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Abstract

The increasing length of the subsurface pipe causes overlapping, accumulating, and sometimes the old pipe layout is not

available. Consequently, accidents, damages, time delay and financial losses are occurred during construction of new structures

or expanding the roadway or installing of new pipes. Therefore, the depth, diameter, material of the existing pipe as well

as the map of the pipe are indispensable to know for appropriate construction planning and development work. Using this

algorithm and genetic algorithm optimization, the radius of the field pipe was assessed with 83, 67 and 89% accuracy, the depth

was estimated with 95, 95 and 98% accuracy considering the effect of the pipe radius. The effect of the pipe radius should be

considered to calculate the pipe depth with higher accuracy. The material of the field pipe was successfully determined using

the evaluated relative permittivity of the pipe. A 3D map of the field pipe was developed by applying the tracing algorithm

and linear regression to the estimated depth.
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Abstract 

The increasing length of the subsurface pipe causes overlapping, accumulating, and sometimes the old pipe layout is not available. 

Consequently, accidents, damages, time delay and financial losses are occurred during construction of new structures or expanding the 

roadway or installing of new pipes. Therefore, the depth, diameter, material of the existing pipe as well as the map of the pipe are 

indispensable to know for appropriate construction planning and development work. Using this algorithm and genetic algorithm 

optimization, the radius of the field pipe was assessed with 83, 67 and 89% accuracy, the depth was estimated with 95, 95 and 98% 

accuracy considering the effect of the pipe radius. The effect of the pipe radius should be considered to calculate the pipe depth with 

higher accuracy. The material of the field pipe was successfully determined using the evaluated relative permittivity of the pipe. A 3D 

map of the field pipe was developed by applying the tracing algorithm and linear regression to the estimated depth. 
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1. Introduction 

 

Length of the subsurface utility service pipe is 

increasing over time. For instance, cumulative length 

of water supply pipe was about 660 thousand km until 

2015 in Japan. [1] Which is responsible for different 

problems, such as construction planning with no 

subsurface pipe map causes construction delay and 

financial loss. [2] Simultaneously, the length of the old 

subsurface pipe increases and causes various kinds of 

problems such as leakage of water, washing of soil, 

caving into the soil, collapse of road surface, etc. [3] 

Additionally, different utility pipes made of different 

materials becomes concentrated and cases accidents 

during excavation of construction works. [2] Another 

major subsurface pipe is sewage pipe, as of the end of 

2020, the total distance of the sewage pipe is about 490 

thousand km and about 25 thousand km of pipe is 

reached its legal lifetime, 50 years. [3] The 

deterioration and failure of the aged pipes also causes 

subsurface void or sinkhole and lead to collapse of soil 

and road surface failure. [4]  

Furthermore, different utility pipes are overlapping 

each other in a city area due to inadequate space and 

results a complex distribution system. Therefore, 

maintenance and managing of this huge number of 

subsurface pipes become very difficult and 

cumbersome [5] and sometime the unknown position 

of the subsurface pipes causes mishap and damaged 

pipes. The surrounding area and economy are 

impacted by this sort of accidents and damages which 

is complicated to quantify. [6] For example, over 100 

accidents were reported every year by the construction 

company in Japan. Where only unknown position of 

subsurface pipe causes about 52% of the accident. [3] 

The above-mentioned problems are occurred due to 

lack of information about the depth, diameter, and 

materials of the subsurface pipe. [7] Additionally, the 

2D map of the subsurface pipe does not represent the 

actual coordinates of the pipe position and makes 

confusion among the excavation workers. [8] 

Therefore, depth, diameter and material of the existing 

subsurface pipe should be estimated accurately, and 

3D map with the actual coordinate of the pipe should 

be produced before any construction works. 

 

2. Literature Review 

 

The subsurface sensing methods like elastic wave, 

sonic/acoustic, etc. only applicable for non-metallic 

pipes only. Therefore, a robust method is necessary to 

detect all types of pipes [9] and a wide range of 

subsurface utilities both pipe and wire, metallic and 

plastic pipe can be detected accurately by using the 

GPR system. [10,11] Consequently, the ground 

penetrating radar or GPR system become more 
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popular for detecting and identifying the subsurface 

utilities in terms of robustness, time, and accuracy. 

[12] Additionally, the transmitting and receiving 

antennas of the GPR system are attached with a 

vehicle, hence the data acquisition rate is too high, 

about 80 km of road or surface can be scanned just in 

one hour. [13,14] Also, the GPR system does not 

requires any traffic regulation during the data 

acquisition. 

The physics of electromagnetic wave is described 

by using the Maxwell’s equations where the material 

properties are computed by the constitutive 

relationships. The finite differences of the Maxwell’s 

equations are calculated in time and space direction 

using a unique discretization scheme, Yee’s algorithm 

using the Finite Difference Time Domain (FDTD) 

method. [15] This is the foundation to describe GPR 

signal quantitively. 

Recently, different techniques are using to interpret 

the GPR data, detecting and estimating the radius of 

the subsurface pipe such as template matching [16], 

curve fitting [17], pattern matching [18], neural 

networks [19], least square approach [20] and 

theoretical hyperbola. It is difficult to estimate both 

the diameter and the relative permittivity because 

there has a clear correlation. [21] Many studies have 

been done by using only propagation time information 

or assuming depth of pipe to estimate the relative 

permittivity or vice versa i.e., those studies avoid the 

correlation between depth and relative permittivity. 

[22] The depth of the pipe was estimated from the 

hyperbolic pattern image assuming or ignoring radius 

of the pipe in previous work and the estimation 

deviation for that research was ± 0.1m. [23] The 

percentage of error was too large for the real field 

applications. 

The Moor Neighborhood algorithm is generally 

used to detect the boundaries. The average and 

maximum value for every pixel is estimated using this 

algorithm. Using the concept of Cellular Automata, 

the performance of boundary recognition from noisy 

images are improved. [24,25] The termination 

condition for this algorithm is to stop after visiting the 

initial pixel for the second time. 

 

3.  Contributions of the research and Methodology 

 

3.1 Contribution of the research 

 

The nonlinear or non-differential problems are 

solved by the Genetic Algorithm (GA) optimization 

techniques. The genetic algorithm is an iterative 

process and searching technique which employed the 

concept of natural evolution to obtain a rational or the 

best solution through the natural selection. The main 

contributions of this research were, 

i) Inversely estimate pipes depth, diameter, and 

material from the shape of reflection pattern and 

intensity using electromagnetic simulation (FDTD 

method) and optimization method (Genetic 

Algorithm) 

ii) 3-D mapping of pipes by Moor Neighbourhood 

tracing and smoothing estimation results 

 

3.2 Methodology 

 

At first the 3D region of the reflected hyperbola 

was extracted from a large-scale data set using 3D 

convolution neural network. Then the intensity 

distribution was extracted along the hyperbola. The 

radius of the pipe was determined by comparing the 

field intensity distribution with the intensity 

distribution of the FDTD simulation. The radius of the 

field pipe was determined by associating of the peak 

width of the FDTD simulation database produced by 

considering different pipe radius. The average of all 

the radius estimated at each channel was considered as 

the pipe radius. 

Then, a pattern matching algorithm was developed 

and employed to recognize the shape i.e., hyperbola 

parameters of the reflected hyperbola. The 

relationship between depth of the pipe, relative 

permittivity of the soil with the hyperbola parameters 

were observed by FDTD simulation models. These 

relationships display nonlinearity and multi-

variability; hence an evaluation function was 

developed from the fitting criteria of those 

relationships. After that, the relative permittivity of the 

field soil and depth of the field pipe were determined 

inversely by GA optimization using the above 

evaluation function.  

The depth of the pipe and permittivity of the soil 

were estimated considering the effect of the pipe 

radius. The accuracy of the depth of the pipe and 

permittivity of the soil estimation results were 

improved compared to without considering the effect 

of pipe radius. The attenuation ratio, the ratio between 

top of the pipe surface and top of the pavement was 

used to determine the material of the pipe. A 

relationship between the attenuation ratio and relative 

permittivity of the material was established using 

several FDTD simulation models. Using the measured 

average attenuation ratio of the field data, relative 

permittivity of pipe was determined. The pipe material 

was decided by the considering the standard range of 

the relative permittivity of different materials. 

For the 3D mapping, the Moor neighbourhood 

tracing algorithm was applied to all the depth point to 

detect whether they belong to one pipe or not. Then, 

the layout of the pipe was obtained by applying the 

linear regression to all the traced depth point and all 

parameters of the subsurface pipe were shown in the 

3D map 

 

4.  Measurement system and data 

 

4.1.  Measurement system 

 

A vehicle as shown in Fig. 1 with GPR system - a 

system of antennas, radar transmitter, indicator, data 

logger and display - was used for the measurement of 

data. The arrangement of the transmitting and 

receiving antennas was as shown in Fig. 2. and the 

system records a position by a GPS and odometer. The 

antennas are usually installed on the front or the rear 

of the vehicle and covered with an electromagnetic 
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shield to prevent electromagnetic leak out of the 

system. 

A typical measurement system with 29 channels as 

shown in Fig was used for the survey. The scan pitch 

was about 0.07m and the height of the antennas was 

about 0.2m from the road surface. The stepped 

frequency continuous wave method was applied for 

the EM wave propagation to detect the subsurface pipe 

and the operating frequency range was 50 MHz – 3030 

MHz with 20 MHz pitch. Additionally, the direct 

coupling removing filter and a calibration filter of 

antennas were used during the data acquisition. 

 

4.2.  Data 

 

The experimental fields as shown in Fig. 3 and Fig. 

4, were prepared with buried pipes and the pipe data 

was measured by using the above GPR system. This 

survey was done by expert people and the data was 

arranged by the scan no., channel no., frequency, real 

and imaginary parts of Fourier coefficient as a raw text 

data.  

 

The MATrix LABoratory (MATLAB) is one of the 

popular applications for the big data analysis. [27] 

This computational platform has been developed 

targeting to ease the matrix operation. Therefore, 

production of training data i.e., conversion of text data 

to mat data and plotting of the data, analysis of data 

was done by using MATLAB.  

The electromagnetic FDTD simulations were done 

by using gprMax, an open source, python-based 

program for the simulation of electromagnetic wave 

for GPR system. [28] Since the volume of data is huge, 

hence GPU system was used for the FDTD simulation, 

generating database, developing, and validating the 

algorithms. Additionally, a denoising filter was 

applied to the experimental field data to obtain a strong 

intensity distribution and reflection pattern. [29] 

Among the several image filter techniques, the 

subtract mean or mean data filter technique as shown 

in Fig. 5, which reduce the variation of pixel intensities 

of the image, is easy and intuitive to apply for the 

image enhancement. Therefore, the subtraction of the 

mean image filter was deployed for the denoising of 

the experimental data in this research. 

 

 
Fig. 1. Vehicle With GPR System 

 

 
Fig. 2. Antennas arrangement in GPR system [26] 
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Fig. 3. Experimental Field-1 (Gunma) 

Buried Pipe

 
Fig. 4. Experimental Field-2 (Hokkaido) 

 
 

 
Fig. 5. Mean Subtraction Image Filter 
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5. Simulation model 

 

Reflection and refraction are occurred at each 

boundary of the multilayer layer subsurface during the 

EM wave propagation and the propagation does not 

follow the same path due to the position of 

transmitting and receiving antennas. Which causes a 

multivariate and nonlinear relation, and which cannot 

be solved explicitly. Electromagnetic simulation by 

FDTD method was conducted for multilayer condition 

to overcome this problem and this FDTD simulation 

database was used to match with the measured data. 

The multilayer models were as shown in Fig. 7 was 

used for the simulations. 

 

 

Several thousand of simulations were performed 

during the research work and the calculation time for 

each simulation model depends on the size of 

discretization. Additionally, smaller discretization is 

essential for the higher level of accuracy and 1mm 

discretization was used for the simulation in this 

research. High configured computer with higher GPU 

is required for the faster EM simulation and the PCs 

with the following GPU, NVIDIA GeForce RTX 2080 

and NVIDIA GeForce RTX 1080Ti were used 

simultaneously for the several simulations. The 

gprMax application was used for the EM simulation 

and the EM wave propagation for the simulation at 

different time were shown in the following Fig. 8. 

6. Algorithms and Validations 

 

6.1. Basic algorithms 

 

The developed algorithm for the estimation of the 

properties of the subsurface pipe consist of some steps. 

The flow diagram of the developed algorithm is as 

following, 

 

 

6.1.1 3D CNN 

 

The 3D Convolution Neural Network developed 

by Dr. Takahiro Yamaguchi, Mizutani Lab, the 

University of Tokyo, was used on the experimental 

field data to detect the 3D region of the hyperbolic 

shape. This 3D CNN, deep learning method localize 

the 3D reflection pattern as shown in Fig. 10, which 

reduce the calculation time. For that, the target region 

was extracted by using 3D-CNN from a large-scale 

data. About 29-2D data set were obtained for the 29 

channels from the extracted 3D region. 

 

 

 
Fig. 8. Propagation of EM wave 

 

 
Fig. 10. Application of 3D CNN 

 
Fig. 9. Flow Diagram of Algorithm 

 
Fig. 7. Simulation Model 
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6.1.2. Hyperbola fitting 

 

Higher dimensional fitting equation including the 

pipe radius does not represent hyperbola and causes an 

unstable solution for the parameter estimation. 

Therefore, the radius of the pipe was estimated 

individually. Then, a pattern recognition algorithm 

was developed based on this simple mathematical 

equation,  

 

 

where a and b are the hyperbola parameters. This 

hyperbola parameters were employed for the 

development of the algorithm. A pattern recognition 

approach was used to know the parameters of the 

reflected hyperbola. About 1000 binary data set, using 

the range of the hyperbola parameter 𝑏, was produced 

and 2D cross correlation with the field data was 

observed as shown in Fig. 11.  

 

This correlation function returns a cross correlation 

value for each binary hyperbola and the reflected 

hyperbolic shape. The maximum correlated value as 

shown in Fig. 12 represents the best fitted hyperbola. 

 

6.1.3. Radius of the pipe 

 

The intensity distribution of FDTD simulation 

model was observed after up sampling the data in the 

depth direction and applying the mean subtraction. 

The radius of in the real field varies from 2.5 cm to 40 

cm. The pipe sizes considered in the FDTD simulation 

model were 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 

50 cm. The peak width between the points of intensity 

distribution of the experimental field data were 

compared with the peak width of the intensity 

distribution of the simulation data as shown in Fig. 13. 

 

All the radius for 29 channels calculated from the 

intensity distribution by comparing the peak width of 

field intensity distribution at different normalized 

value were noted. The average of all recorded data was 

considered as the radius of the field pipe.  

 

6.1.4. Depth of the pipe 

 

The relationships of hyperbola parameters with 

depth of the pipe and relative permittivity of soil have 

been observed using the FDTD simulation database. 

Where a particular pipe depth shows a nonlinear 

relationship between hyperbola parameter 𝑏  and 

relative permittivity of soil and this relationship varies 

with the different pipe depths. Therefore, a 

multivariate, nonlinear relationship has been 

developed from the FDTD simulation database. An 

evaluation function was developed based on the fitting 

relationship as shown in Fig. 14 of this FDTD 

simulation database. 

The field pipe depth, 𝑑 and relative permittivity of 

soil, 𝜀  were inversely estimated from the hyperbola 

parameters, 𝑎  and 𝑏 . The genetic algorithm (GA) 

optimization was employed to evaluate the depth of 

pipe and relative permittivity of the field soil by 

optimization process. The depth estimation was 

improved by considering the effect of the pipe radius 

than without considering pipe radius. The equation (ii) 

represents the evaluation function for the following 

fitting relationship shown in Fig. 14. 

Where, Y is the hyperbola parameter b, Z is the 

hyperbola parameter a, x1 is the depth of the pipe, x2 is 

the relative permittivity of soil. 

𝑥2

𝑎2
 −

𝑦2

𝑏2
 = 1 …………….. (i) 

 
Fig. 11. Cross Correlation 

 
Fig. 12. Cross correlations values for 1000 binary dataset 

 

 
Fig. 13. Pipe radius calculation from intensity distribution 

Peak width

Several thresholds

Intensity Distribution for 

Simulation Data

15 cm radius

Peak width

Intensity Distribution for

Measured Data

𝐸𝑣𝑎𝑙 = (𝑌 − (−3.4 + 22.7 × 𝑥1 + 0.4 × 𝑥2 − 5.9 × (𝑥1)
2 

+0.3 × 𝑥1 × 𝑥2 − 0.0 × (𝑥2)
2))2 + (𝑍 − (−23.9 + 75.9 × 𝑥1 

+2.0 × 𝑥2 + 2.7 × (𝑥1)
2 + 14.2 × 𝑥1 × 𝑥2 − 0.3 × (𝑥2)

2))2 …(ii) 
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6.1.5. Material of the pipe 

 

The most common materials of the pipe using for 

water supply, sewage system and others are plastic, 

concrete, and steel. [28][29] The material of the pipe 

was estimated inversely by the attenuation ratio using 

the known depth and radius. The attenuation ratio is 

defined as the ratio of the intensity of the pipe 

reflection and intensity of the asphalt surface. Then 

several FDTD simulation models were prepared and 

executed by using different permittivity of pipe 

material and the attenuation ratio was recorded for 

each simulation case. Finally, a relationship between 

the relative permittivity of the pipe and the attenuation 

ratio was prepared.   

Then, the attenuation ratio of the experimental field 

data was estimated for all the 29 channels. The average 

of the attenuation ratio was taken and using the above 

relationship the permittivity of the experimental field 

pipe was determined as shown in Fig. 15. 

 

 

When the permittivity of the pipe material was 

found between the range 2 to 4 then the pipe was 

defined as plastic pipe. [30] The pipe was defined as 

concrete when the permittivity of the pipe material lies 

between 5 to 20. For the infinitely large permittivity of 

the material represents the steel pipe. [31] 

 

6.1.6. Tracing and 3D Mapping 

The tracing of the pipe was applied to detect all the 

estimated depth point belongs to one point or not. The 

layout of the pipe in the longitudinal direction was 

obtained by employing linear regression to all the 

estimated depth. Since Moor Neighborhood tracing 

algorithm is a popular and easy to detect the trace point 

hence this algorithm was used for the tracing of the 

subsurface pipe.  

According to this algorithm, the angle of the 

candidate points was calculated in clockwise direction 

from the initial points and candidate point with smaller 

angle was selected as the next trace point. Similar 

approach was applied for the other points and all the 

trace points were determined. This procedure ends 

when the tracing algorithm return to the initial point. 

The following Fig.  16. shows the used tracing 

algorithm of the pipe in 3D region. Then, applying the 

linear regression to all the traced depth point, the 

layout of the pipe was obtained, and all parameters of 

the subsurface pipe were shown in the 3D map. 

 

 

6.2. Validation of Algorithm 

The developed algorithm was employed to detect 

the properties of pipe for different experimental fields 

data and varying the bituminous pavement thickness. 

The target pipes of the different experimental fields 

are as shown in Fig. 17 and Fig. 18. The estimated pipe 

properties, radius, depth, and material for different 

experimental field have been discussed in result and 

discussion section. 

 
Fig. 17. Target Pipe from Experimental Field-1 

 
Fig. 16. Moor Neighbourhood tracing algorithm 

 

 
Fig. 14. Fitting relationship between the hyperbola parameters 

and relative permittivity of soil and depth of the pipe 

 
Fig. 15. Pipe material determination 
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7. Results and Discussion 

 

7.1. Radius of the field pipe 

 

After comparing the intensity distribution of the 

experimental field data with the intensity distribution 

of the simulation database, the radius of the pipes was 

obtained as the following Table 1. The accuracy of the 

estimated mean radius for the Target pipe 1, Target 

pipe 2 and Target pipe 3 were 83%, 67%, and 89% 

respectively. 

 
Table 1: Estimated pipe radius for different target 

Target Estimated 

Radius, [cm] 

True Radius, 

[cm] 

Pipe 1 17.5 15 

Pipe 2 13.3 10 

Pipe 3 11.1 10 

 

The estimation result of the pipe radius can be 

improved if there is more smooth intensity distribution 

along the hyperbola of the field data. For Target pipe 

2, the accuracy of the radius estimation was lower than 

the other because of the image was not improved 

enough even applying the filter. Although, the field 

data have lots of noises and disturbance in the intensity 

distribution along the hyperbola, this level of accuracy 

is applicable in the field survey. 

 

7.2. Depth of the field pipe 

 

The depth of the field pipe and relative permittivity 

of the filed soil optimized inversely by the genetic 

algorithm (GA) using the evaluation function with 

considering the effect of the pipe radius. The estimated 

depth of the different target pipes at different channels 

were as the following Fig. 19, Fig. 20, and Fig. 21. 

 

 

The depths of the Target pipe 1, Target pipe 2 and 

Target pipe 3 were determined with 4.9%, 5.0% and 

1.6% error respectively. This accuracy is higher than 

the other research works which were done without 

considering the effect of the pipe radius. The depths of 

the pipe for different experimental fields are as 

following Table 2. 

 
Table 2: Estimated pipe depth for different target 

Target Estimated 

Depth, [cm] 

True Depth, 

[cm] 

Pipe 1 57.7 55 

Pipe 2 52.5 50 

Pipe 3 49.2 50 

  

The field pipe depth without considering the effect 

of the pipe radius for different target pipe were 45.3 

cm, 48.4 cm, and 44.8 cm respectively. These results 

illustrate large error than the considering the effect of 

pipe radius as like the previous research works. 

Therefore, the pipe radius effect should be considered 

for the higher accuracy in the depth estimation of the 

subsurface pipe. 

 

7.3. Material of the pipe 

 

The attenuation ratio of the Target pipe 1, Target 

pipe 2 and Target pipe 3 were determined 0.0463, -

0.0712 and 0.015 respectively. The relative 

permittivity of the different pipes was estimated from 

the relationship of attenuation ratio and relative 

permittivity as shown in Fig. The material of the pipe 

was estimated inversely from this relative permittivity. 

Usually, the relative permittivity of steel pipe is 

infinity large compared to other pipes. On the other 

hand, the permittivity of plastic is smaller than the 

permittivity of soil and the permittivity of concrete 

pipes ranges between 5 to 20. The pipe materials for 

 
Fig. 18. Target Pipes from Experimental Field-2 

 
Fig. 19. Depth at different channels of Target Pipe 1 
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Fig. 20. Depth at different channels of Target Pipe 3 

 

 
Fig. 21. Depth at different channels of Target Pipe 3 

 

  

  

  

  

  

  

  

        

 
ep

th
 o

f 
 
ip

e 
 c

m
 

 hannel  o.

          

 

  

  

  

  

  

  

  

        

 
ep

th
 o

f 
 
ip

e 
 c

m
 

 hannel  o.

          



  8 

the different Target pipes were shown in the following 

Table 3. 

 
Table 3: Calculated pipe materials for different target 

Target Relative 

Permittivity 

Evaluated 

Pipe Material 

True Pipe 

Material 

Pipe 1 7.5 Concrete Concrete 

Pipe 2 2.7 Plastic Plastic 

Pipe 3 5.5 Concrete Concrete 

 

7.4. 3D mapping of pipe 

 

The accurate depth of the different field pipes was 

determined at each channel by the developed 

algorithm and genetic algorithm optimization. The 

Moor Neighborhood algorithms was applied to trace 

the depth points which were belong to one pipe. After 

getting the traced points, the linear regression was 

applied along the pipe direction to obtain layout of the 

pipe. The following Fig. 22, Fig. 23, and Fig. 24 are 

showing the traced points and the 3D layout of the 

different target pipes. 

 

 

7.5. Bituminous pavement thickness 

 

The thickness of the bituminous layer was 

considered about 10 cm for all the FDTD simulation 

models. There is minor effect on the estimation of the 

depth and diameter of the pipe for a small variation of 

the pavement thickness. For instance, decreasing the 

pipe thickness to 5 cm increase the depth of the pipe 1 

to 2 cm. Where, the developed algorithm shows large 

error of properties estimation for the large variation of 

pavement thickness compared to the simulation model 

thickness.  

 

8. Conclusions 

 

3D CNN was applied to extract the hyperbolic 

region from a large-scale data and a pattern matching 

algorithm was developed to detect the hyperbolic 

shape of reflection. Since, the relationship of 

hyperbola parameters with the depth of the pipe and 

the relative permittivity of soil was a nonlinear, 

multivariate hence the Genetic Algorithm 

optimization was applied to optimize the field pipe 

depth and the relative permittivity of the soil. For that 

an evaluation function was developed from the 

relationships of hyperbola parameters, depth of the 

pipe and the relative permittivity of soil using several 

FDTD simulation data. 

The parameters were estimated by genetic 

algorithm. The radius of the pipe was estimated from 

the intensity distribution along the hyperbola of the 

filed data.  All the validation cases, the pipe radius was 

estimated with an acceptable accuracy and this limit of 

accuracy can be applicable for the field investigation. 

The depth of the pipe was estimated successfully, and 

for all the validation cases, the accuracy of the 

estimation was 95% or more. This accuracy was 

achieved by considering the effect of the pipe radius. 

Therefore, effect of the pipe radius is not negligible 

and should be considered for the accurate estimation 

of the pipe depth. The relative permittivity of the pipe 

 

 
Fig. 22. 3D mapping of Target pipe 1 

 

 

 
Fig. 23. 3D mapping of Target pipe 2 

 

 
Fig. 24. 3D mapping of Target pipe 3 
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was determined from the relationship of attenuation 

ration and permittivity of the material developed by 

FDTD simulation database. The material of the pipe 

was determined successfully for all the field pipes.  

Moor Neighbourhood tracing algorithm was 

applied to trace the depth location in 3D region for all 

channels along the pipe direction and the 3D map of 

the pipe was developed. After applying the linear 

regression to all the pipe depth, the 3D map of the pipe 

with the actual pipe depth was plotted successfully. 

This type of 3D plot can be employed in the real field 

for smooth construction works by avoiding damage of 

pipe, construction delay and financial loss. 
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