nine GG-HPF are shown in top-left and top-right of Figure 1,
respectively.

Let fs and Gs be the stopband edge frequency and stopband
attenuation (SBA) of the GG-LPF, respectively, where fs > fc,
Gs < 1, and the transition bandwidth is (fs − fc) Hz. We can
select the desired design parameters fc, fs, and Gs (e.g., Gs =
10−6 corresponds to −120 dB) and obtain the value of shape
parameter m as

G(fs) = Gs = exp

(
−
∣∣∣∣fsfc
∣∣∣∣m ln

(√
a
))
, (24)

and thus m = log

(
− ln(Gs)

ln (
√
a)

)/
log

(∣∣∣∣fsfc
∣∣∣∣). (25)

The proposed FGD is summarized in Algorithm 1 (OPTION-
A), which decomposes data d[n] such that

d[n] =

M∑
i=1

di[n] + τ [n], (26)

where τ [n] is the trend of data d[n]. The FIBFs and trend
{d1[n], d2[n], . . . , dM [n], τ [n]} are arranged in the order of
highest to lowest frequency components. If we add all Ti[k] and
Di[k] in Algorithm 1 (OPTION-A), we obtain

∑M
i=1(Ti[k] +

Di[k]) = D[k] +
∑M−1
i=1 Ti[k], which implies that D[k] =

TM [k] +
∑M
i=1Di[k], where trend TM [k] = TM−1[k]GM [k] =

D[k]G1[k] . . . GM [k], i.e., the trend is obtained by filtering the
data from all the filters successively. Similarly, there is an another
version of the GFD, Algorithm 1 (OPTION-B) that produces
trend and FIBFs {τ [n], d1[n], d2[n], . . . , dM [n]}, which are ar-
ranged in order of the lowest to highest frequency components.

2) Butterworth Filter: It is designed to obtain maximally
flat (i.e., no ripples) frequency response in the passband [32].
The zero-phase lowpass Butterworth filter (LPBF) and highpass
Butterworth filter (HPBF) of p-th order can be defined as

B(f) =
1√

1 +
(
f
fc

)2p
(a− 1)

, fc = (a− 1)
1
2p , a > 1,

and C(f) = 1−B(f), (27)

respectively, where the half-power (−3 dB) bandwidth of the
filter corresponds to a = 2. For smaller values of p, the cut-
off is less sharp. As p approaches infinity, the filter response
approaches a rectangle function, wherein frequencies below fc
will be passed, while frequencies above fc will be suppressed.

3) Exponentially decaying filter: If we consider a function
and its FT as

g(t) =

(
1

π

α

α2 + t2

)
, G(f) = exp(−α |2πf |), α ≥ 0, (28)

then we can define LPF and HPF (similar to FGD (18)) as below:

G(f) = exp

(
−
∣∣∣∣ ffc
∣∣∣∣ ln (√a)) , (29)

and H(f) = 1−G(f), fc =
1

2πα
ln
(√
a
)
, (30)

respectively. In order to obtain the same fc for both the LP and
HP filters, we use a = 4 which corresponds to −6 dB bandwidth.

4) Raised-cosine filter: Raised-cosine filters are generally
proposed as popular alternatives to rectangular filters because
they offer a faster decay of the impulse response, thereby, making
it more compact. An LP raised cosine filter is expressed as

G(f) =


1, |f | ≤ fc(1− α),
1
2

[
1 + cos

(
π(|f |−fc(1−α))

2αfc

)]
,

fc(1 + α) < |f | ≤ fc(1 + α),

0, otherwise,
(31)

H(f) = 1−G(f), (32)

where the factor α ∈ [0, 1] controls the transition bandwidth,
with smaller α providing sharper cut-off and vice-a-versa. The
magnitude of the filter at the cut-off frequency fc is 0.5, which
corresponds to −6 dB.

For designing a filterbank with multiple cut-off frequencies
fc1 , fc2 , . . . , fcM , it is desirable that two consecutive transition
bands do not overlap, i.e., αfci +αfci+1

< fci+1
− fci , 1 ≤ i <

M . Hence, we must choose α = mini

(
fci+1

−fci
fci+1

+fci

)
.
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Fig. 4. Four pairs of the Gaussian lowpass (LP) and highpass (HP) filters with Fs = 1 and cut-off frequencies: (left) fc1 = Fs/4, fc2 = Fs/8, fc3 = Fs/16,
fc4 = Fs/32; (right) fc1 = Fs/4, fc2 = 3Fs/8, fc3 = 7Fs/16, fc4 = 15Fs/32.

5) Dual of an exponential filter: We consider m times con-
volution of the function α

2 exp(−α|t|) and its FT as

g(t) =
(α
2
exp(−α|t|) ∗ α

2
exp(−α|t|) ∗ · · · ∗ α

2
exp(−α|t|)

)
,

G(f) =

(
α2

α2 + 4π2f2

)m
, α > 0, (33)

where (∗) denotes the convolution operation and m ≥ 1 is a free
parameter which determines the roll-off of the filter. Therefore,
similar to FGD (27), we can define LPF and HPF as

G(f) =

 1

1 +
(
f
fc

)2 (
a1/2m − 1

)

m

, H(f) = 1−G(f),

fc =
α
√

(a1/2m − 1)

2π
. (34)

In order to obtain the same fc for both the LP and HP filters,
we use a = 4 which corresponds to −6 dB bandwidth. Using
the central limit theorem, we observe that filter G(f) defined in
(34) becomes a Gaussian filter for large values of m.

6) Other desired filters: Motivated by the generalized Gaus-
sian filter (21) and Butterworth (27), we hereby define the
following generalized filters as

G1(f) =
1

1 +
(
|f−µ|
σ

)m , G2(f) =
2

1 + exp
(
|f−µ|
σ

)m (35)

where µ, σ, and m are location, scale and shape parameters,
respectively. The filters defined in (35), with µ = 0, can be
written as

G1(f) =
1

1 +
∣∣∣ ffc ∣∣∣m (

√
a− 1)

,

and G2(f) =
2

1 + exp
(∣∣∣ ffc ∣∣∣m ln(2

√
a− 1)

) , (36)

respectively. Similar to a Butterworth filter, these filters are
maximally flat. This can be easily shown by considering any
even value of m, i.e., m = 2p and p ∈ Z+.

The filters defined in (18), (30) and (34) do not have ripples in
either the time domain or the frequency domain. Hence, filters
obtained by their extension in the 2-D space (two-dimensional
space) can be used for image decomposition without any ringing
artifacts.

D. Fourier–Hilbert spectrum and Narrow–band Fourier repre-
sentation

The analytic signal representation of the decomposition (14)
can be defined as

z[n] =

M+1∑
i=1

(
d̃i[n] + jd̃hi[n]

)
=

M+1∑
i=1

ai[n] exp(jφi[n]), (37)

where ai[n] =

√(
d̃i[n]

)2
+
(
d̃hi[n]

)2
, φi[n] =

atan2
(
d̃hi[n], d̃i[n]

)
, and d̃hi[n] is the discrete Hilbert

transform (HT) of d̃i[n] obtained using the FFT algorithm.
The function atan2() returns the principal value of the
angle in the interval (−π, π] by considering the signs of
both arguments to determine the quadrant of the result.
The frequency ωi[n] = 2πfi[n] can be computed from
φi[n] after phase unwrapping [33] using the forward finite
difference, ωi[n] = (φi[n + 1] − φi[n]), or backward finite
difference, ωi[n] = (φi[n]−φi[n−]), or central finite difference,
ωi[n] = (φi[n + 1] − φi[n − 1])/2. The Fourier–Hilbert
spectrum (FHS) is obtained by plotting

{
n, fi[n], a

2
i [n]/2

}
for

1 ≤ i ≤ M + 1, and the energy Ed of a zero-mean signal d[n]
is preserved in the proposed decomposition as

Ed =

N−1∑
n=0

d2[n] =

M+1∑
i=1

N−1∑
n=0

1

2

(
d̃i[n] + d̃hi[n]

)2
. (38)

If d[n] is not a zero-mean signal, then computation of the energy
of signal in (38) gets modified as

Ed =

N−1∑
n=0

d2[n] =

M+1∑
i=1

N−1∑
n=0

1

2

(
d̃i[n] + d̃hi[n]

)2
+
Edc
2
, (39)

where Edc is the energy corresponding to mean or DC com-
ponent of the signal. This modification is needed because the
Hilbert transform of a constant is zero, thus, it kills the DC
component of signal.

The narrow–band inverse Fourier transform (NBIFT) or
narrow–band Fourier representation (NBFR) generates narrow–
band Fourier spectrum by utilizing a large number of uniform
bands (for example, 200 uniform bands in Figure 5 (vii))
and then plotting these bands in the time-frequency plane as
{n, fi, d̃2i [n]} for 1 ≤ i ≤ M + 1, where frequency resolution
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is (Fs/2(M + 1)) and fi = i × [(Fs/2(M + 1))]. The signal
energy Ed is preserved in the proposed decomposition as

Ed =

N−1∑
n=0

d2[n] =

M+1∑
i=1

N−1∑
n=0

(
d̃i[n]

)2
. (40)

The NBFR can be obtained by using any of the filtering schemes
discussed in the previous section while considering uniform
frequency bands.

E. The 2D-FGD for Images

For the decomposition of two dimensional (2D) signals (e.g.,
images), we design the 2D generalized Gaussian zero-phase LPF
and HPF using the outer product as follows:

G[k, l] = exp

(
−
(
k

kc

)p
ln
(√
a
))

exp

(
−
(
l

lc

)q
ln
(√
a
))

,

and H[k, l] = 1−G[k, l], (41)

where k = 0, 1, 2, . . . ,M − 1, l = 0, 1, 2, . . . , N − 1, and
a = 2 corresponds to −6 dB bandwidth. A higher value of free
parameters p and q provides a sharper roll-off.

The two-dimensional DCT-2 and inverse DCT-2 pairs of a
sequence, d[m,n], are defined as [31]

D[k, l] =

M−1∑
m=0

N−1∑
n=0

σkσld[m,n] cos

(
πk(2m+ 1)

2M

)
× cos

(
πl(2n+ 1)

2N

)
, (42)

and

d[m,n] =

M−1∑
k=0

N−1∑
l=0

σkσlD[k, l] cos

(
πk(2m+ 1)

2M

)
× cos

(
πl(2n+ 1)

2N

)
, (43)

respectively. Using the proposed methodology, we can decom-
pose an image d[m,n] into a set of 2D-FIBFs as

d[m,n] =

M∑
i=1

di[m,n], (44)

where di[m,n] are obtained using the filter Gi[k, l] defined in
(41), i.e.,

di[m,n] =

M−1∑
k=0

N−1∑
l=0

σkσlD[k, l]Gi[k, l] cos

(
πk(2m+ 1)

2M

)
× cos

(
πl(2n+ 1)

2N

)
. (45)

IV. RESULTS AND DISCUSSION

In this section, we present many applications of the proposed
methodology and compare the results with the existing state-
of-the-art techniques. The generalized Gaussian filterbanks have
been used to obtain results with the proposed methodology. The
results obtained by the generalized Butterworth, raised cosine,
and the other defined filer banks are mathematically different, but
they visually look similar. Therefore, these plots are not included
in the simulation results.

A. Time-frequency analysis

In this subsection, we consider a synthetic signal s(t) in the
time interval 0 ≤ t ≤ 10 as

s(t) = x(t) + x(10− t), (46)

where x(t) = sin
(
2π500t+ 40πt2

)
+ sin

(
3πt3

)
+

2 sin(2π112.5t) + sin(2π500t) + sin(2π600t) + sin(2π700t) +
sin(2π800t), and sampling frequency Fs = 2000 Hz.

In order to demonstrate the performance of the proposed
methodology, we compare it with the existing state-of-the-art
approaches for signal decomposition and time-frequency anal-
ysis. A comparative time-frequency analysis of the signal y(t)
is shown in Figure 5 where: (i) Synthetic signal (first-row top-
left) and its Fourier spectrum (first-row bottom-left), (ii) EMD
Hilbert spectrum (first-row right-side), (iii) Continuous wavelet
transform (CWT) Scalogram (second-row left-side), (iv) Wavelet
synchrosqueezed transform (WSST) (second-row right-side), (v)
STFT (third-row left-side), (vi) Fourier synchrosqueezed trans-
form (FSST) (third-row right-side), (vii) Proposed narrowband
Fourier representation (NBFR) (fourth-row left-side), and (viii)
Proposed Fourier-Hilbert spectrum (FHS) (fourth-row right-
side). We have used 200 uniform bands to obtain the results
with proposed method. The EMD fails to show the embedded
structures of the signal. The CWT and WSST reveal the low-
frequency structures but fail for high-frequency structures. The
STFT and FSST reveal the embedded structures; however, there
is visible energy spreading in the time-frequency plane. The
time-frequency representations (TFRs) obtained by the proposed
methods NBFR and FHS are able to reveal the real structures
of the considered signal with minimum energy spreading in the
time-frequency plane.

B. Trend and variability estimation for prediction of COVID-19
pandemic

COVID-19 is an infectious pulmonary diseases which origi-
nated in Wuhan, China in 2019 and spread to more than 180
countries. It led to more than 4 million deaths by July 2021
and pushed millions into poverty. In order to take timely and
effective decisions, it became important to model and forecast
the prevalence and incidence of the disease. In the literature,
various modeling schemes have been used for the same such as
an auto-regressive integrated moving average (ARIMA) model
[34], susceptible-infected-removed (SIR) model [35], composite
Gaussian growth model [36], composite Logistic growth model
[37], and dictionary learning based models [38]. In this work,
we first estimated the trend of the time series data using the
proposed FGD and modeled the same using an ARIMA model
for forecasting. The obtained model is then used for forecasting.
ARIMA(p, d, q) model for a non-stationary signal, x(t), can be
expressed as follows:

s(t) = x(t)− x(t− 1),

s(t)− α1s(t− 1)− · · · − αps(t− p)
= e(t)− β1e(t− 1)− · · · − βqe(t− q). (47)

In the first step, differencing of the non-stationary signal x(t)
is used to obtain a stationary signal s(t). This step might be
repeated d times to obtain a stationary output which can then
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Fig. 5. A comparative time-frequency analysis: (i) Synthetic signal (first-row top-left) and its Fourier spectrum (first-row bottom-left), (ii) EMD Hilbert spectrum
(first-row right-side), (iii) CWT Scalogram (second-row left-side), (iv) Wavelet synchrosqueezed transform (second-row right-side), (v) STFT (third-row left-side), (vi)
Fourier synchrosqueezed transform (third-row right-side), (vii) Proposed narrowband Fourier representation (fourth-row left-side), and (viii) Proposed Fourier-Hilbert
spectrum (fourth-row right-side).
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be modelled using an ARMA model (47), where the AR model
coefficients are represented by αk, MA coefficients are denoted
by βk, and e(t) is the error signal.

The time-series data modeled and predicted included the daily
infected cases, cumulative recovered data, and cumulative death
cases from India. Figure 6 presents two week forecast from July
1, 2021 to July 14, 2021 of daily COVID-19 infections (left),
cumulative death cases (middle), and cumulative recovered cases
(right) for India using the proposed method considering data
from February 15, 2020 to June 30, 2021 [39]. Figure 7 shows
actual data and the estimated values as obtained using FGD
and ARIMA for daily COVID-19 infections (left), death cases
(middle), and recovered cases (right) for India considering data
from February 15, 2020 to June 30, 2021.

C. El Centro Earthquake time series Analysis

In May 1940, El Centro (or Imperial Valley) earthquake
occurred in southern California with a magnitude of 7.1, killing
nine people and causing damage to about 80 percent of the
buildings. The irrigation and the railroad systems over the valley
also suffered heavy damage. The towns of Imperial, Brawley,
Calexico, El Centro, and Mexicali witnessed substantial losses
of property. The shock also resulted in the formation of a surface
rupture of 64 km on the Imperial Fault.

In this example, we consider the time-frequency-energy (TFE)
estimation of the El Centro Earthquake time series [40]. The
East-West, North-South, and Up-Down recordings from the
earthquake, sampled at 50 Hz, and the corresponding Fourier
spectrum are depicted in Fig. 8, 9 and 10, respectively. They
can be categorized as nonlinear and nonstationary. From the
power spectral densities (PSDs) of East-West and North-South
recordings, it is observed that the majority of the energy is
present in the frequency range 0–10 Hz. Moreover, from the PSD
of Up-Down recordings, one can observe that energies are higher
around 8 Hz and are significantly spread over 0–25 Hz. These
frequencies are critical in the design of various structures. The
TFE distributions of these recordings obtained by the proposed
methods, namely narrowband Fourier representation (NBFR) and
Fourier-Hilbert spectrum (FHS) with 50 uniform bands, are also
shown in the Figures 8, 9, and 10. The TFE distributions of
East-West and North-South indicate that the maximum energy
concentration in the signal is around 2 seconds and 1.7 Hz, and
Up-Down indicates an energy concentration of around 2 seconds
and 8 Hz. These TFE distributions provide details of how the
different waves arrive from the epical center to the recording
station, e.g., the compression waves of small amplitude, but
higher frequency range of 10–20 Hz, the shear and surface waves
of strongest amplitude and lower frequency range of below 5 Hz
which does most of the damage, and other body shear waves
which are present over the full duration of the data span.

D. Time-frequency analysis of Gravitation wave GW150914

In 1916, Albert Einstein predicted the existence of gravitation
waves (GWs) using the general theory of relativity. These
waves are ripples in the space-time continuum that travel at
the speed of light outward from a source. After the prediction
of almost 100 years, the laser interferometer gravitational-wave
observatory (LIGO) captured the first transient Gravitational

wave GW150914 on September 14, 2015, at 09:50:45 UTC. This
wave was generated by the merger of two black holes nearly
1.3 billion light-years away. In the history of human life, the
GW150914 event marks one of the greatest scientific discoveries
and opened the floodgates for probing cataclysmic events in the
universe, such as cosmic inflation and the mergers of binary
black holes or neutron stars.

We present the time-frequency representation (TFR) of the
first GW wave generated by a binary black hole merger event
[41]. The GW150914 data has been downloaded from the GW
open science center [42]. Instantaneous frequency (IF) is used
to calculate many parameters of a recorded event, such as
separation, primary mass, secondary mass, total mass, chirp
mass, velocity, luminosity distance, and effective spin of binary
black hole merger. Therefore, an accurate estimation of IF is of
paramount importance. The amplitude strain of GW150914 event
increases to the peak value of 1.0×10−21, and the frequency of
the wave sweeps upwards from 35 Hz to 250 Hz [41]. Figure 11
presents (a) LIGO Hanford (H1) GW strain amplitude obtained
by numerical relativity model without filter (left top) and its
Fourier spectrum (left bottom), and (b) Hilbert spectrum without
any decomposition which has many unwanted fluctuations in the
estimated IF. The GW150914 data decomposition and TFR are
presented in Figure 12 (a) a set of six IMFs and residue generated
by EMD algorithm (left top), (b) a set of six FIBFs [FIBF-1: 0–
10 Hz, FIBF-2: 10–350 Hz, FIBF-3: 350–500 Hz, FIBF-4: 500–
700 Hz, FIBF-5: 700–4096 Hz, FIBF-6: 4096–8192 Hz] obtained
from the proposed FGD (right top), (c) EMD Hilbert spectrum
(left bottom), and (d) proposed FGD Hilbert spectrum (right
bottom) where unwanted fluctuations are suppressed significantly
in IF estimation. Thus, the TFR obtained by the proposed method
reveals the real nature of the GW event and also provides a better
IF estimation than the EMD algorithm.

E. Image decomposition

We now extend our results for the proposed method by
considering 2D data or images. Image decomposition using the
proposed scheme is depicted in Fig. 13 with (a) Four isotropic
Gaussian 2D PR filters (top-left) LP–LP, (top-right) LP–BP1,
BP1–LP, BP1–BP1, (bottom-left) LP–BP2, BP2–LP, BP2–BP2,
and (bottom-right) LP–HP, HP–LP, HP–HP filters with Fs = 1
and cut-off frequencies: LP: [0–Fs/64], BP1: [Fs/64–Fs/16],
BP2: [Fs/16–Fs/4], and HP: [Fs/4–Fs/2]; (b) Original image,
FIBF-1 to FIBF-4 corresponding to four filters, and recovered
image obtained by sum of all FIBFs. The filters have been
designed in such a manner that the BP filters would appear
as rings in the 2D frequency plot. The LP–LP considers only
the low-frequency components present across both the directions
(horizontal and vertical), i.e., it would reject all the frequency
components in the horizontal or vertical direction, lying above
the cut-off frequency Fs/64. Further, a combination of the first
two filters would result in LP–LP with a higher cut-off frequency
of the BP1, i.e., Fs/16 in the above example. Hence, the second
filter captures all the frequency components in the image, where
either or both the frequencies (horizontal and/or vertical) lie
between the two cut-off frequencies. The last filter ensures that
at least one of the frequencies is high. The number of filters
and the corresponding cut-off frequencies may be chosen as per
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Fig. 6. Two week forecast from July 1, 2021 to July 14, 2021 of (left) daily COVID-19 infections, (middle) cumulative death cases, and (right) cumulative recovered
cases for India using the proposed method considering data from February 15, 2020 to June 30, 2021.
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Fig. 7. Actual data and the estimated values as obtained using FGD and ARIMA for (left) daily COVID-19 infections, (middle) death cases, and (right) recovered
cases for India considering data from February 15, 2020 to June 30, 2021.
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Fig. 8. The El Centro East-West earthquake time series (top left), Fourier spectrum (bottom left), proposed narrowband Fourier spectrum (top right) and Fourier–
Hilbert spectrum (bottom right).

the application. Perfect reconstruction is ensured in all cases,
irrespective of the choice of cut-off frequencies or the filtering
method.

V. CONCLUSION

This work presents a perfect reconstruction filterbank repre-
sentation with the flexibility to choose cut-off frequencies as
per pre-defined schemes, such as uniform or dyadic frequency
bands, and also using automated algorithms deriving significant
frequencies from the Fourier spectrum. While different filtering
schemes have been provided in this work, a generic procedure
has been derived to ensure perfect reconstruction in all the cases.
The synthesis stage is reduced to the simple addition of the
signal components. Moreover, the proposed approach preserves

the energy of the signals in the decomposition, which is vital
in the time-frequency-energy analysis of many physical phe-
nomena. Specifically, the adaptive Fourier–Gauss decomposition
(FGD) and adaptive Fourier–Butterworth decomposition (FBD)
have been proposed as robust signal processing techniques for
nonlinear and nonstationary time series acquired from the real
world. These methods allow for appropriate separation of signal
components, thereby providing a method to extract specific
desirable components and remove noises. The strength of the
proposed techniques is validated across many synthetic as well
as real-life signals.
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