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Abstract

A computationally efficient framework to fingerprint real-world Bluetooth devices is presented in this work. Despite the
active research in this topic, a generalizable framework suitable for real-world deployment in terms of performance in a new and
evolving environment as well as hardware efficiency of the architecture is lacking. We propose an embedding-assisted attentional
framework (Mbed-ATN) suitable for fingerprinting actual Bluetooth devices and analyze its generalization capability in different
settings and demonstrate the effect of sample length and anti-aliasing decimation on its performance. The embedding module
serves as a dimensionality reduction unit that maps the high dimensional 3D input tensor to a 1D feature vector for further
processing by the ATN module. Furthermore, unlike the prior research in this field, we closely evaluate the complexity of
the model and test its fingerprinting capability with real-world Bluetooth dataset collected under a different time frame and
experimental setting while being trained on another. Our study reveals a 7.3x and 65.2x lesser memory usage with the proposed
Mbed-ATN architecture in contrast to Oracle at input sample lengths of M=10 kS and M=100 kS respectively. Further, the
proposed Mbed-ATN showcases a 16.9x fewer FLOPs and 7.5x lesser trainable parameters when compared to Oracle. Finally,
we show that when subject to anti-aliasing decimation and at greater input sample lengths of 1 MS, the proposed Mbed-ATN
framework results in a 5.32x higher TPR, 37.9 % fewer false alarms, and 6.74x higher accuracy under the challenging real-world

setting.
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Abstract—A computationally efficient framework to finger-
print real-world Bluetooth devices is presented in this work. De-
spite the active research in this topic, a generalizable framework
suitable for real-world deployment in terms of performance in
a new and evolving environment as well as hardware efficiency
of the architecture is lacking. We propose an embedding-assisted
attentional framework (Mbed-ATN) suitable for fingerprinting
actual Bluetooth devices and analyze its generalization capability
in different settings and demonstrate the effect of sample length
and anti-aliasing decimation on its performance. The embedding
module serves as a dimensionality reduction unit that maps the
high dimensional 3D input tensor to a 1D feature vector for
further processing by the ATN module. Furthermore, unlike the
prior research in this field, we closely evaluate the complexity of
the model and test its fingerprinting capability with real-world
Bluetooth dataset collected under a different time frame and
experimental setting while being trained on another. Our study
reveals a 7.3x and 65.2x lesser memory usage with the proposed
Mbed-ATN architecture in contrast to Oracle at input sample
lengths of M/ = 10 kS and M = 100 kS respectively. Further, the
proposed Mbed-ATN showcases a 16.9x fewer FLOPs and 7.5 x
lesser trainable parameters when compared to Oracle. Finally,
we show that when subject to anti-aliasing decimation and at
greater input sample lengths of 1 MS, the proposed Mbed-ATN
framework results in a 5.32x higher TPR, 37.9 % fewer false
alarms, and 6.74x higher accuracy under the challenging real-
world setting.

Index Terms—RF fingerprinting, Bluetooth, Deep learning,
Embedding module, Attention mechanism

I. INTRODUCTION

ADIO frequency (RF) fingerprint based on the hard-

ware imperfections of the emitter circuit serves as an
excellent tool or watermark to distinguish between devices
manufactured by the same manufacturer even while trans-
mitting the same message. In the present day and evolving
Internet of Things (IoT) era where numerous wireless devices
emerge everyday, the wireless security and the privacy of
data shared across the spectrum accessed by these devices is
a growing concern [1]], [2]. The various approaches towards
RF fingerprinting to enhance security of wireless devices that
utilize wireless standards such as WiFi, Bluetooth (BT), and
LoRa are an actively researched topic [3]-[6]. However, the
application of deep learning (DL) especially a lightweight
deployable framework that improves generalization capability
for fingerprinting real-world BT devices is lacking. In [3],
the authors synthetically generate WiFi signals using GNU
Radio software from USRP X310 radios instead of actual
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IoT devices and report performance improvement only with
impairments introduced at the transmitter side and significantly
poor performance of 35.96 % classification accuracy without
the induced impairments. Such induced perturbations mask the
actual RF circuitry signatures and hinders easy adoption for
use with the billions of already deployed IoT devices. The
authors of [5] study WiFi-based drone detection with actual
drone emitters rather than synthetically generated emissions.
In [7], a ID AlexNet and ResNet architectures are adopted
to fingerprint 7 DJI M100 drones. The generalization test
performed here involves training and testing on different bursts
of the emission collected during the same time frame. A
ZigBee emitter fingerprinting with Differential Constellation
Trace Figure (DCTF) using a LeNet-5 CNN model was
proposed in [8]. The ZigBee emissions are collected, trained,
and tested on the same time frame and testbed setup. However,
these works do not perform the generalization test where the
classifiers are trained with data obtained from a certain time
frame and testbed setup and tested on another unseen time
frame and setup, quoted in our article as TTDDL scenario.

The authors of [9] conduct CNN-based WiFi fingerprinting
on a custom as well as large-scale DARPA dataset using a
channel equalization approach. Here, the authors perform a
generalization test where only the time frame of the testing
dataset is different from the training, reported in their article
as Train on One Test on Another (TOTA) scenario. The authors
report a accuracy of 23.2 % with their Baseline CNN model.
In [10], the authors employ a triplet loss based CNN model to
fingerprint base stations transmitting either of 5G New Radio,
LTE, or WiFi waveforms. However, these base stations are
software-defined radio (USRP B210) based rather than real-
world base stations and synthentically generate the waveforms
with MATLAB LTE, WLAN, or 5G toolboxes. In this work,
the authors perform a generalization test by training and testing
on different days. However, the multipath effect, fading, and
orientation experienced by the emissions under our challeng-
ing TTDDL scenario is closer to the deployment setting faced
in the real-world setting. Note that the proposed Mbed-ATN
framework attains a 46.5 % accuracy in fingerprinting the
challenging frequency hopping BT emitters under the TTDDL
setting.

While the vast RF fingerprinting literature delves into
waveforms such as ADS-B, WiFi, LoRa, and Zigbee [2], a
robust DL based approach to fingerprint BT devices capable
of handling unseen configuration is still lacking [6]. The core
challenge stems from the rapid frequency hopping nature of
the BT emitters. In this work, for the first time, we introduce
an unique embedding assisted attentional framework (Mbed-
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ATN) for fingerprinting BT emitters and evaluate it in depth.

Unlike existing literature, we comprehensively evaluate the
model’s complexity, prediction capability, and generalization
merit. We measure the generalization power of the proposed
DL model by testing the DL model with unseen data obtained
from a different time frame and testbed set up compared to
the training data.

Our contributions are summarized below,

e We propose for the first time, an embedding assisted
attentional framework for fingerprinting BT devices.

e« We collect real-world BT emissions from actual IoT
devices under two indoor laboratory scenarios in a rich
multipath propagation and non-line-of-sight settings.

« We demonstrate the lightweight nature of the proposed
DL model in order to validate its practical deployment
capability.

« We present the evaluation results of the proposed DL
model in contrast to the benchmark with RF data col-
lected under the different time frame and different exper-
imental setup than the training data.

« Finally, we comprehensively evaluate the effects of input
tensor length and anti-aliasing filtering in the prediction
capability of the proposed DL model.

II. EMBEDDING ASSISTED RF FINGERPRINT EXTRACTOR

In this section, we elaborate the design of the proposed em-
bedding assisted RF fingerprint extractor (Mbed-ATN) which
enables it to classify BT emitters in unseen challenging envi-
ronment. The proposed Mbed-ATN is a deep learning frame-
work which adopts a convolutional neural network (CNN)-
based embedding module (Mbed) that serves as the feature
extractor and dimensionality reduction module. The Mbed
module maps the high dimensional BT signal input tensor to
a one dimensional (1D) 1024 x 1 vector which feeds into a
CNN and gated recurrent unit (GRU)-based attentional (ATN)
classifier. The ATN module extracts the spatial and sequential
patterns in the input vector allowing it to efficiently isolate the
fingerprint from other confounding factors. This unique Mbed-
ATN framework that combines the advantages of CNN and
GRU in extracting the unique emitter characteristics is shown
in FigXX. Emphasizing the significance of deployment of the
Mbed-ATN in real-world operational scenarios, we enforce a
lightweight architecture that can generalize well to the real-
world environment.

Input Data Preprocessing: We denote the time domain
BT signal of length N samples captured by the receiver as
y(t)|;Z;. In our previous work [6] and as an ongoing study,
we have empirically determined that BT emitter fingerprinting
requires larger input sample lengths and additional features
in the input tensor for acceptable classification accuracy. The
capture length in this study is intentionally kept large enough
(N = 40 MS) to experiment with data segmentation and
other signal processing required to determine the input format
that yields an acceptable fingerprinting accuracy. To keep
up with the usual trend of processing short input sample
lengths [9], [11], in our previous work we attempted data
segmentation where the signal present regions of the captured

vector are chunked in to 1024 x 1 inphase-quadrature (IQ)
samples. However, such short signal lengths were proven to
be insufficient to capture the challenging hopping pattern of
the BT signal. Hence, a longer sample length with appropriate
features was deemed necessary. We subject the captured BT
signal to the following operations to generate a 3 x M tensor.

Y3M = Fgt)M,)] (1)
— Zy(t)izl (2)

PSD <gj(t)tj\i1)

where §(t)M , is the downsampled version of y(¢)¥ ,, the first
two rows contain the magnitude and phase of the decimated
signal §(t) and the third row is the power spectral density
(PSD) of the decimated signal.

Embedding Module: We resort to the powerful feature
extraction capability of CNNs to process the input tensor
Y. The Mbed module acts as a dimensionality reduction
step in mapping the large 3D input tensor to a condensed
1D feature embedded vector. It treats the 3D input tensor
as a 3-channel input and adopts 1D convolutional kernels
to encode the dependencies between the adjacent samples in
each input channel. The Mbed module has three convolutional
layers with 1D kernels which feeds into the dense layers. The
dense layers generate the 1024 x 1 feature embedded vector f
for further processing by the ATN module. The architectural
detail of the Mbed module is shown in Table [l We resort
to using parametric ReLU (PReLU) activation function in the
convolutional layers as it has shown considerable improvement
when the negative values are not zeroed out citeXX. The
PReLU performs non-linear mapping of an input = as in
equation [3]

ifz >0

J@) = {zx itz <0

Here, a is the trainable parameter and hence, the name PReL.U.
The dense layer utilizes ReLU activation. Unlike PReL.U, the
ReLU maps all negative values to 0, or in other words, when
the a = 0 in equation |3} the function is equivalent to ReLU.

3)

TABLE I: Architectural detail of Mbed module.

Input 3 X M

Conv (100,1,10) - Stride (1,10) VM < 1e6 - Stride (1,20) VM > 1e6
Conv (50,1,6) - Stride (1,3) VM < 1e6 - Stride (1,6) VM > 1e6
Maxpool (1,8) Dropout 0.5

Conv (40,1,10) - Stride (1,10) VM < 1e6 - Stride (1,5) VM > 1e6
Maxpool (1,5) - active for M > 1e6 Dropout 0.5

Dense 1024

Activation: Conv Layers - PReLU, Dense Layer - ReLU

Attentional module: We resort to adopting a modified ver-
sion of attentional mechanism to extract the inter-dependencies
in the samples and focus only on the relevant portions of the
samples with fewer layers. Our experiments show that the
adoption of attentional module can outperform deep network
architectures and preempt the need for denser networks. The
ATN module is a hybrid model that combines the benefits of
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Fig. 1: Proposed Scalable Mbed-ATN framework

CNN and GRU. While the CNN performs 1D convolutions
on the embedding vector f to capture the timing relationship
of the samples, the GRU extracts the before-after timing
dependencies of the samples. We consider this as a pivotal
step in characterizing and comprehensively extracting the
fingerprint features especially owing to the hopping nature of
the BT waveform as it traverses the multipath propagation
channel. GRU is an efficient form of long short term memory

TABLE II: Architectural detail of ATN module.

Input 1024 x 1

Branch-1: Conv (15,1,7) - Stride 1 - Padding 1 - PReLU - Dropout 0.1
Conv (32,1,7) - Stride 1 - PReLU - MaxPool (1,2) - Dropout 0.5

Branch-2: Conv (15,1,3) - Stride 1 - Padding 1 - PReLU - Dropout 0.1
Conv (32,1,3) - Stride 1 - PReLU - MaxPool (1,2) - Dropout 0.5

Branch-3: GRU hidden size = 80, #layers = 3, Dropout = 0.5
Dense 1024 - PReLU - Dropout 0.2

Dense 64 - PReLU - Dropout 0.2

Dense 10 - Softmax

(LSTM) since it uses only two gates - Update and Reset -
instead of three gates as in LSTM. Further, GRU does not
possess an internal memory or an output gate. Therefore, GRU
uses fewer training parameters and memory and hence trains
faster than LSTM. The update (u;) gate controls the amount
of past information that needs to be carried over to the next
state. The reset (r;) gate determines the amount of previous
history that needs to be forgotten. The GRU unit are defined
by the following set of equations,

w = o(Wux, + Ryhy_y +by) 4)
Iy = U(Wrxt +Ryh_; + br) @)
h, = tanh (WX, + Ry, (r; @ he_1) + by,) (6)
hy=(1—-uw)Oh, +u, Oh, (N

where x; is the input vector, W; and R; are the weight
matrices, b; the bias vector, h; indicates candidate hidden
state, tanh(o) is the hyperbolic tangential activation function,
and o (o) is the sigmoid activation function.

As in the architectural diagram in Fig[l] the input (f) to
the ATN module feeds into two convolutional branches, and a
GRU branch. The notations C1, C2, and G denote the operations
of the first convolutional branch, second convolutional branch,
and the GRU branch respectively. The layer details of the
branches are presented in Table The output from the
convolutional branches are vectorized (flattened) form of their
respective feature maps. The GRU branch is a many-to-1 type

of GRU whose output is also a vector. The operations of the
ATN module are governed by the following set of equations,

0] = Cl (f) S = SlLU(Og) (8)
0, = Co(f) a=[01;0;8] 9)
03 =G(f) (10

where s is the scoring vector function approximation ob-
tained by applying Sigmoid Linear Unit (SiLU) activation
to the output from GRU branch. The SiLU activation
multiplies the input (z) by its sigmoid activation (o (x)). The
operator ; indicates vector concatenation. The final attentional
vector a is generated by concatenating the outputs from the
convolutional branches with the scoring vector s as in equation
(9). This scoring vector is fed into the subsequent Dense layers
for final softmax emitter classification.

Training Mbed-ATN framework: We train the end-to-end
Mbed-ATN framework as in Algorithm 1. The Mbed module
is initially trained to classify the emitters by adding an output
softmax Dense layer to the architecture in Table [ This layer
is dropped after training and the 1024 x 1 feature vector f
is fed to the ATN module. The ATN module is then trained
independently while keeping the weights of the Mbed module
unchanged. The modules are trained for a maximum epochs
of 2000 with Adam optimizer at a learning rate of 0.0001. The
network convergence is monitored during the training process
and the parameters are frozen at the best point of convergence.

III. EXPERIMENTAL EVALUATION

Real world IoT Datasets: We consider real-world IoT
testbed for the practical application and evaluation of the
proposed RF fingerprinting framework. We collect the BT
emissions from 10 IoT emitters in two challenging settings
in an indoor multipath environment with other unavoidable
interferences and obstacles rendering a rich multipath propa-
gation scenario. A passive listener USRP X300 tuned into a 2
MHz bandwidth of a 2.414 GHz center frequency is streaming
samples at the rate of 2 MSps. The USRP X300 is outfitted
with a UBX160 daughterboard and a VERT2450 antenna
affixed to the RX2 antenna port. The respective emitters are
positioned to transmit the BT bursts over the duration of
the capture while the receiving radio records 40 MS in one
capture. The BT waveform is a challenging waveform in itself
owing to the frequency hopping nature which hops at the rate
of 1600 hops/second over the 2.4 GHz ISM band. This implies
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Algorithm 1 Backpropagation to train Mbed-ATN framework

Train Mbed module:
Initialize network weights © rrped-
for epoch = 1 to MAX_EPOCHS do
for steps = 1 to STEPS do
Input batch x and Compute loss
Lrrbed(©nmbed) [standard forward pass]
Compute gradients V£nsped (O rved)
Update weights
OMbed — Onmbea [standard backward pass]
end for
Stop training once model stops learning (starts to diverge)
end for
Freeze the Mbed module with learned weights O34
Eliminate the output softmax Dense layer of Mbed module and
feed the 1024 x 1 feature vector f to ATN module.
Train Mbed-ATN module:
Initialize network weights ©3/pcq, @ AT N -
for epoch = 1 to MAX_EPOCHS do
for steps = 1 to STEPS do
Input batch x and Compute loss
Catbed—ATN (Orped, @arn) [standard forward pass]
Compute gradients VZrped—arnN (@R{bed, eATN)
Update weights of ATN module
O%rn ¢— Oarn [standard backward pass]
end for
Stop training once model stops learning (starts to diverge)
end for

the signal will be periodically visiting the tuned in BT channel
making it a harder waveform to capture and fingerprint. The
shorter input sample lengths therefore cannot comprehensively
capture the emitter characteristics and will therefore need
larger sample lengths [6]].

Setup 1: Here the emitters and the receiving radio are posi-
tioned in line-of-sight (LoS) settings. The separation between
the emitter and receiver are varied from 1.6 ft to 9.8 ft in steps
of 0.8 ft.

Setup 2: This setup is considered a challenging setting given
the non-line-of-sight (NLoS) settings between the emitters
and receiver. Here the emitter is placed at the four corners
of the indoor laboratory while the receiver is placed at the
center of the laboratory space. In this setup, the maximum
separation between one of the corners and the receiver amounts
to approximately 24.2 ft.

A. Key Performance Indicators

In this section, we specify the performance metrics that are
used to evaluate the models. The predictions made by any
DL model or in other words, the confusion matrix can be
categorized into true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN).

1) True positive rate (TPR) or Recall: quantifies the positive
predictions made by the model with respect to total positive
predictions. For a multi-class classification, it is TPR =
%, where i denotes the class .

2) False positive rate (FPR): measures the false predictions
of the model in proportion to the total false predictions. Its
computed as FPR =Y | w

3) Top-1 accuracy (or balanced accuracy): is the arithmetic
mean of the recall for each class.

4) FLOPs: accounts for the total number of floating point
operations in the model.

5) Model parameters: measures the total number of trainable
parameters in the model.

6) Supported sample lengths: the maximum measured input
tensor lengths supported by the model without causing any
out-of-memory (OOM) GPU errors.

B. Complexity Analysis

Model complexity is an often overlooked factor by develop-
ers while designing and training deep learning (DL) models.
According to a recent empirical study on 4960 failed DL
jobs in Microsoft, 8.8% of the job failures were caused due
to the depletion of GPU memory accounting for the largest
category in all DL specific failures [13]. The challenging
frequency hopping nature of BT waveform requires a scalable
architecture that can process larger input sample lengths. This
makes the model architecture challenging since it must be
large enough to process larger input samples but at the same
time be lightweight for supporting commercial-off-the-shelf
(COTS) deployment platforms. In this section, we perform a
systematic review of the memory footprint of the proposed
Mbed-ATN model and benchmark it against Oracle [3|.

Most developers are oblivious of the memory consumption
of a DL model and the steps that incur the most memory
usage. Having a firm grasp of the memory usage of a model
is impetus in designing efficient and lightweight DL models.
In order to answer this critical practical usage question, we
elucidate the maximum memory consumption of a model and
demonstrate it on the proposed Mbed-ATN and Oracle models.
The training of a DL model can be segmented into roughly
five stages:

1) Model Loading: This stage involves moving the model
parameters to the GPU memory. Here the current memory
usage is the model memory.

2) Forward pass: Here the input batch is passed through
the model and the intermediate activations are stored in
memory for use by backpropagation. Here the current
memory consumption is contributed by the model and the
activations.

3) Backward pass: The gradients are computed from the end
of the network to the beginning while discarding the saved
activations during the traversal. The memory usage in this
step is by the model and the gradients.

4) Optimizer parameters: The optimizer parameters are
updated during the backpropagation. The parameters would
vary depending on the type of learning algorithm such as
Adam, RMSProp, etc. For example, Adam would estimate
the first and second moments of the gradients. Here the
memory is depleted by the model, gradients, and gradient
moments.

5) Training iterations: Once the first iteration has passed
and the optimizer has taken a step, the gradient and
gradient moments are updated and stored in memory. So
the maximum memory consumption in the subsequent
training iterations will be in parts by the model, activations,
gradients, and gradient moments.
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We used the PyTorch framework and a Quadro RTX 6000
GPU in implementing and evaluating the models. Figure 2]
demonstrates the GPU memory usage by Mbed-ATN model
and Oracle with the same evaluation settings. In Fig2al we
analyze the GPU memory usage when the input tensor lengths
are configured to M = 10 kS and M = 100 kS. It can be seen
that the memory usage rapidly scales up to trigger OOM with
the Oracle model while the proposed Mbed-ATN maintains
manageable and very low memory usage. This corresponds
to a 7.3x and 65.2x lesser memory usage with Mbed-ATN
architecture in contrast to Oracle at sample lengths of M = 10
kS and M = 100 kS respectively. This evaluation was carried
out with a batch size of 2. A higher batch size of 70 and
an input sample length M/ = 1 MS were not feasible with
the Oracle model. However to provide more insight to the
readers, we characterize the proposed Mbed-ATN at different
batch sizes and sample lengths in Fig[2b] These analyses
demonstrate the GPU memory usage with the proposed Mbed-
ATN well under the GPU memory capacity.

39442.5

40000 1 mmm Oracle
Mbed-ATN

35000 4

30000 4

25000 | GPU Memory Limit

20000 4

15000 4

Memory Footprint (MB)

10000 4

5000 - 3944.41

539.13 604.57

10k 100k
Sample Length

(a) GPU Memory Consumption of training Oracle
and Proposed Mbed-ATN models with different sample
lengths and Batch size=2.

30000

Batch Size = 2
mmm Batch Size = 70

25000 1 GPU Memory Limit

20000
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5000 | 4818.06
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539.13 652.18

0

10k 100k ™
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(b) GPU Memory Consumption of training Proposed
Mbed-ATN models with different sample lengths and
batch sizes.

Fig. 2: GPU Memory Consumption of training Oracle and Pro-
posed Mbed-ATN models. The red line indicates the memory
capacity of the Quadro RTX 6000 GPU.

In order to shed more light into the model complexity from
a deployment standpoint, we also evaluate the floating point
operations (FLOPs) and number of trainable parameters of the
proposed Mbed-ATN and Oracle for an input tensor length of

TABLE III: FLOPs analysis with benchmark.

Model FLOPs #Parameters Supported
Sample length
Mbed-ATN 2.181G 0.034G M
Oracle 36.87G 0.256G 10k
TABLE IV: Fingerprinting performance at A/ = 10 kS.
Scenario | Model TPR FPR Top-1 Acc.
Mbed 0.762 0.027 0.775
TTSD Mbed-ATN 0.738 0.029 0.742
Oracle 0.738 0.029 0.742
Mbed 0.158 0.094 0.145
TTDDL Mbed-ATN 0.079 0.103 0.075
Oracle 0.079 0.108 0.069

M =10 kS (Table [II). The proposed Mbed-ATN showcases
a 16.9x fewer FLOPs and 7.5 lesser trainable parameters
when compared to Oracle. These experiments demonstrate the
superior lightweight nature of the proposed Mbed-ATN model
while being capable of supporting larger input sample length
of 1 MS. Further, it also shows the scalability limitation of
Oracle architecture for an input length M > 10 kS.

C. Effect of Sample length

In this section, we critically evaluate how the length of
the input tensor affects the performance of the fingerprinting
framework. As mentioned previously, the capture length is
N = 40 MS which is subsequently decimated to different
sample sizes (M) such as 10 kS and 1 MS. In these evalua-
tions, we also characterize the Mbed module’s fingerprinting
performance separately to showcase the need for the ATN unit.

Since it is only feasible to support (for the given hardware)
a sample length of M = 10 kS with the Oracle model,
we also present its fingerprinting performance in Table
We measure the performance of the models when they are
trained and validated with dataset collected using Setup I and
tested with a portion of the test set obtained from unseen data
collected from the same scenario. This evaluation is presented
as the Train and Test Same Day (TTSD). Under the TTSD
evaluation, the proposed Mbed model outperforms both Oracle
and Mbed-ATN in terms of the TPR, FPR, and Top-1 accuracy.
The performance of Mbed and Mbed-ATN were measured
for a sample length of 1 MS Table [V] Comparing the KPIs
of these evaluations under the TTSD scenario, demonstrate
an increase in TPR and Top-1 accuracy while lower FPR at
higher sample lengths. These evaluations further portray that
the significance of ATN module comes into play at larger
sample length (M = 1 MS). This is intuitive as the GRU
branch is able to decipher the time series relation better with
longer sequence lengths. Table |V|shows a 2.8 % higher TPR,
23 % fewer false alarms, and 0.5 % greater top-1 accuracy with
Mbed-ATN in contrast to Mbed unit alone under the TTSD
condition.

D. Generalization on different location and time-frame set-
ting.

An important aspect in training and deploying a DL model
for real-world applications is its generalization capability. The
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TABLE V: Fingerprinting performance at M = 1 MS.
Scenario Model TPR FPR Top-1 Acc.
Mbed 0.881 0.013 0.885
TTSD Mbed-ATN 0.905 0.01 0.91
Mbed 0.105 0.095 0.175
TTDDL Mbed-ATN 0.211 0.086 0.275

TABLE VI: Fingerprinting performance with anti-aliasing

decimation (sample length = 1M).

Scenario Model TPR FPR Top-1 Acc.
Mbed 0.905 0.011 0.905

TTSD Mbed-ATN 0.905 0.011 0.905
Mbed 0.342 0.072 0.395

TTDDL Mbed-ATN 0.421 0.064 0.465

fingerprinting literature has often resorted to evaluating this
in terms of train one day and test another (TOTA) scenario
where the DL model is trained and validated with one dataset
while evaluating it with a test set collected on a different day
(time frame) [9]. However, unlike the past works, we make it
even more challenging by testing on data collected from not
just a different time frame but also under a different testbed
setup. We refer to this scenario as train and test different day
and location (TTDDL). Under the TTDDL setting, the models
are trained and validated with data collected from Serup I and
tested on data captured from Setup 2.

The TTDDL evaluation in Table [[V] shows 83.5 % higher
TPR, 6 % lower FPR, and 2.1 % higher top-1 accuracy
with the proposed Mbed unit when compared to Oracle. The
significance of ATN module is depicted in Table [V] where it
achieves 2.6 % higher top-1 accuracy in contrast to Mbed unit.

Confusion matrix

10

True label

(a) Oracle performance with the maximum supported
sample length

Confusion matrix

True label

&5
e

(b) Proposed Mbed-ATN architecture performance with
maximum supported sample length

Fig. 3: Achievable BT fingerprinting performance on TTDDL
(different day different location testbed setup)

E. Effect of applying anti-aliasing decimation
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(a) Oracle performance with the maximum supported
sample length
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(b) Proposed Mbed-ATN architecture performance with
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Fig. 4: Achievable BT fingerprinting performance on TTSD
(same day same location testbed setup)

In this study, we evaluate the effect of anti-aliasing deci-
mation as opposed to straightforward downsampling. For this,
we decimate the 40 MS capture to 1 MS with an anti-aliasing
order 8 Chebyshev type I filter. Here, the waveform is subject
to anti-aliasing filtering prior to downsampling. The effects of
anti-aliasing decimation is shown in Table m Here, we can
evidently see the performance increase of the models with
reference to the downsampling without anti-aliasing filtering
in Table [V| We show that Mbed-ATN achieves 23.1 % higher
TPR, 11.1 % lesser false alarms, and 17.7 % higher accuracy
compared to the Mbed module under the TTDDL setting.
To truly understand, the effect of anti-aliasing, we contrast
the Mbed-ATN framework’s performance under the TTDDL
setting in Table [V] and Table Note the 99.5 % increase
in TPR, 25.6 % drop in false alarms, and 69.1 % spike in
the top-1 accuracy of the Mbed-ATN with the anti-aliasing
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decimated samples. With respect to the TTDDL case in Table
the Mbed-ATN demonstrates a 5.32x higher TPR, 37.9
% fewer false positives, and 6.74x higher accuracy with the
increased sample length subject to anti-aliasing filtering. In
order to shed more light into this visually, we depict this
increase in accuracy in Fig[5] Here, the label IM_AA denotes
a sample length of 1 MS with anti-aliasing decimation and
we also show the accuracy with sample length of 100 kS. The
improved generalization capability with longer sample length
and anti-aliasing decimation under the challenging TTDDL
setting with the adoption of ATN module can be clearly seen in
Fig[5b] This study shows the combined effect of higher sample
length and anti-aliasing on the performance of the proposed
Mbed-ATN fingerprinting framework. Figures [3] and [] show

Mbed 0.91
Mbed-ATN

0.91 o0.91

0.82 0.82
os 4 0.78
0.7a4

Top-1 Accuracy

0.2

10k 100k M
Sample Length

M_AA

(a) TTSD Scenario

10

Mbed
Mbed-ATN

oe

o
o

0.4

Top-1 Accuracy
o
S

oo

10k 100k
Sample Length

IM_AA

(b) TTDDL Scenario

Fig. 5: Demonstrating effect of sample length and anti-aliasing
decimation on Mbed-ATN fingerprinting performance.

the confusion matrices of the Oracle and proposed Mbed-ATN
models at their maximum supported input tensor lengths under
the TTSD and TTDDL experimental settings. The superiority
of the proposed Mbed-ATN model in terms of the true
positives, true negatives, false positives, and false negatives
are evident in both the challenging TTDDL scenario and the
TTSD setup. These evaluations validate the generalization and
practical deployment capability of the proposed Mbed-ATN
framework.

IV. CONCLUSION AND FUTURE WORK

We proposed and presented a detailed analysis of Mbed-
ATN, an embedding assisted attentional framework for en-
hancing the generalization capability of the fingerprinting ar-
chitecture. The proposed model is capable of supporting large
input tensor lengths of 1 MS while using significantly less
GPU memory. The proposed Mbed-ATN utilizes 65.2x lesser

memory in contrast to the state-of-the-art Oracle architecture
for an input length of M = 100 kS. Further, for a 10 kS sample
length the Mbed-ATN utilizes 16.9x fewer FLOPs and 7.5x
fewer trainable parameters with respect to Oracle. A detailed
empirical study on the effect of higher sample length and anti-
aliasing decimation was demonstrated for the proposed Mbed-
ATN framework in showcasing the improved generalization
capability of the model with the introduction of attentional
learning. Unlike the existing literature, we resorted to the
challenging different time frame and different experimental
setup (TTDDL) scenario along with demonstrating the GPU
efficiency of the model in validating the real-world deployment
merit of the proposed framework.
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