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Abstract

This paper presents a Vehicle-Platoon-Aware Bi-Level Optimization Algorithm for Autonomous Intersection Management (VPA-

AIM) to coordinate the merging of Connected and Automated Vehicles (CAVs) at unsignalized intersections. The constraint-

coupled bi-level optimization is operated with a limited view of incoming traffic using the rolling horizon procedure to reduce

computational complexity. In each decision step, the platoon formation scheme is incorporated into an upper-level traffic

scheduling model as decision variables to pursue an optimal schedule from a systemic view. Meanwhile, the passing sequence

and timeslots of vehicles are jointly optimized with the platoon configuration scheme by virtue of real-time traffic states to

improve operational efficiency and fairness. After that, a lower-level trajectory planning model will generate dynamically-feasible

and energy-efficient trajectories according to the given schedule and coupling constraints with the objective of improving space

utilization to prevent spillbacks. Moreover, the quantifiable connection between the makespan of traffic scheduling schemes

and the occurrence of spillbacks is established while demonstrating that the cooperative platoon formation strategy is effective

in avoiding and mitigating spillbacks in normal and saturated traffic states. Additionally, the proposed algorithm can be

extended to mixed traffic scenarios with high penetration market rate of CAVs based on the assumption of tracking errors of

Human Driven Vehicles (HDVs) trajectories. Numerical experiments are conducted on extensive scenarios with different traffic

densities, where the Constraint Programming (CP) technique is used to produce the optimal schedule. Experimental results

indicate the superiority of the proposed approach in optimality and stability with reasonable sub-second computation time for

real-life applications.
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Abstract—This paper presents a Vehicle-Platoon-Aware Bi-Level
Optimization Algorithm for Autonomous Intersection Manage-
ment (VPA-AIM) to coordinate the merging of Connected and
Automated Vehicles at unsignalized intersections. The constraint-
coupled bi-level optimization is operated within a rolling horizon
to balance traffic performance and computational efficiency. In
each decision step, the platoon formation scheme is incorporated
into an upper-level traffic scheduling model as decision variables
to pursue an optimal schedule from a systemic view. Meanwhile,
the passing sequence and timeslots of vehicles are jointly optimized
with the platoon configuration scheme by virtue of real-time traffic
states to improve operational efficiency and fairness. After that, a
lower-level trajectory planning model will generate dynamically-
feasible and energy-efficient trajectories according to the given
schedule and coupling constraints with the objective of improving
space utilization to prevent spillbacks. Moreover, the quantifiable
connection between the makespan of traffic scheduling schemes
and the occurrence of spillbacks is established, demonstrating
that the cooperative platoon formation strategy is effective in
avoiding and mitigating spillbacks in normal and saturated traffic
states. Additionally, the proposed algorithm can be extended to
mixed traffic scenarios. Numerical experiments are conducted
on extensive scenarios with different arrival flows, where the
Constraint Programming technique is employed to produce the
optimal schedule. Experimental results indicate the superiority of
the proposed approach in optimality and stability with reasonable
sub-second computation time for real-life applications.

Index Terms—Cooperative driving; vehicle platooning; traffic
scheduling; queue spillback; unsignalized intersections

I. INTRODUCTION

TRAFFIC intersections are the physical area where different
transport flows meet and cross, resulting in natural

bottlenecks in urban road networks. However, the present
signalized intersection is far from perfect for the burgeoning
number of vehicles [1]. It is observed that the switching of
traffic signals constantly interrupts the traffic flow and gives
rise to a frequently observed phenomenon called stop-and-go
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traffic [2]. Consequently, drivers may be tired, agitated, and
even angry, leading to undesirable driving behaviors called
road rage [3], which may further aggravate congestion. In
addition, the signal-switching process is not instantaneous but
requires a setup phase (i.e., the yellow light) lasting about five
seconds [4], which reduces intersection throughput considerably.
Furthermore, when adverse weather occurs (e.g., heavy rain,
fog, snowstorms, and dust storms), it can be challenging for
drivers or onboard infrared cameras to capture the signal light
accurately [5].

Fortunately, Connected and Automated Vehicles (CAVs)
that combine wireless communication and autonomous driving
hold the potential to revolutionize intelligent transport systems
[6], offering advantages for accident avoidance [7], mobility
improvement [8], and emission reduction [9]. The benefits
of CAVs on intersection control are mainly two-fold. On
the one hand, CAVs enable the joint optimization between
passing sequences and motion trajectories at autonomous
traffic intersections [10]–[13]. In other words, vehicles will run
with the pre-determined trajectories within assigned timeslots
to improve traffic efficiency by avoiding unnecessary speed
up/down operations and stops. Therefore, it is expected that
physical traffic signals will no longer be necessary for future
traffic management [14], since the Vehicle-to-Everything (V2X)
technique enables virtual traffic lights [15] that reside at each
vehicle to reduce the difficulty of signal detection. On the other
hand, CAVs enable the application of vehicle platooning [16]–
[20], which can further increase road storage by reducing inter-
vehicular headway considerably [21]–[23] and improve energy
efficiency by mitigating aerodynamic drag and unnecessary
speed fluctuations [24]. Hence, researchers try to facilitate the
advantages of vehicle platooning to enhance traffic mobility
at autonomous intersections, which raises a critical research
question of how to determine the optimal platoon formation
scheme for vehicles to optimize important objective indicators
subject to relevant constraints.

Despite extensive existing works on jointly optimizing
vehicle trajectories and passing sequence [10]–[13], the problem
of platoon configuration has not been adequately addressed
due to the complexity of the requirement for a global decision-
maker. For example, most of the existing research assumes that
platoons have been formed before vehicles enter the control
zone [12], [25], [26], whereas other works group vehicles into
platoons by virtue of empirical rules from the individual point
of view [11], [27], [28], without cooperation with vehicles
on other lanes. Hence, this paper aims to address these gaps
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in cooperative platoon formation to explore the potential of
platoon-aware traffic management.

Compared to existing studies, the contributions of this paper
are threefold. First, this work incorporates the platoon formation
scheme as decision variables into the joint optimization of
vehicle trajectories and intersection controllers, intending to
pursue the global-optimal schedule, significantly improving
operational efficiency and fairness compared with the state-
of-the-art algorithms. In other words, the decision to merge
vehicles into platoons is based on real-time traffic states to
achieve one-dimensional cooperation on the same lane and two-
dimensional cooperation with vehicles on another lane. Second,
this work presents an effective traffic coordination algorithm
to avoid/mitigate spillbacks in normal/saturated traffic states,
where the quantifiable connection between the makespan of
traffic scheduling schemes and the occurrence of spillbacks
is established. Additionally, the proposed algorithm can be
extended to mixed traffic scenarios with various penetration
rates of CAVs based on the assumptions that Human Driven
Vehicles (HDVs) have bounded tracking errors and CAVs serve
as platoon leaders. Third, it is able to produce provable optimal
traffic scheduling schemes with high computational efficiency
and stability for real-life applications using the Constraint
Programming (CP) technique, whose computation time remains
at a sub-second level even for high-flow traffic states in most
scenarios tested.

The remainder of this paper is organized as follows: Section
II discusses related works on Autonomous Intersection Manage-
ment (AIM). Section III presents definitions of the cooperative
merging problem, followed by a detailed description of the
proposed bi-level optimization method in Section IV. Numerical
simulation experiments are conducted in Section V along with
performance comparison with other existing methods. Section
VI concludes this paper and discusses some open issues and
future work.

II. RELATED WORK

Since Dresner and Stone presented the concept of AIM
[29], numerous strategies have been proposed to improve
traffic efficiency at autonomous intersections without signal
controllers. It is clear that the overall performance of the
system is susceptible to the underlying control strategy [30],
[31], which can be categorized into three groups, i.e., the
Priority-based AIM (PR-AIM), Optimization-based AIM (OP-
AIM), and Heuristic-based AIM (HR-AIM). The First-In-First-
Out (FIFO) policy [32] is a classical priority-based method,
while the FIFO-based reservation system has been proved to
outperform the signal controller in terms of delay under certain
circumstances [33]. In that case, the priority of n vehicles
will be determined by a centralized controller according to
their arrival times, which effectively reduces the computational
complexity from O(n!) to O(n). Hence, feasible solutions can
be generated in real-time, while the performance of solutions
cannot be guaranteed since it sets fairness as the fixed goal
[34].

In order to obtain the optimal solution, a variety of OP-
AIM methods are proposed by researchers, who translate the

traffic scheduling problem into a mathematical programming
problem and employ optimization-based methods to generate
high-performance solutions in terms of delay [35], throughput
[36], energy consumption [37], quality of experience [38], and
communication overhead [25]. Besides, constraints regarding
first-order dynamics limits and inter-vehicle separation distance
are well-designed in reference [36] to ensure safety. Among
OP-AIM methods, Mixed-Integer Linear Programming (MILP)
models are widely adopted by existing literature to describe
the discrete and continuous aspects of the system. For ex-
ample, passing sequences of vehicles can be formulated by
discrete variables, while their states (e.g., location, velocity,
and acceleration) must be continuous. Besides, to generate
dynamically feasible trajectories, Lu et al. [39] directly set
instantaneous speeds of vehicles as time-varying decision
variables, considering n×N variables in total, where n and M
represent the number of vehicles and time steps, respectively.
By contrast, several hierarchical frameworks are developed in
[11]–[13], [40]–[42]. For example, Guo et al. [11] propose a
framework of dynamic programming with shooting heuristic
as a subroutine (DP-SH) to find the near-optimal solution
for the integrated trajectory optimization and intersection
control problem. Note that such two-step approaches have
smaller search space than the former since they decoupled the
optimization of vehicles’ crossing timeslots and trajectories.
Although these programming models can be solved with off-
the-shelf software packages, obtaining solutions for large-
scale problems is still time-consuming [26], which limits its
application to dynamic traffic conditions.

Besides, HR-AIM methods use some heuristic rules to group
vehicles into platoons, which accelerates the process of finding
a satisfactory solution [21], [22]. Such a strategy can reduce
model complexity since the centralized controller only needs to
deal with platoon leaders, while the computation and commu-
nication load can be released [43]. For example, Miculescu et
al. [44] proposed a polling-based method to schedule passing
sequences of vehicles, where natural platooning behaviors
emerge and help to save switching time. Besides, the authors
compared different polling policies (i.e., exhaustive, gated,
and k-limited policies) in the MATLAB-based simulations.
Tallapragada et al. [45] adopted the k-means algorithm to
form clusters based on vehicle positions, while the maximum
number of clusters is pre-defined to reduce the computational
burden. Ge et al. [46] developed a centralized coordination
scheme based on MILP and used graph theory to decompose the
original vehicle swarm into small batches after determining the
relative priority and speed of vehicles. However, these platoon
formation strategies are derived from previous experiences
without being optimal, perfect, or rational since they make
decisions from the local point of view without considering the
global traffic information.

Although different studies use different control strategies,
most incorporate the rolling horizon procedure into their
method. Therefore, the long-term optimization can be decom-
posed into a series of subproblems with a shorter planning
horizon, which helps to reduce computational complexity.
Admittedly, a longer horizon can enable these subproblems
to better approximate the long-term optimization problem,
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thus improving the optimization performance. However, the
prediction of dynamic traffic flow is only reliable over a limited
horizon. Moreover, a long horizon may increase the scale of the
subproblems, making it computationally challenging to solve
them. Hence, the horizon length should be carefully selected
to balance optimality and computation efficiency. Accordingly,
Levin et al. [47] presented a rolling-horizon algorithm to extend
the MILP model to larger numbers of vehicles, which takes
5-10 seconds to schedule up to 40 vehicles within a 15-second
planning horizon. Mirheli et al. [48] established a mixed-integer
non-linear programming model to determine optimal conflict-
free reservations in an isolated intersection, which takes more
than 10 seconds to schedule 70 vehicles within a 15-second
planning horizon. Yao et al. [41] proposed a 0-1 MILP model
for vehicles entering scheduling, which takes less than one
second to find the optimal scheduling scheme for up to 12
vehicles within a 10-second planning horizon. Ge et al. [46]
take about three seconds to schedule 40 vehicles within a 15-
second planning horizon. To the best of our knowledge, most
existing research cannot solve large-scale AIM problems in
real-time (e.g., at the sub-second resolution, which is crucial to
reduce tracking errors and ensure vehicles follow the planned
trajectories [49]). Hence, it motivates us to develop an efficient
traffic scheduling method to pursue the optimal solution in a
short time even for high-flow traffic states by integrating the
advantages of OP-AIM and HR-AIM.

III. PROBLEM DEFINITION

In this paper, we focus on the cooperative merging problem
through a fully autonomous traffic intersection without signal
controllers as shown in Fig. 1. It is assumed that all the
vehicles are CAVs equipped with wireless communicators (e.g.,
Dedicated Short Range Communication (DSRC) and cellular
devices) to support vehicular communications [50]–[52]. This
simple scenario consisting of two one-way traffic streams is
defined as a standard test scenario by [10], [40], [41], [44], [53],
[54]. It is chosen to gain insights into the benefits of platoon-
aware traffic scheduling for automated traffic operations, which
serves as a building block for subsequent studies. Besides, we
assume that Base Stations (BSs) and Road Side Units (RSUs)
are responsible for providing cellular- and DSRC-based V2X
networks outside and within the control region, respectively.
Thus, the kinematic states of vehicles (e.g., position, speed,
and acceleration) can be captured by the decision-maker via
the cellular network before they enter the control zone [55],
such that their arrival time can be predicted ahead of time.
After that, the RSU, which serves as a centralized controller,
can control the motion of vehicles via wireless communication.

Given the planning horizon t ∈ [T0, T0 +∆T ], we assume
that there are nk vehicles existing on the road k ∈ K =
{0, 1}, which can be denoted by Vk,i and indexed by i ∈ I =
{1, 2, · · · , nk} according to their sequence of arrival. Besides,
the overlapped region of two roads is called the merging zone
and has a width of W , while the portion of the road segment
within a distance of L to the merging zone is called the control
zone. It is assumed that vehicles are required to form mk

platoons within the control zone (mk ≤ nk), which can be

Figure 1. Illustration of the cooperative merging problem at a fully autonomous
traffic intersection without signal controllers.

denoted by Pk,i and indexed by j ∈ J = {1, 2, · · · ,mk}.
Without loss of generality, each vehicle is represented by a
two-dimensional and rectangular rigid body with length l and
width w. Besides, suppose each vehicle is subject to second-
order dynamics of the following form:

s̈tk,i = atk,i, ∀k, i, (1)

where stk,i denotes the displacement of the vehicle’s front
bumper between the entrance of the control zone and current
position, ṡtk,i the velocity, and atk,i the acceleration.

During the time when each vehicle passes through the control
zone and merging zone, there are three special moments as
shown in Fig. 2. In detail, (1) the arrival time t+k,i is the moment
when its front bumper enters the control zone where stk,i = 0;
(2) the start time t∗k,i is the moment when its front bumper
enters the merging zone (i.e., crosses the stop line) where
stk,i = L; and (3) the departure time t−k,i is the moment when
its rear bumper leaves the merging zone where stk,i = L+W+l.
It is obvious that t−k,i > t+k,i for all vehicles. After that, we
define the interval of these three moments as the (1) waiting
time t+,∗

k,i = t∗k,i − t+k,i, (2) operation time t∗,−k,i = t−k,i − t∗k,i,
and (3) travel time t+,−

k,i = t−k,i − t+k,i, respectively. With these
notations in hand, we define safety as follows.

Definition III.1 (Safety). The control zone is said to be safe at
time t, if each vehicle maintains a sufficient separation with its
preceding vehicle, i.e., stk,i−1−stk,i > l for all k ∈ K = {0, 1}
when i > 1. Besides, the merging zone is said to be safe, if
there are no pairwise collisions among vehicles, i.e., [t∗k,i, t

−
k,i]∩

[t∗k,i−1, t
−
k,i−1] = ∅ and [t∗k,i, t

−
k,i] ∩ [t∗1−k,i′ , t

−
1−k,i′ ] = ∅ for

all k ∈ K and i, i′ ∈ I = {1, 2, · · · , nk}.

From a practical point of view, there should be an extra
separation between vehicles when they enter the merging zone
in case of communication latency and control error. Hence,

Figure 2. Illustration of time parameters within the intersection area.
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Figure 3. Illustration of the sequence-dependent switching time.

we define the switching time on the occupation timeline of
the merging zone as shown in Fig. 3, which should be greater
than a minimum threshold value for security.

Definition III.2 (Switching time). In the merging zone, the
switching time between vehicles coming from the same road
is defined as t∗k,i − t∗k,i−1 for all k ∈ {0, 1} and i > 1. The
calculation of switching time is the same as the time-headway
of vehicle i and i− 1 at the stop line when stk,i = stk,i−1 = L.
In addition, the switching time between vehicles coming from
different directions can be calculated by |t∗k,i − t∗1−k,i′ | for all
k ∈ {0, 1} and i, i′ ∈ {1, 2, · · · , nk}.

In this paper, we formulate the assumption of sequence-
dependent switching time tk

′,i′

k,i as follows since the vehicle
platooning technique helps to reduce inter-vehicular distances
considerably [22].

Assumption 1 (Sequence-dependent minimum switching time).
We assume that the minimum switching time tk

′,i′

k,i of vehicles
in the merging zone is varied with each pair of individuals,
which can be calculated by

tk
′,i′

k,i =

 τ, if k′ = k and same platoon,
σ1τ, k

′ = k,
σ2τ, else if k′ ̸= k

∀k, k′, i, i′. (2)

where τ denotes the minimum time-headway of vehicles in the
same platoon on the same road, σ1 the factor of safety when
vehicles are assigned into different platoons on the same road,
and σ2 the factor of safety when vehicles come from different
roads (σ2 > σ1 > 1).

Given the departure velocity v−, the delay of an individual
vehicle can be calculated by the difference between its actual
departure time t−k,i and virtual departure time, i.e., (t+k,i +
L+W+l

v− ). In detail, the latter one is the time in ideal driving
scenarios where the vehicle travels through the control and
merging zone under free-flow1 conditions.

Definition III.3 (Delay). The delay of vehicle is defined as

tDi,k = max{0, t−k,i − (t+k,i +
L+W + l

v−
)}.

Note that the maximum delay among vehicles reflects the
fairness of the traffic scheduling scheme. In other words, the
smaller the maximum delay, the smaller the variance of travel
times, and the better the traffic scheduling scheme in terms of
fairness.

Next, we define the makespan of a given traffic scheduling
scheme as the departure time of the last vehicle within the

1Note that the free-flow condition is only used to estimate the virtual
departure time of vehicles, not the necessary condition of the proposed
algorithm.

Figure 4. Illustration of the occurrence of spillbacks.

current horizon. It is the period of time that the scheduling
scheme took to let all the vehicles pass through the intersection
area, reflecting the operational efficiency of the underlying
control policy.

Definition III.4 (Makespan). Given a set of vehicles denoted
by Vk,i where k ∈ K = {0, 1} and i ∈ {1, 2, · · · , nk}, the
makespan of a traffic scheduling scheme is defined as

Cmax = max
k∈K

t−k,nk
= max

k∈K
{t∗k,nk

+
W + l

v−
}.

As illustrated in Fig. 4, the traffic spillback refers to the
situation when the back of the queue propagates to the
previous intersection, leading to extended blockages and queue
overflowing buffers. It is evident that spillbacks occur because
vehicles cannot pass through the merging zone on schedule,
e.g., due to the sudden increase in traffic volume or inefficient
traffic management methods.

In this paper, we show that the makespan is a helpful
indicator to predict the time when spillbacks occur. To
demonstrate this, we first establish a condition in Lemma 1 such
that the violation of this condition will cause queue to constantly
grow, and hence spillback will eventually happen. Based on
this condition, we then calculate in Property 1 the estimated
number of rolling horizon cycles without the occurrence of
spillbacks.

Lemma 1. For a given planning horizon t ∈ [T0, T0 +∆T ],
let us assume that Tmin is the minimum time interval between
a vehicle’s arrival and start time in each horizon, the value
of which is affected by the trajectory planning algorithm. Let
Cmax be the makespan of the current traffic scheduling scheme.
Then, the queue will not be carried over from the current
horizon to the next one if

Cmax ≤ ∆T + Tmin. (3)

Proof. Let us consider two adjacent planning horizons, i.e.,
[T0, T0 + ∆T ] and [T0 + ∆T, T0 + 2∆T ]. The ideal earliest
moment when the front bumper of the first vehicle in the
next horizon enters the merging zone can be denoted by T0 +
∆T + Tmin, the value of which is determined by the trajectory
planning algorithm without considering the collision avoidance
constraint. In addition, the moment when the rear bumper of
the last vehicle in the previous horizon leaves the merging
zone can be denoted by T0 + Cmax. This is the actual earliest
available time for vehicles in the next horizon to enter the
merging zone that ensures safety.

It is obvious that if the actual earliest available moment
(which is affected by vehicles in the previous horizon) is less
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Figure 5. Schematic diagram for calculating the number of rolling horizon
cycles without the occurrence of spillbacks.

than the ideal one, the queue will not be carried over from the
previous horizon to the current one. Therefore, we have

T0 + Cmax ≤ T0 +∆T + Tmin.

This completes the proof.

In this paper, we try to avoid spillbacks in normal traffic
states where traffic can be effectively managed by minimizing
the makespan of optimized traffic scheduling schemes and
preventing delay propagation. Moreover, we try to mitigate
spillbacks (i.e., postpone the occurrence of spillbacks) in
saturated traffic states. To this end, we provide an upper bound
for the number of rolling horizon cycles without the occurrence
of spillbacks to calculate the maximum duration for which it
can disperse traffic without causing a spillback.

Property 1 (Number of rolling horizon cycles without the
occurrence of spillbacks). Suppose L∗ denotes the remaining
road storage space, which is determined by the number of
vehicles that arrived in advance but still exist on the road, i.e.,
L∗ = L− L′, where L′ denotes the length of queue. Let d be
the minimum inter-vehicle distance and h be vehicles’ arrival
intensity in seconds per vehicle (s/veh), which denotes the
average headway. Then, in scenarios where the arrival flow
is slowly changing, a spillback is expected to occur after N
cycles of rolling horizons, where

N = [
L∗

l+d · h− Tmin

Cmax −∆T − Tmin
]. (4)

Recall that L and l denote the length of the road and vehicles,
∆T the length of the planning horizon, Tmin the minimum travel
time of vehicles, Cmax the makespan of the traffic scheduling
scheme in the current horizon. According to Lemma 1, it is clear
that the queue will not be carried over from the current horizon
to the next one if Cmax ≤ ∆T + Tmin. On the contrary, the
queue will be carried over to the next horizon if Cmax > ∆T +
Tmin as shown in Fig. 5, which may cause delays propagating
backward and accumulating, eventually leading to congestion
and spillbacks. Note that spillbacks are expected to occur when
the number of queued vehicles exceeds the maximum road
storage (i.e., L

l+d ). Then, the time when the road storage reaches
its limit can be estimated by Lh

l+d . Note that the derivation of
Eq.(4) relies on a point queue model to calculate an upper
bound for the duration for which it can disperse traffic without
causing a spillback.

Figure 6. Framework of the proposed bi-bevel optimization model.

IV. VEHICLE-PLATOON-AWARE BI-LEVEL OPTIMIZATION
FOR AUTONOMOUS INTERSECTION MANAGEMENT

A. Method Framework

In this section, we propose a bilevel optimization algorithm,
named VPA-AIM, which assigns vehicles to platoons to get
through the unsignalized intersection cooperatively. Efficient
coordination is achieved by solving two coupled optimization
models. In detail, the upper-level task is referred to as platoon-
aware traffic scheduling, which determines the optimal platoon
formation scheme of vehicles during the control zone and
allocates the sequence and timeslots of platoons passing through
the merging zone. The lower-level task is referred to as
multi-vehicle trajectory optimization, which designs referenced
trajectories for multiple vehicles during the process of vehicles
merging into platoons and passing through the control and
merging zones. The two models are connected to each other via
several coupling constraints, which ensures that the decisions
generated by the upper-level traffic scheduling model are
feasible for the lower-level trajectory planning model. The
workflow of the VPA-AIM algorithm is presented in Fig. 6.

This paper proposes a rolling horizon procedure to deal
with this online optimization problem since the prediction of
dynamic traffic flows is reliable only over a limited horizon.
This procedure decomposes the long-term optimization into a
series of subproblems with a shorter time horizon, such that the
computation time can be reduced. According to this method,
a vehicle scheduling scheme is first determined up to a given
point in time, ignoring everything that could happen afterward.
After that, the planning interval is iteratively moved forward
in time to generate the following schedule and so on.

In each decision step, the traffic scheduling scheme of
vehicles (i.e., their departure time, which includes information
about the platoon formation scheme) is optimized in the upper-
level model to minimize the makespan and the maximum
delay. Besides, referenced trajectories of vehicles are designed
and optimized in the lower-level model according to the pre-
determined arrival and departure time to reduce the overall
energy consumption of vehicles and improve space utilization
to prevent spillbacks within the intersection area.
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B. Upper-Level Traffic Scheduling Model

1) Decision Variables: Recall that there are nk vehicles
existing on the road k ∈ K = {0, 1}, which are indexed by i ∈
I = {1, 2, · · · , nk}. These vehicles are required to be assigned
into mk platoons indexed by j ∈ {1, 2, · · · ,mk}(mk ≤ nk).
Therefore, we define the decision variables as the start time of
vehicles, i.e., t∗ = {t∗k,i}k∈K,i∈I .

Besides, we characterize platoon formation using a dummy
binary variable xk

i that represents whether vehicle Vk,i is the
leading vehicle of a platoon. In other words, we have

xk
i =

{
1, if Vk,i is a platoon leader,
0, if Vk,i is a platoon follower. ∀k, i, (5)

which can be expressed as a nk-dimensional vector x⃗k for all
i ∈ I . For example, suppose there are five vehicles indexed by
{1, 2, 3, 4, 5} on the road k and they are assigned into three
groups, i.e., {1, 2}, {3}, {4, 5}. In this case, Vk,1, Vk,3, and
Vk,4 serve as platoon leaders, while Vk,2 and Vk,5 serve as
platoon followers. Therefore, we have x⃗k = [1, 0, 1, 1, 0].

To describe the formation scheme directly, we take yk as
an intermediate variable to denote the number of vehicles that
have been assigned to each platoon on the road k, i.e.,

y⃗k = {ykj |j = 1, 2, · · · ,mk}, (6)

mk∑
j=1

ykj = nk, ∀k, (7)

which can be inferred according to the value of xk
i . For example,

suppose there are five vehicles (nk=5) on the road k indexed by
{1, 2, 3, 4, 5} and they are assigned into three groups (mk = 3),
i.e., {1, 2}, {3}, {4, 5}. In this case, Vk,1 and Vk,2 are assigned
into the first platoon, Vk,3 the second, Vk,4 and Vk,5 the third.
In other words, there are two, one, and two vehicles in each
platoon, respectively. Therefore, we have y⃗k = {2, 1, 2}.

In addition, we take zi,i′ as another intermediate variable to
denote the passing sequence of vehicles through the merging
zone, i.e.,

zi,i′ =

{
0, t∗k,i ≤ t∗1−k,i′

1, t∗k,i > t∗1−k,i′ ,
∀k, i, i′. (8)

For example, suppose the passing sequence of vehicles is
{V 1

1 , V
0
1 , V

1
2 } and t∗1,1 < t∗0,1 < t∗1,2, then it can be inferred

that z1,1 = 1 and z1,2 = 0 since t∗0,1 > t∗1,1 and t∗0,1 < t∗1,2,
respectively.

2) Constraints: Similar to [13], [30], [54], [56], we assume
overtaking is not allowed in the control zone. Hence, the passing
sequence of vehicles through the merging zone on the same
road should correspond to the order of arrival at the control
zone. In addition, there should be an extra separation between
vehicles when they enter the merging zone to avoid rear-end
collisions, which is referred to as the switching time tk

′,i′

k,i as
described in Definition III.2 and Assumption 1. Therefore, we
have the following precedence constraints in the form of chains
for vehicles on the same road:

t∗k,i − t∗k,i+1 − tk,i+1
k,i ≥ 0, ∀k, i < nk. (9)

To avoid side-impact collisions in the merging zone, the
start time of two vehicles coming from different roads should
also maintain a separation. Therefore, we have

zi,i′ × (t∗k,i − t∗1−k,i′ − t1−k,i′

k,i ) ≥ 0, ∀k = 0, i, i′, (10)

(1−zi,i′)×(t∗1−k,i′ −t∗k,i−t1−k,i′

k,i ) ≥ 0, ∀k = 0, i, i′. (11)

where zi,i′ describes the sequence of vehicles passing through
the merging zone as stated in Eq. (8). It takes only the value
of 1 or 0 to choose one of these two equations to activate. For
example, suppose t∗0,1 > t∗1,1 which suggests that V0,1 pass
through the intersection after V1,1, then we have z1,1 = 1.
In that case, Eq. (10) will be activated and Eq. (11) will be
disabled.

In addition, the ranges of decision variables and intermediate
variables are restricted by the following coupling constraints
explicitly dependent on the lower-level model:

t+k,i + Tmin ≤ t∗k,i ≤ t+k,i + Tmax, ∀k, i, (12)

1 ≤ ykj ≤ Mmax, ∀k, j, (13)

where Tmin and Tmax denote the minimum and maximum
time interval between arrival time t+k,i and start time t∗k,i;
Mmax denotes the maximum number of vehicles in a platoon.
Note that Tmax is used to prevent vehicles from stopping (i.e.,
to avoid the undesirable phenomenon of stop-and-go traffic),
whose value is affected by the motion pattern defined in the
lower-level trajectory planning model. Besides, the value of
Tmin is also determined by the lower-level model since the
maximum speed and acceleration of vehicles are bounded
by traffic regulations and mechanical limitations, respectively.
As suggested by [57], a larger maximum allowable platoon
size helps to increase roadway capacity, but may introduce
greater difficulties in maintaining string stability. Therefore, the
maximum platoon size Mmax should be limited to a moderate
value to trade off capacity and maneuverability.

3) Objective Functions: In the upper-level model, the
passing sequence and timeslots of vehicles are jointly optimized
with the platoon configuration scheme by virtue of real-
time traffic states to improve operational efficiency (i.e., the
makespan) and fairness (i.e., the maximum delay). Hence, we
formulate a bi-criteria optimization problem that simultaneously
considers the makespan of the traffic scheduling scheme and
the maximum delay of all the vehicles under constraints (7) and
(9-13). Moreover, we conduct the lexicographic optimization
on these objectives, the preferences of which are imposed
by ordering objective functions according to their importance,
rather than by assigning weights. In other words, the makespan
is considered the chief objective while the maximum delay is
subordinated, since the former has a direct influence on the
occurrence of spillbacks, according to Eq. (3). Specifically, we
have

min
t∗

f1(t
∗) = max

k∈K,i∈I
{t∗k,i +

W + l

v−
}, (14)

min
t∗

f2(t
∗) = max

k∈K,i∈I
{t∗k,i − t+k,i −

L+W + l

v−
}, (15)
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Figure 7. Illustration of the lower-level multi-vehicle trajectory planning task.

where t∗ = {t∗k,i}k∈K,i∈I represents the decision variables,
i.e., the start times of vehicles. Additionally, f1(t∗) and f2(t

∗)
denote the makespan and the maximum delay, respectively.

4) Solution Algorithm: It is challenging to solve the traffic
scheduling model in real time through classical mathematical
programming methods (e.g., mixed integer programming) due
to the complexity of the merging coordination problem.

Fortunately, the latest released commercial Constraint Pro-
gramming (CP) solvers (e.g., IBM ILOG CPLEX CP Optimizer
[58] and Google’s OR-Tools) offer us an opportunity to employ
out-of-the-box algorithms to solve combinatorial optimization
problems. The main advantage of CP is it can deal with
complex problems with much more decision variables within
limited runtime budgets while ensuring optimality. Especially,
the standard CP solver provided by IBM ILOG CPLEX has
shown to provide excellent performance in various scheduling
problems (e.g., vehicle routing [59], train scheduling [60],
drone scheduling [61], and airline management [62] problems).
However, to the best of our knowledge, CP has not been used
to solve the intersection management problem yet. Hence, this
paper wants to leverage the advantages of this technique and
ventures to pursue the global-optimal solution within the tight
runtime budget, contributing a novel application of CP to traffic
scheduling problems.

The CP solver works by iteratively trying different combi-
nations of values for variables in the problem, checking to see
if they satisfy all the constraints, and backtracking if they do
not. Additionally, the CP solver uses a search strategy that is
designed to explore all the space of solutions in an efficient
way, and to prune branches of the search tree that are not
likely to contain solutions. This process continues until the
optimal solution is found or it is determined that no solution
exists. We refer readers to [58] for a detailed explanation of
the underlying optimization principle.

C. Revisit of the Lower-Level Trajectory Planning Model

In this section, we first revisit the trajectory planning method
developed in our previous studies [63], [64], where a Hybrid
Evolutionary Algorithm with Cooperative Coevolution (HEA-
CC) is proposed and proved to be efficient to deal with the multi-
vehicle trajectory optimization. Furthermore, we formulate a
new objective function to fit the setting of this problem, which

Figure 8. Illustration of the encoding scheme for vehicle trajectories.

not only reduces the overall energy consumption of vehicles
but also improves the usage of road space to avoid/mitigate
spillbacks. This task is non-trivial since vehicles with non-
uniform initial separation distance are required to merge into
platoons while complex dynamics and safety-critical constraints
must be satisfied all the time.

It is noteworthy that the arrival time t+k,i and departure time
t−k,i of vehicles can be known if the optimal traffic scheduling
scheme has been generated by the upper-level model. Hence,
these two kinds of parameters are defined as the input of
the lower-level trajectory planning algorithm. As shown in
Fig. 7, we are required to design referenced trajectories for
vehicles according to the given platoon formation scheme and
the allocated passing sequence and timeslots. In this paper,
we adopt the HEA-CC algorithm as a building block in the
proposed bi-level optimization approach to solve the trajectory
planning problem. Besides, it is assumed that all the vehicles
have to adjust their speeds to an identical value before entering
the control zone such that their separation distances are stable.
This setting can be achieved by a speed harmonization operation
in advance [65], [66]. In addition, we assume that the motions
of vehicles can be controlled by the platoon leader who serves
as a centralized decision-maker, where the predecessor-leader-
following communication topology [67] and model predictive
control approach [68], [69] are used to maintain the desired
inter-vehicle distance and velocity according to the referenced
trajectories.

Unlike the well-known and widely-used shooting heuristic
algorithm in the literature [70]–[72], our trajectory planning
method requires less predetermined rules about the motion
patterns while having a higher degree of freedom since the
speed profiles of trajectories are configured by the optimization
algorithm appropriately. To be specific, each trajectory is
encoded by a set of via-points named knots as shown in Fig.
8, whose number varies automatically to balance the compu-
tational efficiency and sufficient degrees of freedom. Hence,
the original trajectory planning problem can be converted to
a constrained numerical optimization problem. The complete
shape of trajectories can be easily constructed for performance
evaluation by cubic spline interpolation.

After that, we formulate a new objective function for
trajectory optimization, which not only reduces the energy
consumption of vehicles but also improves the usage of road
space to avoid/mitigate spillbacks with the consideration of
dynamics and safety constraints. For a given planning horizon
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t ∈ [T0, T0 +∆T ], we can discretize it into evenly-distributed
time points by ∆t which denotes the interval of time for
decision-making. Therefore, we have tξ = T0 + ξ∆t, where
t0 = T0, tM = T0 +∆T , and ξ = {0, 1, · · · ,M}.

min
s
tξ
i =fi[tξ]

nk∑
i=1

M∑
ξ=0

Pi(tξ)∆t+

4∑
c=1

[σc

nk∑
i=1

M∑
ξ=0

g2c (s
tξ
i )]

+ α

nk∑
i=1

(L− s
tξ
i )∆t.

(16)

Here, s
tξ
i denotes the displacement of the front bumper of

vehicle i ∈ [1, nk] at time tξ , Pi(tξ) denotes the instantaneous
power, For the second term, gc(s

tξ
i ) denotes the penalty

function with the corresponding weight coefficient σc, where
g1(·) measures the violation of traffic regulations, g2(·) the
mechanical limitation, g3(·) the comfort criteria, and g4(·)
the separation distance. We refer readers to read [63] for the
calculation of these energy and penalty functions.

Additionally, the last term in Eq. (16) denotes the sum of the
area above trajectory curves, where L is the length of road and
α is the coefficient used to trade-off between the objectives of
eco-driving and spillback avoidance. It is clear that for given
start times t∗k,i, increasing the sum of the area under trajectory
curves (i.e., the dark area shown in Fig. 8) can reserve more
space for subsequent vehicles, leading to a smaller length of
queue (i.e., L′), which helps to mitigate the occurrence of
spillbacks according to Property 1.

In the next step, the set of trajectories within the same
platoon are calculated in parallel using a divide-and-conquer
strategy until a near-optimal solution has been found, or a
terminal condition is met. Note that the HEA-CC algorithm
is able to generate feasible referenced trajectories with high
energy efficiency in a sub-second computation time, which
is at least two orders of magnitude lower than the planning
period even for large-scale instances.

D. Discussion of the Extension to Mixed Traffic

It is noteworthy that the proposed intersection coordination
algorithm can be readily extended to mixed traffic scenarios
with various penetration rates of CAVs. Next, we will briefly
explain how to address two major challenges associated with
the mixed traffic condition.

On the one hand, without the help of traffic signals, the
centralized controller located on the roadside cannot force
Human-Driven Vehicles (HDVs) to comply with the advised
passing sequence, especially if the leading vehicles of both
approaches are HDVs. Therefore, one solution is to modify
the proposed algorithm to preclude such scenarios by requiring
all platoon leaders to be CAVs, which, however, may not be
feasible if the penetration rates of CAVs are not sufficiently high.
Nevertheless, we notice that in current practice, unsignalized
intersections with pure HDV traffic are coordinated using the
FIFO policy to provide right-of-way to the HDV that arrives
earlier. Inspired by this, we can integrate the proposed algorithm
with the classical FIFO policy to coordinate mixed traffic and
deal with specific scenarios where HDVs are platooned.

Figure 9. Illustration of vehicle trajectories within the mixed traffic.

On the other hand, it is difficult to predict and control the
behaviors and motions of HDVs. To address this challenge,
many previous works used the classic Optimal Velocity Model
[73] and Intelligent Driver Model [74] to estimate the behaviors
of HDVs. However, such deterministic car-following models
impose many assumptions on vehicles’ desired velocity and
spacing time, which require elaborate tuning of parameters
and may not be favorable under uncertain conditions. Some
other researchers try to perform evaluations against HDVs
uncertainties with the least-assumption-based approach [56]
that fixes the velocity of HDVs as constants, which is however
not the setting of this problem.

Fortunately, Advanced Driver-Assistance System (ADAS)
enables the centralized controller to issue proper minimum and
maximum speed recommendations to HDV drivers via Human
Machine Interface (HMI) [75]. In that case, HDVs will be
able to track the desired speed and trajectory such that they
can pass through the merging zone in their pre-determined
timeslots to avoid collisions. Hence, the proposed bi-level
intersection coordination algorithm can be extended to mixed
traffic conditions with the Assumption 2.

Assumption 2 (Tracking errors of HDV trajectories). This
paper assumes that HDVs are able to track the speed profile
provided by the proposed algorithm with bounded tracking
errors, i.e.,

|t∗ − treal| ≤ tϵmax,

where t∗ denotes the expected time-headway of a HDV with its
preceding or succeeding vehicle, treal the actual time-headway,
and tϵmax the maximum tracking errors of HDVs. In that case,
other vehicles should keep a sufficient inter-vehicle distance
with the maximum tracking error boundaries of HDVs to ensure
safety. Accordingly, the upper-level traffic scheduling model
should also take tracking errors into consideration by reserving
more space for HDVs to ensure safety when it assigns timeslots
for vehicles.

An example of the generated trajectory planning scheme in
the mixed traffic condition is presented in Fig. 9, where the
vehicle platoon consists of six CAVs marked in blue and one
HDV marked in red. It can be seen that the trajectories of CAVs
are deterministic, while the trajectory of HDV is uncertain since
the driver behavior cannot be precisely controlled. However,
the tracking errors of the HDV are bounded within certain
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limits (i.e., the area in red), which have been considered in
advance in the trajectory planning phase to ensure safety. In
other words, the other CAVs would leave enough space to
prevent confusion due to the control errors of HDVs.

V. NUMERICAL SIMULATION EXPERIMENTS

In this section, we formulate a micro-simulation platform in
MATLAB 2021b to evaluate the proposed VPA-AIM algorithm.
The simulation parameters are set as shown in Table I. The
basic setting in simulations includes the platooning willingness
of vehicles and their ability to communicate with others.
The appropriate length of the control region depends on the
practical needs of applications, but it cannot exceed the reliable
communication range of the intersection manager located
nearby the merging zone. In this paper, we set the length of the
control zone as 150 meters, similar to existing studies [37], [44],
[71]. Note that the minimum time-headway can be reduced if
the latency of vehicular communication is stably maintained
at a low level. Hence, we determine the two values according
to [41], [76]–[78]. The value of the maximum tracking errors
of HDVs depends on a wide range of factors, including the
skill of drivers, the type of vehicles, and the traffic conditions.
In this paper, we set this value as one-quarter of a second
according to the benchmark average human response time [79].
In addition, we set the arrival and departure speeds to 60 km/h
according to the free flow speed used in [10] and limit the
maximum speed to about 80 km/h to ensure platooning safety
as suggested by [77]. The range of acceleration and jerk are
limited within the comfort criteria recommended by [80]. The
maximum platoon size Mmax is set to 25 that conforms with
the platoon size configuration in previous studies [70], [81].

A. Design of Test Scenarios

The vehicle arrival time t+k,i is modeled as a Matérn hard-
core stochastic point process [44] on the non-negative real line.
Additionally, the distance between points is lower bounded by

Table I

PARAMETERS SETTING FOR SIMULATIONS

Description Notation and Value

Length of Optimization Time Horizon ∆T = 20 s

Size of Decision Time-Step ∆t = 0.1 s

Length and Width of Road Segment L = 150m, W = 2m

Length of Vehicle l = 3m

Minimum Inter-Vehicle Distance d = 1m

Minimum Time-Headway τ = 0.5 s

Factor of Safety for Time-Headway σ1 = 2, σ2 = 3

Maximum Tracking Errors of HDVs tϵmax = 0.25 s

Arrival, Departure, and Maximum Speed 16m/s , 16m/s , 22m/s

Range of Acceleration and Jerk ±3m/s2 ,±0.9m/s3

Range of Travel Time Tmin = 9 s, Tmax = 25 s

Maximum Number of Vehicles in a Platoon Mmax = 25

Table II

COMPUTATIONAL RESULTS OF DIFFERENT METHODS

Arrival Flow

(vph/lane)

Makespan (s) Maximum Delay (s) Runtime

(s)
FIFO Pol. Sche. Ours FIFO Pol. Sche. Ours

720 28.1 28.3 28.0 27.5 1.2 3.0 1.0 0.8 0.03

1080 28.7 29.1 28.4 27.9 1.7 2.5 1.6 1.2 0.03

1440 31.6 29.9 29.3 28.4 5.8 6.3 4.1 2.1 0.06

1800 34.6 33.4 31.8 28.9 6.4 8.4 5.9 2.5 0.03

2160 39.5 35.5 35.1 29.3 10.9 8.9 9.5 3.1 0.18

2520 45.9 40.6 38.7 30.8 17.2 13.1 11.6 4.2 0.31

2880 50.9 42.9 42.2 30.8 22.8 15.9 15.1 6.1 0.55

3240 56.2 46.7 45.7 32.3 27.1 18.8 18.9 5.7 0.87

3600 61.3 50.1 49.3 32.9 32.4 22.1 21.4 7.5 1.89

Average (s) 41.0 36.6 35.7 29.2 13.4 10.6 9.5 3.5 0.44

RPD (%) 24.2 17.8 15.8 - 34.6 32.0 26.5 - -

1 The problem is solved with the CP solver in the IBM ILOG CPLEX Optimization Studio

12.9.0 using an Intel i7-6700HQ chip.

a certain number (i.e., t+k+1,i− t+k,i ≥ tk
′,i′

k,i ), which denotes the
sequence-dependent minimum switching time of vehicles in
the same platoon. This setting guarantees that no two vehicles
are in collision at the time of arrival. Define Matérn process
with parameter λ as the Matérn process obtained by thinning a
Poisson process [82] in the line that has intensity λ. Suppose
t = l/Vmax, then the intensity of Matérn Type I point process
can be defined as

λI(λ) =
1− exp(−2λt)

2t
. (17)

In order to generate multiple scenarios with different arrival
flows within a reasonable range, we define the road capacity
as the maximum flow of vehicles on a road segment. Given
the minimum headway τ , the road capacity can be calculated
by 1/τ .

Next, we generate nine groups of test instances whose arrival
flows vary from 720 to 3600 vph/lane using the Matérn hard-
core stochastic point process in the scenario of balanced and
uniform traffic flow. Meanwhile, each group of traffic scenarios
is simulated five times with different random seeds to replicate
stochasticity in transportation systems, where the arrival time
of vehicles is different, but the arrival flow keeps the same. In
other words, there are 9× 5 = 45 scenarios tested in total.

B. Computational Results

In this section, the proposed VPA-AIM method is tested in
multiple scenarios with different arrival flows and compared
with the FIFO-, polling-, and scheduling-based methods for
AIM. The FIFO-based method is modified from [76], which
determines the passing sequence of vehicles according to their
arrival orders. The polling-based method is modified from
[44], which switches the priority of vehicles coming from
different directions using an exhaustive policy. The traditional
scheduling-based method is modified from [41], which solves
a linear programming model to determine the passing sequence
of individual vehicles without considering grouping vehicles
into platoons.

The computational results for different scenarios are reported
in Table II. Note that the data shown in this table denotes the
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Figure 10. Comparison of performance indicators in different traffic scenarios. The left, middle, and right plots are representative of makespan, maximum
delay, and the number of rolling horizon cycles without the occurrence of spillbacks, respectively.

average value of five scenarios, while the average computation
time for the upper-level traffic scheduling model is presented in
the last column. To quantify the optimization performance of
different algorithms, we define the Relative Percent Deviation
(RPD) as below. Suppose fi and fi denote the indicator
obtained by the proposed and comparison algorithms, then
we have

RPDi→j =
|fj − fi|

fi
× 100%. (18)

It can be seen from Table II that the proposed method
outperforms the other benchmark methods for minimizing
both the makespan and maximum delay in all scenarios tested.
The makespan and maximum delay can be reduced by up to
24.2% and 34.6%, respectively. Besides, the proposed method
maintains the maximum delay among vehicles below 8 seconds
for all scenarios, ensuring fairness in passing the intersection.

Furthermore, the performances of all these methods are
affected by the arrival flow, as shown in Fig. 10. First, it can be
seen that all these methods perform similarly when the arrival
flow is low (e.g., from 720 to 1080 vph/lane) since vehicles are
able to pass the intersection without additional intervention. In
other words, there is little room for optimization in these cases.
However, the makespan and the maximum delay of solutions
obtained by the FIFO-, polling-, and scheduling-based methods
increase dramatically with the arrival flow (i.e., from 1440 to
1800 vph/lane). Second, it is observed that either the FIFO-
or polling-based methods cannot trade off multiple objectives.
For example, the FIFO-based method is inferior to the polling
policy in terms of efficiency (i.e., makespan) but outperforms
the latter in terms of fairness (i.e., maximum delay). Third,
it can be seen that the scheduling-based method overmatches
FIFO- and polling-based methods in both objectives within
low-flow traffic states. However, its performance has weakened
to a level similar to the polling-based method in medium and
high-flow traffic states, which suggests that the traditional
scheduling method has limitations and cannot work stably in
all traffic scenarios.

By contrast, the proposed VPA-AIM algorithm performs
better than all the benchmark methods. Moreover, the proposed
algorithm keeps the makespan of the traffic scheduling scheme
below the threshold value when the arrival flow is not greater
than 1800 vph/lane. As shown in Table II, when the arrival
flow over 1440 vph/lane, the makespans of FIFO-, polling-, and
scheduling-based methods exceed ∆T +Tmin = 20+9 = 29 s,

which is the threshold value for ensuring that spillbacks will
not occur as stated in Eq. (3). If the makespan of the current
traffic scheduling scheme exceeds this threshold value, the
queue will be carried over from the current horizon to the
next one, which may cause delays to propagate backward and
accumulate, eventually leading to congestion and spillbacks.
Although the resulting makespan of our method may exceed
the threshold value in over-saturated scenarios, it does not
exceed that value too much and can remain stable for a longer
period of time than those of benchmark methods, and thus our
method is more efficient in avoiding spillbacks and mitigating
congestion.

According to Property 1, the number of rolling horizon
cycles without the occurrence of spillbacks is shown in Fig. 10.
It can be seen that the proposed VPA-AIM algorithm can avoid
spillbacks in normal traffic states (when the arrival flow is not
greater than 2520 vph/lane). Moreover, the proposed method
provides a mitigation mechanism to regulate spillbacks caused
by extreme arrival flows (i.e, 2880-3600 vph/lane). Although
the propagation of delay cannot be avoided in these situations,
the number of rolling horizon cycles without the occurrence of
spillbacks resulting from the proposed method is larger than
the benchmark methods, which suggests that it can disperse
traffic for a longer time.

C. Traffic Scheduling and Trajectory Design Schemes

The differences in traffic scheduling schemes obtained by
different methods in different arrival flows are demonstrated
in Fig. 11 using the conflict-duration-graph developed in our
previous study [83]. In short, the conflict-duration graph is
used to denote the occupation state of the merging zone, where
each block denotes the periods occupied by a vehicle. Besides,
the left and right endpoints of each block correspond with the
start time t∗k,i and departure time t+k,i of vehicles, respectively.
Additionally, the interval between two blocks denotes the
separation in time of two vehicles to ensure safety, whose
minimum value is decided by the sequence-dependent minimum
switching time. Note that it is non-trivial and challenging to
calculate the optimal platoon formation scheme and passing
sequence and time, which cannot be obtained by heuristic rules
since multiple constraints need to be satisfied simultaneously.

The optimized trajectories for vehicles obtained by the
proposed method are shown in Fig. 12. The upper and lower
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Figure 11. Comparison of traffic scheduling scheme in different traffic
scenarios. The top, middle, and bottom plots are representative of light, medium,
and heavy load traffic.

half of each plot depicts the trajectories of lane 1 and lane
0, respectively, while the vertical axis describes the distance
of vehicles from the merging zone. First, it can be seen that
the platoon configuration is not always consistent, but vary in
different situations. This happens because the platoon formation
scheme is designed by the optimization model appropriately
according to real-time traffic states. Hence, more vehicles
are assigned to a platoon when the arrival flow increases.
Second, the generated trajectories are smooth enough without
illegal speed jumps, while there is enough space between
trajectories to prevent collisions. Hence, vehicles can pass the
intersection collaboratively without stopping with the support
of well-designed traffic scheduling and trajectory planning
schemes. Third, it can be observed that the number of vehicles
assigned to a platoon increases with the arrival flow. In high-
flow traffic states, the right-of-way will be given to groups of
vehicles in two lanes alternately with different lengths of time.
This is similar to the phenomenon at signalized intersections
with an adaptive signal controller [84], [85]. Hence, when
it comes to signalized intersections, the proposed algorithm
can be extended and used to design signal timing plans that
determine the optimal green time of each lane. Moreover,
the proposed algorithm can generate smooth trajectories for
vehicles and cluster them into platoons that can properly use
the green light windows and pass the intersection at high speed
to avoid stop-and-go movements.

It can be seen from Fig. 13 that the CP solver can find the
optimal traffic scheduling scheme for up to 32 vehicles with a
sub-second computation time using a 20-second time horizon.

Figure 12. Optimized vehicle trajectories under different arrival flows. The
top, middle, and bottom plots are representative of light, medium, and heavy
load traffic. The upper half of each plot depicts vehicle trajectories of lane 1,
while the lower half depicts those of lane 0.

However, the complexity and difficulty of problem-solving
grow with the number of vehicles, leading to an exponentially
increased computation time. For those scenarios with more
than 36 vehicles to be controlled, a smaller planning horizon
is suggested to reduce the number of decision variables such
that the computation time can be maintained within the sub-
second level. Otherwise, the CP solver may not be able to
find the optimal solution within the limited runtime budget.
From the practical point of view, the classical FIFO policy
can be employed as an alternative for those scenarios without
sufficient time to optimize or cannot find any feasible solutions.
Additionally, recall that we incorporate a coupled constraint
i,e, Eq.(12), derived from the lower-level trajectory planning
algorithm into the upper-level scheduling model, which is
used to prevent vehicles from stopping. This constraint can be
relaxed (i.e., increase the value of Tmax) if the solver cannot
find a feasible solution since it is possible that vehicles have to
stop and wait before the stop line of intersections at extremely
high-flow traffic states.

D. Mixed Traffic Scenarios with Diverse Autonomy Levels

In order to analyze the impact of different CAV penetration
rates on the performance of the proposed method, we generate
9×9 groups of test scenarios whose arrival flows vary from 720
to 3600 vph/lane and penetration rates vary from 100% to 20%.
Meanwhile, each group of traffic scenarios is simulated five
times with different random seeds. To quantify the robustness of
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Figure 13. Computation time of the upper-level traffic scheduling model.

the proposed method in different arrival flows and penetration
rates, we define the Average Performance Degradation (APD)
as below. Let i index the penetration rate of CAVs and j index
the arrival flow, we can denote the performance indicator (i.e.,
the makespan and maximum delay) under arbitrary conditions
and a specific condition with 100% penetration rate by fi,j
and f∗

j , respectively. Then, we have

APDi,j =
fi,j − f∗

j

f∗
j

× 100%. (19)

It can be seen from Fig. 14 that, compared with the pure
autonomy scenarios, both performance indicators (i.e., the
makespan and the maximum delay) experience degradation
when the penetration rate decreases in all kinds of arrival
flow. This happens because HDVs require much more space
than CAVs to ensure safety, leading to heavier burdens for
the limited road resource. Additionally, the requirement that
platoon leaders be CAVs imposes additional constraints on
the optimization problem, leading to performance degradation
of the optimal solution. Apart from this, it is also observed
that the performance degradation in terms of the makespan
becomes more significant when the arrival flow increases,
the maximum value of which reaches 60% when the arrival
flow and penetration rate becomes 3600 vph/lane and 20%,
respectively. By contrast, the performance degradation in terms
of the maximum delay reaches 80% when the arrival flow and
penetration rate becomes 2160 vph/lane and 20%, respectively.

An example of the traffic scheduling and trajectory planning
scheme in the mixed traffic scenario with dynamic traffic
demands is illustrated in Fig. 15. Recall that HDVs are able
to track the desired speed profile with limited tracking errors
according to the Assumption 2. It can be seen that the upper-
level scheduling model tends to assign more space for HDVs
than CAVs to pass through the merging zone while avoiding
collisions. Meanwhile, the lower-level trajectory planner is able
to estimate the maximum tracking error boundaries of HDVs.
Further, the planner will adjust the trajectories of CAVs such
that they can maintain a safe separation distance from those
HDVs nearby to ensure safety. Simulation results indicate that
the proposed algorithm is sufficiently robust to handle mixed
autonomy conditions involving CAVs and HDVs with dynamic
traffic demands.

Figure 14. Average performance degradation of the proposed method under
different penetration rates of CAVs. The value of performance degradation
denotes the average percentage of increase in performance indicators compared
with that in the 100% CAV penetration rate condition.

Figure 15. Mixed autonomy scenario with dynamic traffic demands.

VI. CONCLUSION

This paper proposes a bilevel optimization algorithm, named
VPA-AIM, to coordinate the merging of CAVs at unsignalized
intersections. In this work, the upper-level task is referred to as
platoon-aware traffic scheduling, which determines the platoon
formation scheme of vehicles during the control zone and
allocates the passing sequence and timeslots of platoons through
the merging zone, with the goal of reducing the makespan and
maximum delay to enhance operational efficiency and fairness.
The lower-level task is referred to as multi-vehicle trajectory
planning, which is about designing referenced trajectories for
vehicles during the process of passing through the control
and merging zones, with the goal of reducing overall energy
consumption and avoiding/mitigating spillbacks. The two
levels are coupled by dynamics constraints and the arrival
and departure times of vehicles. The bi-level optimization
framework optimizes traffic operation within a rolling horizon
to balance traffic performance and computational efficiency. At
each decision step, the optimal scheduling scheme at the upper
level can be solved by the CPLEX Constraint Programming
solver with sub-second computation time, while the near-
optimal trajectories in the lower level can be generated by
the coevolutionary algorithm modified from our previous work
[63], [64]. In addition, this paper establishes the quantifiable
connection between the makespan of the traffic scheduling
scheme and the occurrence of spillbacks, demonstrating that
the optimization of the makespan helps to avoid/mitigate
spillbacks in normal/saturated traffic states. It is also noteworthy
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that the proposed algorithm can be extended to mixed traffic
scenarios with various penetration rates of CAVs based on
the assumptions that HDVs have bounded tracking errors and
CAVs serve as platoon leaders.

The proposed VPA-AIM algorithm is tested in multiple
scenarios with various arrival flows (i.e., 720-3600 vph/lane)
and compared with FIFO-, polling-, and scheduling-based
methods in MATLAB. Extensive numerical examples suggest
that the proposed algorithm outperforms benchmark methods
in terms of efficiency and fairness. For example, the makespan
and maximum delay of traffic scheduling schemes can be
reduced by up to 24.2% and 34.6%, respectively. Besides, the
proposed algorithm remains stable in all scenarios tested, while
the performance of benchmark methods degrades dramatically
with the increase in the arrival flow. Moreover, it has the largest
number of rolling horizon cycles without the occurrence of
spillbacks among benchmark methods, which suggests that it
can mitigate spillbacks even in saturated traffic states.

This study opens several directions for future work. First,
we would like to further generalize the proposed algorithm to
a complex intersection with multiple approaches, and conduct
comprehensive experimental validation using laboratory-scale
Arduino cars. Second, we will extend the algorithm to urban
arterial intersections or networks and devise signal coordination
strategies to enable green waves with consideration of spill-
backs. Third, we will consider intersection control with multiple
types of road users such as transit vehicles that require priority
and pedestrians that could impose additional randomness on
the system dynamics.
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M. Goli, and J. Ma, “Strategic and tactical decision-making for coopera-
tive vehicle platooning with organized behavior on multi-lane highways,”
Transportation Research Part C: Emerging Technologies, vol. 145, p.
103952, 2022.

[21] Q. Jin, G. Wu, K. Boriboonsomsin, and M. Barth, “Platoon-based
multi-agent intersection management for connected vehicle,” in 16th
International IEEE Conference on Intelligent Transportation Systems
(ITSC 2013). IEEE, 2013, pp. 1462–1467.

[22] J. Lioris, R. Pedarsani, F. Y. Tascikaraoglu, and P. Varaiya, “Platoons of
connected vehicles can double throughput in urban roads,” Transportation
Research Part C: Emerging Technologies, vol. 77, pp. 292–305, 2017.

[23] R. Tachet, P. Santi, S. Sobolevsky, L. I. Reyes-Castro, E. Frazzoli,
D. Helbing, and C. Ratti, “Revisiting street intersections using slot-based
systems,” PloS One, vol. 11, no. 3, p. e0149607, 2016.

[24] X. Han, R. Ma, and H. M. Zhang, “Energy-aware trajectory optimization
of cav platoons through a signalized intersection,” Transportation
Research Part C: Emerging Technologies, vol. 118, p. 102652, 2020.

[25] B. Qian, H. Zhou, F. Lyu, J. Li, T. Ma, and F. Hou, “Toward collision-
free and efficient coordination for automated vehicles at unsignalized
intersection,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 408–
10 420, 2019.

[26] C. Yu, W. Sun, H. X. Liu, and X. Yang, “Managing connected and auto-
mated vehicles at isolated intersections: From reservation-to optimization-
based methods,” Transportation Research Part B: Methodological, vol.
122, pp. 416–435, 2019.

[27] Z. Yang, Y. Feng, and H. X. Liu, “A cooperative driving framework for
urban arterials in mixed traffic conditions,” Transportation Research Part
C: Emerging Technologies, vol. 124, p. 102918, 2021.

[28] X. Xiao, Y. Pan, L. Lv, and Y. Shi, “Scheduling multi–mode resource–
constrained tasks of automated guided vehicles with an improved
particle swarm optimization algorithm,” IET Collaborative Intelligent
Manufacturing, vol. 3, no. 2, pp. 93–104, 2021.

[29] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” Journal of Artificial Intelligence Research,
vol. 31, pp. 591–656, 2008.

[30] Y. Meng, L. Li, F.-Y. Wang, K. Li, and Z. Li, “Analysis of cooperative
driving strategies for nonsignalized intersections,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 4, pp. 2900–2911, 2017.



14

[31] H. Xu, C. G. Cassandras, L. Li, and Y. Zhang, “Comparison of cooperative
driving strategies for cavs at signal-free intersections,” IEEE Transactions
on Intelligent Transportation Systems, 2021.

[32] Y. Bian, S. E. Li, W. Ren, J. Wang, K. Li, and H. X. Liu, “Cooperation
of multiple connected vehicles at unsignalized intersections: Distributed
observation, optimization, and control,” IEEE Transactions on Industrial
Electronics, vol. 67, no. 12, pp. 10 744–10 754, 2019.

[33] D. Fajardo, T.-C. Au, S. T. Waller, P. Stone, and D. Yang, “Automated
intersection control: Performance of future innovation versus current
traffic signal control,” Transportation Research Record, vol. 2259, no. 1,
pp. 223–232, 2011.

[34] M. W. Levin, S. D. Boyles, and R. Patel, “Paradoxes of reservation-based
intersection controls in traffic networks,” Transportation Research Part
A: Policy and Practice, vol. 90, pp. 14–25, 2016.

[35] Z. Li, Q. Wu, H. Yu, C. Chen, G. Zhang, Z. Z. Tian, and P. D.
Prevedouros, “Temporal-spatial dimension extension-based intersection
control formulation for connected and autonomous vehicle systems,”
Transportation Research Part C: Emerging Technologies, vol. 104, pp.
234–248, 2019.

[36] S. A. Fayazi and A. Vahidi, “Mixed-integer linear programming for
optimal scheduling of autonomous vehicle intersection crossing,” IEEE
Transactions on Intelligent Vehicles, vol. 3, no. 3, pp. 287–299, 2018.

[37] Z. Wang, G. Wu, and M. J. Barth, “Cooperative eco-driving at signalized
intersections in a partially connected and automated vehicle environment,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 5,
pp. 2029–2038, 2019.

[38] P. Dai, K. Liu, Q. Zhuge, E. H.-M. Sha, V. C. S. Lee, and S. H.
Son, “Quality-of-experience-oriented autonomous intersection control in
vehicular networks,” IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 7, pp. 1956–1967, 2016.

[39] Q. Lu and K.-D. Kim, “A mixed integer programming approach for
autonomous and connected intersection crossing traffic control,” in 2018
IEEE 88th Vehicular Technology Conference (VTC-Fall). IEEE, 2018,
pp. 1–6.

[40] W. Zhao, R. Liu, and D. Ngoduy, “A bilevel programming model for au-
tonomous intersection control and trajectory planning,” Transportmetrica
A: Transport Science, vol. 17, no. 1, pp. 34–58, 2021.

[41] Z. Yao, H. Jiang, Y. Cheng, Y. Jiang, and B. Ran, “Integrated schedule
and trajectory optimization for connected automated vehicles in a conflict
zone,” IEEE Transactions on Intelligent Transportation Systems, 2020.

[42] C. Yu, Y. Feng, H. X. Liu, W. Ma, and X. Yang, “Integrated optimization
of traffic signals and vehicle trajectories at isolated urban intersections,”
Transportation Research Part B: Methodological, vol. 112, pp. 89–112,
2018.

[43] A. I. M. Medina, N. Van De Wouw, and H. Nijmeijer, “Cooperative
intersection control based on virtual platooning,” IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 6, pp. 1727–1740, 2017.

[44] D. Miculescu and S. Karaman, “Polling-systems-based autonomous
vehicle coordination in traffic intersections with no traffic signals,” IEEE
Transactions on Automatic Control, vol. 65, no. 2, pp. 680–694, 2019.

[45] P. Tallapragada and J. Cortés, “Hierarchical-distributed optimized co-
ordination of intersection traffic,” IEEE Transactions on Intelligent
Transportation Systems, vol. 21, no. 5, pp. 2100–2113, 2019.

[46] Q. Ge, Q. Sun, Z. Wang, S. E. Li, Z. Gu, S. Zheng, and L. Liao, “Real-
time coordination of connected vehicles at intersections using graphical
mixed integer optimization,” IET Intelligent Transport Systems, vol. 15,
no. 6, pp. 795–807, 2021.

[47] M. W. Levin and D. Rey, “Conflict-point formulation of intersection
control for autonomous vehicles,” Transportation Research Part C:
Emerging Technologies, vol. 85, pp. 528–547, 2017.

[48] A. Mirheli, M. Tajalli, L. Hajibabai, and A. Hajbabaie, “A consensus-
based distributed trajectory control in a signal-free intersection,” Trans-
portation Research Part C: Emerging Technologies, vol. 100, pp. 161–176,
2019.

[49] X. Li, A. Ghiasi, Z. Xu, and X. Qu, “A piecewise trajectory optimization
model for connected automated vehicles: Exact optimization algorithm
and queue propagation analysis,” Transportation Research Part B:
Methodological, vol. 118, pp. 429–456, 2018.

[50] K. Abboud, H. A. Omar, and W. Zhuang, “Interworking of dsrc and
cellular network technologies for v2x communications: A survey,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9457–9470,
2016.

[51] Y. Shi, Q. Han, W. Shen, and H. Zhang, “Potential applications of 5g
communication technologies in collaborative intelligent manufacturing,”
IET Collaborative Intelligent Manufacturing, vol. 1, no. 4, pp. 109–116,
2019.

[52] F. Hu, L. Lv, T. Zhang, and Y. Shi, “Vehicular task scheduling strategy
with resource matching computing in cloud-edge collaboration,” IET
Collaborative Intelligent Manufacturing, vol. 3, no. 4, pp. 334–344, 2021.

[53] S. I. Guler, M. Menendez, and L. Meier, “Using connected vehicle
technology to improve the efficiency of intersections,” Transportation
Research Part C: Emerging Technologies, vol. 46, pp. 121–131, 2014.

[54] H. Yao and X. Li, “Decentralized control of connected automated
vehicle trajectories in mixed traffic at an isolated signalized intersection,”
Transportation Research Part C: Emerging Technologies, vol. 121, p.
102846, 2020.

[55] T. Li, X. Han, and J. Ma, “Cooperative perception for estimating and
predicting microscopic traffic states to manage connected and automated
traffic,” IEEE Transactions on Intelligent Transportation Systems, 2021.
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