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Abstract

Road cracks are an important concern of administrators. Visual inspection is labor-intensive and subjective, while previous

algorithms detecting cracks from optical camera images were not accurate. Furthermore, the actual length and thicknesses of a

crack cannot be estimated only from images. Light Detection and Ranging (Lidar) is a standard feature introduced on the latest

smartphones. In this research, for completely automatic, accurate and quantitative road crack evaluation using smartphones,

an up-to-date segmentation technique, U-Net with morphology transform adopting data augmentation was proposed. Lidar

3D point cloud data of smartphones is linked to color data obtained from cameras. By registering images to Lidar data,

geometrical relationships were estimated to calculate the length and thicknesses. The proposed algorithm was validated by a

standard database of road cracks and dataset constructed by the authors, showing 95% length accuracy and 0.98 coefficient of

determination for thickness estimation irrespective of various crack shapes and asphalt pavement color patterns.
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ABSTRACT 

Road cracks are an important concern of administrators. Visual inspection is labor-

intensive and subjective, while previous algorithms detecting cracks from optical 

camera images were not accurate. Furthermore, the actual length and thicknesses 

of a crack cannot be estimated only from images. Light Detection and Ranging 

(Lidar) is a standard feature introduced on the latest smartphones. In this research, 

for completely automatic, accurate and quantitative road crack evaluation using 

smartphones, an up-to-date segmentation technique, U-Net with morphology 

transform adopting data augmentation was proposed. Lidar 3D point cloud data of 

smartphones is linked to color data obtained from cameras. By registering images 

to Lidar data, geometrical relationships were estimated to calculate the length and 

thicknesses. The proposed algorithm was validated by a standard database of road 

cracks and dataset constructed by the authors, showing 95% length accuracy and 

0.98 coefficient of determination for thickness estimation irrespective of various 

crack shapes and asphalt pavement color patterns. 

 

1 INTRODUCTION 

Road distresses, especially cracks are important concerns of 

administrators. The conditions of road surfaces need to be 

periodically monitored to ensure the safety of road users. 

When small cracks advance, they are widened and elongated 

to connect with each other, causing potholes. There are 

enormous amounts of road infrastructure stocks worldwide 

(American Society of Civil Engineers, ASCE [2020], Ministry 

of Land, Infrastructure, Transport and Tourism, MLIT [2021]). 

In Japan, for example, we have 1,300,000 km distance road 

surfaces to be maintained. It is almost impossible to evaluate 

the whole surface by visual inspections, necessitating the 

development of automatic road crack evaluation methods.  

Considering the standards of road surface condition 

monitoring, the geometries of crack patterns, e.g. lengths and 

bifurcations are important. For example, in the Japanese 

standard, after dividing road surfaces into small areas, the 

numbers of cracks and bifurcations are evaluated for each 

panel from sketches to calculate a crack ratio (MLIT [2017]). 

Cracks need to be properly segmented. Lengths should be 

quantitatively evaluated. In previous research, it is suggested 

the thicknesses of asphalt pavement cracks are related to the 

conditions of pavements (Nakamura et al. [2020]). In terms of 

concrete structures, the thicknesses of vertical cracks are 

related to the extent of corrosion of reinforcement steel rebars 

(Vidal et al. [2004]). It is helpful to estimate the thicknesses of 

cracks by the algorithm.  

It is a common sense of practitioners that cracks are 

detected by optical camera images. Our and other research 

groups are utilizing a Mobile Mapping System (MMS) to 

detect cracks by line-sensor cameras, and potholes and ruttings 

by Light Detection and Ranging (Lidar) data using laser 

sensors (Mizutani et al. [2022]). Only targeting larger cracks, 

or by increasing the resolution of laser data, i.e. light section 

method may detect cracks though it needs special instruments 

and measurement time for the reconstruction of detailed three-

dimensional surface geometries (Guan et al. [2015], Jarvis 

[1983]). Typical measurement systems of radar and infrared 

thermography are not targeted for vertical cracks (Yamaguchi 

et al. [2019], Cotič et al. [2015]). Previous research works 

about crack detection by camera images are studied in detail in 

the following section.  

In this research, smartphones were utilized to establish a 

convenient measurement method (Apple inc. [2020], 3D 

Scanner App [2022]). Figure 1 shows the measurement 
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configuration. The method has three advantages: Vehicle-

installed type systems are targeted for roadways. Smartphones 

can be used for sideways and private properties. 

Administrators are often managing cloud computing systems. 

Inspectors record road surface conditions by terminals. The 

system can facilitate inspection processes. Road users can 

report damages by their smartphones, constructing big data of 

spatially and temporally dense monitoring results.  

2 PREVIOUS RESEARCH 

Detecting cracks from images is one of the benchmark tasks of 

the application of Machine Learning (ML) and Deep Learning 

(DL) to infrastructure engineering problems. There exist many 

previous research works. Mainly two targets were discussed: 

cracks on concrete structure surfaces and asphalt pavement 

road surfaces. Cracks on concrete surfaces are relatively thin 

and have complicated structures (Chun et al. [2021], Dung & 

Anh [2019], Fujita & Hamamoto [2011], Kim & Cho [2019], 

Liu & Gao [2022], Nishikawa et al. [2012]). Usually, thickness 

is smaller than 1 mm. Well-developed cracks have fractal 

structures. However, they do not necessarily mean road crack 

detection is an easier task. There are a variety of pavement 

surface color patterns. Road surfaces may be stained and 

obstacled by small falling objects with different lighting 

conditions. Detecting ambiguous cracks from noisy images is 

not an easy task. However, the detection algorithms for 

concrete surfaces and road cracks are theoretically the same. 

Hereafter, we will focus on the previous research about road 

crack detection. Our method is not targeted but expected to be 

applicable to concrete and other special types of pavements 

following the same methodology.  

In terms of asphalt pavement road cracks, detection 

algorithms are classified into three categories: image 

processing, ML and DL-based methods. Image processing is 

classical spatial filtering and feature extraction techniques. 

Zalama et al. (2014) adopted Gabor filters to characterize and 

detect crack patterns on asphalt road images. Zou et al. (2012) 

combined tensor voting, random sampling and graph models 

to define crack features. Chun & Hashimoto (2015) proposed 

a semi-automatic crack detection algorithm. The idea is 

adjusting the crack probabilities of automatic detection results 

by heuristics developing interactive user interfaces showing 

updated crack detection results. These methods offered 

insights into the characteristics of crack geometries. However, 

the problem of how to set the thresholds of detecting cracks 

remains. ML and DL-based automatic methods are prevailing 

to deal with various crack geometries and photographing 

conditions leveraging the advantages of large databases and 

advanced computational environments.  

Novel ML techniques are being proposed day by day 

(Bishop [2006]). There are as many ML-based crack detection 

algorithms as ML techniques. Here the summaries of several 

important research works are introduced. Shi et al. (2016) 

proposed a crack detection algorithm based on random 

structured forests. Geometrical patterns of cracks were 

registered in random forests and judged by a Support Vector 

Machine (SVM) classification algorithm. A CrackForest 

segmentation database (CFD) was developed to validate the 

algorithm. Hoang & Nguyen (2019) combined image filters to 

extract features of cracks. SVM, Neural Network (NN), and 

RF were compared to accurately classify crack features. 

Prasanna et al. (2016) detected cracks on concrete bridge decks 

using automated robots by RF of defined features. The 

drawback of ML-based methods is effective feature values 

should be devised to conduct accurate detection. These 

research works claimed the accuracy of ML is comparable with 

DL. In this research, we assumed the existence of large-scale 

crack databases. Convolutional Neural Networks (CNN) of DL 

can automatically and accurately extract spatial features from 

databases.  

DL-based methods are further classified into three 

categories depending on a purpose: image classification, 

localization and segmentation (Goodfellow et al. [2016]). 

Classification is to categorize images into crack or non-crack. 

Maguire et al. (2017) developed image databases of various 

cracked structures, i.e. concrete bridge decks, walls, and 

pavements named SDNET2018. Because the locations of 

cracks should be estimated on the whole road surface image, 

the trend is localization and segmentation. A simple idea is 

sliding a target window to crop and classify each region image. 

To estimate target regions efficiently and adaptively, 

localization by a region proposal scheme was developed 

(Girshick [2015], Liu et al. [2016], Ren et al. [2017], Redmon 

et al. [2016]). Maeda et al. (2018), Maeda et al. (2021) 

developed a road distress database with annotation results of 

regions and damage types from images obtained by a 

smartphone camera fixed on a vehicle dashboard, called 

RDD2020. Single Shot MultiBox Detector (SSD) was utilized 

to localize and categorize damages.  

Segmentation is pixelwise localization of cracks and the 

goal of this research. To accomplish complete quantification 

of cracks, i.e. estimation of length and thicknesses, 

segmentation is indispensable. Huang et al. (2022) proposed a 

segmentation database called NHA12D, which is composed of 

 

(a)                                                    (b) 

FIGURE 1. Road crack evaluation by smartphones (Apple inc. 

[2020], 3D Scanner App [2022]). (a) Latest version smartphones 

(e.g. iPhone 12 Pro) equipped with cameras and a Lidar scanner. 

(b) Typical arrangement of the measurement, about 1m height 

from the road surface covering a 0.5m - 1m square area. Precise 

settings are not needed. Instead, Lidar data is utilized. 
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images obtained by cameras installed on a vehicle with top and 

forwarding views and segmentation teacher data to objectively 

compare the previous research. Ji et al. (2020) segmented 

asphalt road cracks by a CNN encoder-decoder architecture. 

Bang et al. (2019) proposed a CNN encoder-decoder 

architecture to segment cracks in black-box images. Yang et al. 

(2020) developed the largest segmentation database called 

Crack500. To improve segmentation accuracy considering the 

context of crack images, top-down and bottom-up spatial 

feature pyramids were combined to propose an elaborated 

CNN architecture.  

The results shown by Yang et al. (2020) stated above were 

the latest and baseline of our research. The problem of the 

algorithm is that, however, accuracy may be further improved 

even though it considered the complicated feature pyramid. 

This research utilizes the knowledge of biomedical 

engineering, U-Net (Falk et al. [2019], Zhou et al. [2018]). By 

incorporating skip structures to encoder-decoder architectures, 

multi-scale features are naturally introduced to conduct an 

accurate and low calculation cost efficient segmentation. This 

research is also related to Huyan et al. (2020), which proposed 

a U-Net structure to segment pavement cracks, though not 

validated by open databases. The proposal of this research is 

that accuracy was further improved by data augmentation, and 

morphology transform (Haralick et al. [1987], Peters [1995]) 

after U-Net segmentation (idea #1). To conduct a fair 

comparison, an opensource crack database was utilized as 

training and test data to demonstrate the effect of the algorithm. 

Discussed databases were summarized in Table 1. Considering 

the number of segmented images and compared algorithm, 

Crack500 was adopted. Crack detection from quarter view 

(forwarded, inclined) images, and concrete and other types of 

pavements are next steps considered as future works.  

The last but not least problem of the previous research is 

the actual scales of cracks are not known only from images. 

Furthermore, the resolution is not uniform in an image 

considering the center and side portions, and slight inclination 

of a camera. This point is not discussed in previous research. 

On the other hand, because of the advancement of smartphone 

sensors, Light detection and ranging (Lidar) is installed as a 

standard function of iPhone and iPad as shown in Figure 1. 

Lidar 3D point cloud data is linked to color data obtained from 

cameras for the purpose of virtual space modelling. Cracks are 

not wide enough to be detected by Lidar data. The proposal of 

this research is, comparing images and Lidar data, only by one 

shot of a smartphone, both the shapes and scales of cracks were 

understood to estimate the lengths and thicknesses of cracks 

automatically and accurately, which are the aim of the research 

(idea #2).  

3 PROPOSED ALGORITHM  

3.1 Contributions 

In response to the two ideas discussed above, two contributions 

of the research are summarized below.  

1) U-Net, the state-of-the-art deep CNN architecture was 

utilized to accomplish the road crack segmentation task. Data 

augmentation was adopted. Morphology transform after 

segmentation was found to show the highest segmentation 

accuracy compared with the previous research trained and 

validated by the same Crack500 database.  

2) The segmentation results were quantified by registering 

images to lidar data. Similarity transform was assumed. The 

images were resampled with known distances to quantitatively 

estimate the lengths and thicknesses of cracks. The 

quantification accuracy of these indices was validated by the 

TABLE 1. Summary of opensource road crack databases with different pavement, view, annotation types with numbers of images.  

Database Target pavement View Annotation Total image No. 

SDNET2018 

(Maguire et al. 

(2017)) 

Concrete (there also exist 

concrete bridge deck and wall 

versions) 

Top Classification 
2,600 crack and 21,700 non-crack 

(104 pavements) 

RDD2020 (Maeda et 

al. (2018)) 

Asphalt (including potholes and 

other types of road damages) 
Quarter Localization 13,400 

CrackForest (CFD) 

(Shi et al. (2016)) 
Asphalt Top Segmentation 120 

NHA12D (Huang et 

al. (2022)) 
Asphalt and concrete 

Top and 

Quarter 
Segmentation 

80 (small but size of each image 

is relatively large) 

Crack500 (Yang et 

al. (2020), adopted) 
Asphalt Top Segmentation 500 
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crack data measured by the authors in real situations with 

various crack shapes and asphalt pavement color patterns.  

In the following section the flow chart of the proposed 

algorithm is explained in detail. The two accuracy-related 

terms “segmentation accuracy” appeared in contribution #1 

and “quantification accuracy” in contribution #2 (Popovic et 

al. [2007], Harada [2017]). The configuration of the data and 

evaluation methods were defined in the following section 3.3 

and section 3.4.  

3.2 Outline of the algorithm 

Figure 2 explains the flow chart of the proposed algorithm. The 

algorithm consists of 2 steps. After obtaining an image and 

Lidar data of a target region by a smartphone, cracks are 

detected by pixel-level, i.e. segmented (step 1). Utilizing Lidar 

data, the lengths and thicknesses of detected cracks were 

quantitatively estimated (step 2). The details of each step are 

explained in order in the following chapters. The important 

points are optimizing and training U-Net architectures, 

application of Morphology transform, matching the image and 

Lidar data, estimating lengths and thicknesses. In each step, 

the state-of-the-art image processing techniques and novel 

ideas were combined to output up-to-date crack segmentation 

and geometry estimation results.  

3.3 Data configuration 

In this research, two types of data were used to develop and 

validate the algorithm. One is Crack500, a crack database 

explained in the previous chapter to train and validate the 

proposed U-Net architecture. The details of this database are 

explained in Yang et al. (2020). The cracks on asphalt 

pavements in the university campus were photographed by cell 

phones. The database includes 250 training images, 50 

validation images, 200 test images, and the same number of 

segmentation teacher data for each image. Validation data was 

used for checking training processes and test data for 

evaluating the generalization error i.e. segmentation accuracy 

for unforeseen data. The sizes of most images are about 1500 

pixels by 2500 pixels. There are large variations in pavement 

color patterns, lighting conditions, crack patterns, and 

thicknesses such as forked and alligator type cracks. However, 

the effects of shadows, road structures such as manhole, joint, 

and drainage covers, boundaries of repair works and crack 

sealings were not considered in both previous and our research. 

In some cases, they were falsely detected. It is not clear the 

inclusion of these features in training data will remove false 

detections or additional analysis is needed, which remains as 

future works.  

The other data is prepared by our group. The applicability 

of U-Net was confirmed by Crack500. Our data is to validate 

our quantification algorithm by Lidar data. We searched 

asphalt pavement surfaces in the campus of Institute of 

Industrial Science (IIS), the University of Tokyo, Tokyo, 

Japan and picked up four model crack cases (Figure 3). The 

images of the cracks were obtained by iPad Pro 11 inch (2nd 

generation). At the same time, Lidar data was obtained by a 

commercial software, 3D Scanner App. iPad was placed above 

the target region to obtain top view images as shown in Figure 

1 b. Height was around 1m and covered areas were about 0.5m 

 

FIGURE 2. Flow chart of the proposed algorithm. The 

algorithm consists of two steps: crack segmentation by U-Net 

and quantitative evaluation by Lidar data.  

 

 

(a)                                                (b) 

FIGURE 3. Measuring the geometries of cracks. (a) Lengths and 

thicknesses by rulers. (b) Sketches.  

 



T. YAMAGUCHI AND T. MIZUTANI 5 

 

- 1m by 0.5m - 1m, though our method is not sensitive to the 

height and slight inclination of the cameras. The APP also 

offers the estimated position of an observer, which indicates 

that 10cm to 20cm variations of the heights of the sensors were 

not important. Smartphones can measure a horizontal level, 

which indicates 10 degree to 20 degree inclination variations. 

iPhone can also be used as measurement devices following the 

same procedure. Crack #1 to Crack #4 have different crack 

shapes, thicknesses, pavement color patterns, and obstacles. 

The details are discussed in chapter 5. The lengths and 

thicknesses were measured by rulers on site to draw sketches 

(Figure 3). The thicknesses were relatively large, not requiring 

crack scales. Because of the complicated crack shapes and 

fluctuations of thicknesses along the cracks, the error was at 

most 5mm for length and 1mm for thickness measurement. 

This point is also discussed in chapter 5.  

3.4 Evaluation methods 

The two evaluation indices, “segmentation accuracy” and 

“quantification accuracy” are defined. Segmentation accuracy 

is to evaluate the segmentation performance of trained U-Net. 

Segmentation accuracy is the averaged F-measure (dice 

coefficient) on the whole dataset by adopting the best threshold 

probability for each image (OIS), following the previous 

research (Yang et al. [2020]). The number of crack pixels is 

much smaller than background pixels. Therefore, precision, 

true crack pixels among all the detected pixels 𝑃, and recall, 

detected pixels among all the true crack pixels 𝑅  are 

considered. F-measure 𝐹 is defined below.  

𝐹 = 2 × (
𝑃×𝑅

𝑃+𝑅
)               (1) 

Deep learning models output the probability of a crack for 

each pixel. The threshold of crack probability 𝑡  is the 

parameter and 𝑃, 𝑅, 𝐹 are the function of 𝑡. Too large 𝑡 will 

judge all the pixels are non-crack and decrease 𝑅 while too 

small 𝑡 will judge all the pixels are crack and decrease 𝑃. The 

best 𝑡 which provides largest 𝐹  is estimated for each image 

(OIS), then averaging OIS of all the images will return 

segmentation accuracy. This index is compared to demonstrate 

the efficiency of our proposed method.  

Quantification accuracy is to evaluate our algorithm of 

estimating the lengths and thicknesses of cracks. Our 

constructed crack dataset contains the information of the total 

length of cracks in an image and measured thicknesses at the 

three points of the cracks per one image. The error rate of 

length was evaluated for four crack images and coefficient of 

determination of twelve thicknesses plotting estimated versus 

true thickness values on a scatter plot.  

Calculation time was also evaluated to demonstrate the 

efficiency of our U-Net segmentation model. Programs were 

written in TensorFlow (TensorFlow [2022]). Training and 

testing computer environment is GPU: NVIDIA GeForce GTX 

1080 ti and CPU: Intel Core i7-8700K @ 3.7GHz (NVIDIA, 

[2022]). Because the environment is different from the 

previous research, NVIDIA GeForce GTX TITAN X, a fair 

comparison is not possible. However, the performance of GTX 

1080 ti is close to GTX TITAN X by benchmark tests 

(PassMark Software [2022]). As will be discussed in the 

following chapter, it can be inferred that our result is consistent 

and proposed method is fast. This fact is derived from the 

simple architecture of U-Net.  

4 UP-TO-DATE CRACK SEGMENTATION 

BY U-NET, DATA AUGMENTATION AND 

MORPHOLOGY TRANSFORM  

In this chapter, a U-Net architecture was optimized. Data 

augmentation techniques were introduced, and morphology 

transform was applied to segmentation results to improve 

segmentation accuracy. The comparison of U-Net and 

previous architectures, and effects of data augmentation and 

morphology transform on segmentation accuracy were 

summarized in section 4.4.  

4.1 U-Net architecture 

Figure 4 explains the proposed U-Net architecture. The name 

of U-Net comes from its unique U-shaped architecture. Inputs 

are RGB crack images, integers from 0 to 255 (uint8) with 

three channels. Images are batch-normalized in the training 

process to reduce the effect of brightness differences. U-Net is 

the cascade of convolution layers. Small 3 by 3 spatial filters 

with 15 layers were adopted to extract the features of the input 

images. Increasing the number of layers results in considering 

more abstract features in larger scale contexts. Larger size 

filters and shallower layer architectures can be adopted though 

they do not fit in the concept of U-Net. By increasing the 

number of filters, large size images are converted into a large 

number of small feature maps. In segmentation tasks, from 

extracted features, segmented images should be reconstructed. 

The former half of the structure is called encoder and latter half 

is decoder. A special upsampling method, transpose filter was 

utilized in fully convolutional segmentation networks. The 

mechanism was explained in the previous research (Falk et al. 

[2019], Zhou et al. [2018]). The architecture of the decoder is 

symmetrical with the encoder. In U-Net, upsampled feature 

maps are concatenated with encoder feature maps to consider 

various scale features with different levels of abstraction 

simultaneously, called skip connections. Integrating all the 

corresponding layers constructs U-shaped architectures. The 

strides and sizes of max pooling and transpose filters are 2 by 

2 holding the same feature map sizes. As activation functions, 

rectified linear unit (Relu) functions were applied after each 

convolution layer and a sigmoid function was utilized to the 

last convolution layer to output probabilities. The final output 

is the probability of a crack for each pixel. All the training 

parameters were initialized following normal distributions.  

The important hyperparameter of U-Net is the number of 

layers. The effect of the number of layers was evaluated by 

comparing a) the proposed 15-layer model, b) removing the 

last three convolution layers of the encoder and first three ones 

of the decoder (9-layer model), c) adding three convolution 

layers after the last layer of the encoder and three ones before 

the first layer of the decoder (21-layer). The effect of skip 

connections can be evaluated by comparing the performances 
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of the proposed and previous architectures. The results were 

discussed in section 4.4.  

Important training parameters were a loss function, 

optimization method, learning rate, batch size and number of 

epochs. The difficulty of this task was that the portions of 

cracks were much smaller than background areas, which 

caused the failure in a training process. To solve the problem 

of unbalanced classification, Tversky loss was adopted 

(Tensorflow [2022]). Defining true positive (the number of 

positive pixels classified as positive) as 𝑡𝑝 , false positive 

(negative pixels classified as positive, false detections) as 𝑓𝑝, 

false negative (positive pixels classified as negative, missing 

cracks) as 𝑓𝑛, Tversky loss 𝑇𝑙  was defined below using an 

unbalance parameter 𝛼.  

𝑇𝑙 = 1 − 𝑡𝑝/(𝑡𝑝 + 𝛼 ∙ 𝑓𝑝 + (1 − 𝛼) ∙ 𝑓𝑛)               (2) 

𝛼 = 0.3 is assumed. 𝑇𝑙 ranges from 0 to 1. Smaller value 

is better. The concept of Tversky loss is considering 

successfully detected crack pixels putting less emphasis on 

false detections and more emphasis on missing cracks. 

Because the number of negative pixels was much larger than 

positive pixels, false detections may be larger than missing 

cracks after training. In an actual implementation, small values 

were added to the numerator and denominator to avoid ‘divide 

by zero’ problem. When an appropriate loss function is applied, 

 

FIGURE 4. Proposed U-Net architecture. Characteristics of the 

architecture are symmetric encoder-decoder structure and skip 

connections.  

 

  

(a)                                                 (b) 

  

(c)                                                 (d) 

 

(e) 

FIGURE 5. Data augmentation by introducing randomness in 

photographing conditions. (a) Original image. (b) Upside-down 

flip. (c) Zoomed. (d) Increasing Brightness. (e) Adding gaussian 

noise.  
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segmentation accuracy is expected to converge to the same 

value. Stochastic gradient descent (SGD) was used as an 

optimization method. A learning rate was 0.1 and batch size 

was 4. Training was manually stopped checking convergence. 

Training curves were shown in section 4.4 to demonstrate the 

validity of the training.  

4.2 Data augmentation 

Data augmentation was studied in the research. Data 

augmentation increases the number of training images by 

random transformation. Because deep learning requires large 

amounts of images, data augmentation is indispensable in 

some cases. Another effect is data augmentation can introduce 

variations caused by different measurement conditions such as 

image shift, rotation, zoom, and brightness changes. Data 

augmentation helps construct robust deep learning algorithms. 

Figure 5 shows the augmented images. Figure 5 (a) is an 

original image. Figure 5 (b) is the flipped image. In the 

research, left-right flip and top-bottom flip were randomly 

applied. Figure 5 (c) is the zoomed image of Figure 5 (a). 75 % 

zoom was randomly applied. Figure 5 (d) is the brighter image 

after brightness adjustment. Image 𝐼′  after brightness 

adjustment 𝛽 is defined below using RGB values from 0 to 

255 of original image 𝐼.  

𝐼′ = 𝐼 × 𝛽               (3) 

When 𝐼′ > 255, 𝐼′ is replaced by 255. Too large 𝛽 will 

saturate images. In the research, 𝛽 = 1.2 was adopted. Figure 

5 (e) is after adding a gaussian noise. The gaussian noise with 

zero mean and 0.01 variation was randomly applied. All the 

possible photographing variations were introduced to the 

training data. The number of training data was doubled after 

data augmentation.  

4.3 Morphology transform 

Morphology transform is one of the state-of-the-art image 

processing techniques to remove noises, smooth boundaries 

 

(a) 

 

(b) 

FIGURE 6. Effect of morphology transform. (a) Before 

morphology transform. Noises in background areas, hole and 

jaggy boundaries in cracks are observed. (b) After morphology 

transform. Noises and hole are removed and boundaries are 

smoothed.  

 

 

FIGURE 7. Training and validation curves. Loss is Tversky loss 

considering the balance of falsely detected and missing cracks. 

Training loss monotonically decreased while validation loss 

converged.  

 

 

FIGURE 8. Histogram of crack probability for each pixel of 

Crack #1 image of Crack500. Most pixels are negative and lower 

than 0.05 while some pixels are positive and higher than 0.995, 

indicating cracks.  
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and extract target features (Haralick et al. [1987], Peters 

[1995]). Morphology transform is based on several spatial 

filters called structuring elements and applied to binary images. 

In the research, morphology transform is applied to 

segmentation results after thresholding probability of cracks. 

The concept is close to pooling layers of DL. 𝑛  by 𝑛 

structuring elements 𝑀 defines the range of neighboring pixels. 

We adopted 𝑛 = 4.  

𝑀 = (
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

)               (4) 

‘Closing’ and ‘Opening’ operations were sequentially 

applied in this research. ‘Dilation’ is to replace a target pixel 

by 1 when at least one of the neighboring pixels is 1. This is 

systematically defined by convoluting 𝑀 to images and judge 

the output 𝑚 > 1. ‘Erosion’ is the opposite, to replace the 

pixel by 0 when at least one of the neighboring pixels is 0, 

convoluting 𝑀  and judge 𝑚 < 𝑛2 . ‘Closing’ is ‘Erosion’ 

after ‘Dilation.’ ‘Opening’ is ‘Dilation’ after ‘Erosion.’ 

‘Closing’ is to fill in small holes and ‘Opening’ is to remove 

noises. Both operations smooth boundaries of objects.  

Figure 6 explains the effect of morphology transform 

using the crack #1 of crack500. As shown in Figure 6 (a), 

in some cases after segmentation, small noises appeared in 

background areas and missing holes in cracks. Boundaries 

of cracks were jaggy. Considering the features of cracks, 

small speckles should be removed leaving smoothed line-

like objects. Figure 6 (b) shows the map after morphology 

transform. Noises and hole were removed and boundaries 

were smoothed.   

4.4 Segmentation results 

Before discussing the effects of U-Net architectures, data 

augmentation and morphology transform, several important 

points are shown for a fair comparison. Figure 7 exhibits the 

example of training and validation curves showing the training 

process. Loss means Tversky loss defined in section 4.1. All 

the trainings were successfully accomplished. Training curves 

decreased monotonically while validation curves converged 

after 10 minutes to 30 minutes training (30 epochs to 40 

epochs). Segmentation accuracy was compared after checking 

the convergence. The developed architecture outputs a map of 

the probability of a crack for each pixel. Figure 8 shows the 

histogram of probabilities of crack #1, one of the constructed 

crack data by the authors. As shown by the histogram, it is 

apparent that most background pixels were between 0 and 0.05 

and crack pixels were 0.95 and 1. To output binary images, 

crack maps should be thresholded. From the histogram, the 

threshold value was not important. In the research, simply the 

threshold 𝑡 = 0.5  was assumed to distinguish crack and 

background pixels. In the contexts of image processing and 

deep learning research, the resolution of images and number of 

training data were important parameters for high quality crack 

segmentation. Figure 9 (a) shows the effect of the resolution. 

Training and test images, and corresponding segmentation  

 

(a) 

 

(b) 

FIGURE 9. Effect of characteristics of datasets on segmentation 

accuracy. (a) Resolution of images. Original image is 1. (b) 

Number of training images.  

 

 

 

FIGURE 10. Effect of number of layers on segmentation 

accuracy. It converged at 15 layers.  
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teacher data were downsampled to produce low resolution data. 

Segmentation accuracy was converged with certain resolutions. 

From the result, the resolution was enough with given 

measurement conditions in terms of crack detection. The 

resolution depends on the performance of a camera and 

distance between the road surface and camera. It is suggested 

that with ordinary smartphones, even a 5 m distance is possible 

to detect road cracks. However, there may be a problem in 

matching Lidar data and camera images. The thickness of road 

cracks is relatively large. To target small hair cracks, finer 

resolutions may be needed. There is a redundancy in the 

camera measurement system in terms of road crack detection. 

Figure 9 (b) shows the effect of the number of the training 

images. Segmentation accuracy converged with the certain 

number of images. In deep learning research the number of 

training data often becomes a bottleneck to conduct a fair 

comparison of the performance of deep learning architectures. 

In this research, segmentation accuracy purely depends on the 

characteristics of the proposed architectures.  

The detection of cracks from images by U-Net does not 

require too deep architectures. Figure 10 explains the effect of 

the number of U-Net layers on segmentation accuracy. A 15-

layer model is the proposed model shown in Figure 4. From 

Figure 10, segmentation accuracy converged at 15 layers. To 

extract abstract features requires a certain number of layers. 

However, the features of cracks, which consisted of bifurcated 

and fluctuating darker lines are not so various and complicated 

as general segmentation tasks such as detecting vehicles from 

ordinary photo images. From Figure 10, the conclusion is that 

15 layers were enough.  

The proposed algorithm, combination of a U-Net 

architecture, data augmentation, and morphology transform is 

the most accurate compared with previous deep learning 

architectures. Table 2 shows the comparison of segmentation 

accuracy and calculation time. The claim of the previous 

research is that top-down and bottom-up feature pyramids 

consider multiple scale contexts to improve segmentation 

accuracy. For a comparison, Fcn-8s is a typical fully 

convolutional network (FCN) composed of VGG16 

convolution architectures. VGG16 is one of the up-to-date 

deep learning architectures, which can use parameters learned 

for general image classification tasks (Krizhevsky et al. [2012], 

Simonyan et al. [2014], Szegedy et al. [2015]). The previous 

research improved segmentation accuracy. The proposed U-

Net shows higher accuracy by naturally introducing multiple 

scale features using skip connections. Calculation time is 

halved by an efficient feature map integration scheme and the 

same level as FCN. Furthermore, segmentation accuracy 

improved by data augmentation (proposed 1). It can be stated 

that this is not the effect of increasing training data as discussed 

in Figure 9 but introducing random measurement condition 

changes in training data to construct a robust deep learning 

algorithm. Calculation time is the same because an application 

phase is the same. U-Net, data augmentation and morphology 

transform shows the highest segmentation accuracy (proposed 

2). 0.004 difference is not negligible because considering 200 

test images with 1500 pixels by 2500 pixels, 750 million pixels, 

segmentation accuracy improved by 3 million pixels. This is 

owing to the reduction of small noises, holes and smoothed 

crack shapes. Morphology transform took 0.3 s per image to 

apply a sequence of spatial filters. Calculation time is not 

important in the case of on-site and in-house analysis. 

However, to apply the algorithm to real-time videoframe 

analysis, U-Net with data augmentation may be the first choice. 

We adopted morphology transform hereafter.  

Figure 11 shows the segmentation results of Crack500 by 

the proposed algorithm (proposed 2). It is difficult to 

completely reproduce the learned parameters of the previous 

research. Simple U-Net without data augmentation and 

morphology transform outperformed the previous algorithm. 

Therefore, Figure 11 compares the proposed algorithm with 

simple U-Net. Figure 11 (a) and Figure (b) exhibit the crack #1 

and #2. OIS of majority of the images were from 0.7 to 0.9. 

The predicted segmentation images by the proposed algorithm 

matched well with the true segmentation images while U-Net 

caused noises and missing parts of the cracks. Data 

augmentation and morphology transform improved 

segmentation accuracy. The results do not depend on the color 

patterns of pavements, and shapes and thicknesses of cracks. 

Figure 11 (c) picks up the case in which OIS is lower than 0.7 

and not showing large differences between the U-Net and 

proposed algorithm. Figure 11 (c) shows the portion of an 

alligator crack with relatively complicated bifurcations. More 

complicated the geometries of cracks are, lower OIS is because 

of pixel-level shifts. However, from Figure 11 (c), the 

prediction results clearly show the reasonable geometry of the 

crack.  

TABLE 2. Comparison of segmentation accuracy and calculation 

time of proposed and previous algorithms. 

Model 
Segmentation 

accuracy (-) 

Calculation time        

per image (s) 

Fcn-8s (Yang 

et al. (2020)) 
0.577 

0.101 (NVIDIA GeForce 

GTX TITAN X) 

FPHBN (Yang 

et al. (2020), 

previous) 

0.635 
0.197 (the same as 

above) 

U-Net 0.649 
0.114 (NVIDIA GeForce 

GTX 1080ti) 

U-Net+Aug. 

(proposed 1) 
0.677 

0.114 (the same as 

above) 

U-Net+Aug. 

+Morph. 

(proposed 2) 

0.681 
0.445 (the same as 

above) 
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FIGURE 11. Road crack segmentation results Crack500. Left column is images. Second column is ground truth. Third column is U-Net 

for comparison. Right column is proposed algorithm. (a) Crack #1. (b) Crack #2. (c) Crack #70. Various crack shapes and asphalt 

pavement color patterns are observed.  
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5 HOW TO QUANTIFY SEGMENTATION 

RESULTS BY LIDAR DATA 

5.1 Matching camera images to Lidar data 

This section explains how to match images to Lidar data to 

quantitatively evaluate cracks, called registration. The unique 

point is that the data is multimodal. Generally, registration 

requires not a small calculation cost, about one to two minutes 

per image depending on the sizes of images. When quantitative 

estimation is not needed or the scales of images are known 

using fixed systems, the registration process can be skipped. 

Because measurement conditions cannot be constant using 

smartphones, registration should be conducted.  

Before registration, Lidar data should be resampled to 

make a constant resolution. Figure 12 (a) shows the Lidar data 

of crack #1 of the constructed data by the authors. Road 

surfaces are assumed to be a plane, i.e. no large altitude 

changes. We set the minimum 1 cm resolution laser scanning. 

However, as shown in the right bottom picture of Figure 12 (a), 

typical Lidar measurement points are far from uniform. In the 

research, grid data was produced simply by referring to the 

nearest point at each grid position. Figure 12 (b) shows the 

resampled Lidar color data with 1 mm resolutions in horizontal 

directions. 1 mm is considering the variations of the positions 

of the measurement points. The one-pixel distance of Lidar 

color data exactly corresponds to 1 mm. Lidar color data is 

useful from Figure 12 (b) though the resolution is too low to 

evaluate cracks. Because App refers to camera images to 

construct Lidar color data, the black line of the crack can be 

observed.  

Figure 13 explains the registration process. Figure 13 (a) 

shows the Lidar data and Figure 13 (b) shows the camera 

image. At this moment, we do not know what the one-pixel 

distance of the camera image is. The camera image was 

matched to the lidar color data allowing shift, rotate and zoom 

operations. Shift in two directions 𝑑𝑥  and 𝑑𝑦 , rotation and 

zooming center positions 𝑧𝑥 , 𝑧𝑦 , rotation angle 𝜃  and zoom 

magnification factor 𝑀𝐹 are the parameters, called similarity 

transform. If the problem only considers shift (translation) or 

shift and rotation (rigid), the number of the parameters can be 

reduced. Considering shear transform is called affine 

transform. Because the registration process is unstable and 

needs a large calculation cost depending on the number of 

 

(a) 

 

(b) 

FIGURE 12. Lidar data. (a) 3D point cloud data of crack #1 

collected by the authors. (b) Resampled Lidar color data. 

Resolution of image is not high. However, characteristic features 

such as cracks, leaves, light conditions, and pavement color 

patterns are observable.  

 

(a)                                                    (b) 

 

(c) 

FIGURE 13. Registration process. (a) Lidar color data of Figure 

12 (b). (b) Camera image. (c) Registered images. Scaling and 

viewpoint are also shown. Registration is successfully 

accomplished by MATLAB R2021a.  
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unknown parameters, considering possible measurement 

condition variations, similarity transform was adopted.  

Registration was introduced by MATLAB R2021a image 

processing toolbox (MATLAB, [2021]). Color images were 

converted to gray scale images calculating the mean value of 

RGB channels and normalized to consider multimodal data. 6 

parameters were optimized by taking the correlation value of 

the two images. The local maximum was searched by 

assigning random initial parameters to narrow search regions. 

The parameters are: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑎𝑑𝑖𝑢𝑠 = 0.001; 𝐸𝑝𝑠𝑖𝑙𝑜𝑛 = 1.5 ∙

10−6; 𝐺𝑟𝑜𝑤𝑡ℎ𝐹𝑎𝑐𝑡𝑜𝑟 = 1.05; 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 300. Figure 

13 (c) is the result. Registrations were successfully conducted 

without divergences and unreasonable estimation results.  

Two important points should be discussed here. The first 

point is, in the case of Figure 13, shadows and fallen leaves 

may help register images. However, the most important 

features are cracks and pavement color patterns as shown in 

section 5.3. At least the method can be applied to asphalt 

pavement images. The second point is from Figure 13 (c), 

zooming is essential to consider both the scales of images and 

inhomogeneous resolutions. Shift and rotation will not change 

the scales of cracks. Zooming will estimate the scale of the 

image. Moreover, depending on a view point, regions near the 

point will not change and distant will be enlarged. For example, 

considering magnification in a horizontal direction, as shown 

in Figure 13 (c), assuming the left side of the image is a 100 % 

scale, the top, 0.5 m distant is the same scale and right side, 1 

m distant is 105 % scales. This 5 % additional enlargement 

directly corresponds to the 5 % error of the geometry 

estimation. This scaling is reasonable because the smartphone 

was placed on the left side of the crack. An image should be 

enlarged around a camera position.  

After registration, camera images can be upsampled to 

make 1 mm uniform resolutions. In the research, to reduce the 

 

FIGURE 14. Diagram of terms introduced in this research. 

Length and thickness directions of cracks are estimated to 

quantitatively evaluate cracks.  

 

 

(a)  

 

(b) 

 

(c) 

FIGURE 15. Estimating crack thicknesses. (a) Segmentation 

result. (b) Skeleton. (c) Estimation result. A map was output to 

show thickness distributions.  
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calculation cost, camera images were first input to the 

segmentation algorithm and segmentation results were 

upsampled. The two methods show the same results.  

5.2 Estimating lengths and thicknesses 

Provided segmentation results with known pixel distances, the 

lengths and thicknesses of cracks are estimated. Figure 14 

denotes the terms introduced in this section. Figure 15 exhibits 

the process of estimating the thickness.  

Thicknesses were estimated at each position of a crack. 

Segmentation results are composed of fluctuating and 

bifurcating lines as shown in Figure 15 (a). Skeletonizing 

operation is applied to segmented cracks to obtain skeletons. 

Skeletonizing is similar to the ‘thinning’ and ‘erosion’ 

operations of morphology transform. The pixels of the 

boundaries of an object were eroded as many as possible 

holding the number and topology of the object. As shown in 

Figure 15 (b), a skeleton was a thin one-pixel line passing the 

center of the crack. At each pixel on skeletons, 4 direction 

continuities were calculated; in vertical, horizontal, left-top to 

right-bottom, right-top to left bottom directions, the numbers 

of neighboring pixels, continuities were counted. The direction 

which offers the largest continuity is a principal direction, in 

other words, length direction of the crack. A perpendicular 

direction is defined as a thickness direction. At each point of 

the skeleton, the continuity in a thickness direction was 

calculated and converted to a millimeter unit referring to the 

pixel distances. In diagonal directions, √2  should be 

multiplied. As shown in Figure 15 (c), thicknesses were 

successfully estimated at each position to show the map of a 

thickness distribution.  

Lengths were estimated by counting the number of the 

pixels of skeletons. √2 should be multiplied to diagonal cracks 

also here using the information of the principal direction at 

each pixel. This diagonal factor is not negligible to estimate 

both length and thickness. Skeleton pixels were merged to 

understand the number of cracks in an image.  

The final results were the segmentation maps of cracks, 

number of cracks, length of each crack and thicknesses along 

the crack in colormaps. This information is precise to enable 

road administrators to evaluate road surface conditions and 

plan repair works. This method is also useful for screening 

target sections to prioritize repair plans.  

5.3 Geometry estimation results 

The proposed method successfully segmented and 

quantitatively evaluate road cracks of the constructed 

validation data by the authors. Figure 16, Figure 17 and Table 

3 summarized the estimation results. The left column of Figure 

16 is the images of the four cracks. The center column is the 

sketches with the measured total crack lengths and thicknesses 

at the three points on each crack. In this research we picked up 

the total 12 points to measure the thicknesses to validate the 

estimation algorithm. The right column is the segmentation 

results with the estimated total length and thicknesses. The 

sketches were considered as ground truths. Table 3 lists the 

true and estimated total lengths of the four cracks. Figure 17 

shows the accuracy of thickness estimation by a scatter plot, 

true versus estimated thicknesses.  

Crack #1 of Figure 16 (a) shows a typical crack pattern with 

a 580 mm length and 5 mm thicknesses. The image also 

includes a fallen leaf and sunlight filtered by trees as obstacles. 

Crack #2 shows a portion of an alligator crack with a 990 mm 

total length and relatively larger thicknesses from 10 mm to 20 

mm. The crack was filled with vegetations and sands. The 

difficulty of crack #2 is a rough noisy pavement color pattern. 

Crack #3 is three fragments of cracks with a 655mm total 

length and 7mm thicknesses. Crack #4 is a forked crack with a 

795mm total length and 5mm thicknesses. The pavement color 

patterns of crack #4 were different between the left and light 

sides of the image. The four cracks have different geometries, 

thicknesses, and pavement color patterns to demonstrate the 

effectiveness of the proposed method.  

The segmentation results clearly represent the geometries 

of the cracks in all the four cases. One fluctuating line of crack 

#1, crossing lines of crack # 2 and crack #4, and three 

fragments of crack #3 are apparent from predictions. The 

segmentation results are so precise that they may be further 

analyzed to judge the types and severities of cracks by using 

image processing methods such as pattern analysis and 

calculating fractal dimensions. The results were also apparent 

for non-practitioners.  

The quantitative parameters of all the four cracks were 

accurately estimated with a centimeter-order accuracy in terms 

of lengths and millimeter-order accuracy in terms of 

thicknesses. From Table 3, in the best case the ground truth 

length was 990mm while the estimated length was 970mm, 

only 2 % error. The errors of the estimated lengths were within 

10 % in all the cases. The total length of the four crack cases 

was 3020 mm, while the estimated length was 2876 mm, only 

5 % error. It is impossible to achieve a 5 mm accuracy in 

measuring the lengths of actual cracks. All the results 

underestimated the crack lengths. The possible reasons are that 

the developed segmentation algorithm tended to underestimate 

the areas of the cracks and because of the bias of the inspector. 

The estimated lengths were useful in a practical sense.  

From Figure 16 right column, the thicknesses were 

reflected in the segmentation maps and accurately estimated 

by the proposed algorithm. Because of the number of the data, 

an adjusted coefficient of determination was estimated. From 

Figure 17, the adjusted coefficient of determination was high, 

about 0.98. The thicknesses varied from 3 mm to 20 mm and 

estimated within ±1 mm errors. It is difficult to accurately 

measure the thicknesses of cracks with submillimeter accuracy. 

The resolutions of the original images were around 0.5 mm 

considering the number of the pixels and actual distances. The 

resolutions of the Lidar data were 1 cm. Matching results may 

be intermediate, around 1mm. Considering this point, 

estimating the thicknesses of cracks on concrete surfaces may 

be difficult because typical thicknesses of concrete cracks are 

submillimeter. In terms of road crack detection, from Figure 

16, the bold lines of crack #2 were apparent, indicating the 

severity of the crack.  
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FIGURE 16. Road crack quantification results of four cases collected by the authors. Left column is crack images. Center column is 

sketches considered as ground truths. Right column is evaluation results utilizing Lidar data. (a) Crack #1 is a typical crack including a 

leaf with different lighting conditions. (b) Crack #2 is an alligator crack with larger thicknesses. Noises of pavement color patterns are 

large. (c) Crack #3 is three fragments of cracks. (d) Crack #4 is an alligator crack. Left and right sides, two pavement color patterns exist. 

Various crack shapes and pavement color patterns are observed.  
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6 DISCUSSIONS  

From the discussions above, the conclusion is that the 

developed segmentation algorithm showed the highest 

segmentation accuracy. The proposed quantitative evaluation 

algorithm estimated crack lengths with centimeter-order 

accuracy and thicknesses with millimeter-order accuracy, 

providing impactful results. The following discussions are to 

show the limitations for the future applications of the method 

and directions for future works.  

In terms of the segmentation algorithm, the advantage of 

our algorithm compared with the previous machine learning 

algorithms is a sequence of optimized spatial filters and 

integrated features automatically learned from a large database 

to offer the highest accuracy. The uniqueness of the algorithm 

compared with other deep learning algorithms for road crack 

detection is data augmentation and morphology transform. 

Data augmentation naturally introduced the variations of 

photographing conditions. However, the algorithm tends to 

falsely detect the boundaries of manhole covers, shadows, and 

patchworks of repaired pavements. It may be effective to 

introduce road appendages and shadows to training data to 

reduce false detections. A cautionary point is increasing the 

images of the target objects will decrease the ratio of crack data, 

which may cause failures in training processes. Gaussian 

mixture may naturally introduce target objects to existing 

images (Maeda et al. [2021]). Boundaries of repair works are 

black lines and similar to cracks. They may be distinguished 

by line detection algorithms such as Hough transform after 

segmentation. Crack databases may be increased to adjust to 

various pavement color patterns in different countries.  

Morphology transform removed noises and holes, and 

smoothed boundaries. The algorithm assumes smoothed line-

like features of cracks. On the other hand, U-Net focusses on 

the local features of cracks. Considering the continuities of 

cracks in the whole image, i.e. lengths, thicknesses and fractal 

dimensions may reduce false detections.  

It is indispensable to utilize Lidar data to conduct accurate 

quantification. However, a registration step needed some time. 

The Lidar system acquires Lidar point cloud data, camera 

images and geometrical relationships between the two data. 

However, a typical Lidar measurement App outputs Lidar data 

with a color attribution. Directly extracting relationship 

information may omit the registration process. It is also better 

to improve the resolution of Lidar data for further accurate 

evaluations. Our algorithm assumes an ordinary Lidar App to 

realize a simple implementation. 

The appealing point of our method is the evaluation of 

lengths and thicknesses of cracks is possible only by one shot 

of an ordinary smartphone. Measurement took one to two 

seconds. Segmentation took less than one second. Registration 

took not a small time but can be finished within one to two 

minutes. The method is applicable to cracks on road and wall 

surfaces. Lidar data can reconstruct detailed geometries of 

surfaces. Therefore, the method is amenable to complicated 

surfaces, i.e. the edges of structures. The applicability of the 

algorithm on concrete cracks is not clear. Buildings, steel 

bridge elements, manufactured products and concrete 

structures may be future applications. The distance can be over 

5 m. However, an inclined view is not favorable to detect 

cracks in distant regions and conduct the accurate registration. 

This method is also applicable to pothole and rutting detections 

and evaluations, which is left as future works. By collecting 

damage cases from users, our deep learning algorithm can 

further be improved.  

The aim of the research is the integration of multimodal 

data, Lidar data and camera images to realize complete and 

accurate road damage detections. Our research group is 

developing GPR and seismic wave systems for subsurface 

TABLE 3. Comparison of true and estimated lengths. Errors 

were within 10 % in all the cases.  

Crack No. True length Estimated (Error) 

No. 1 580 mm 556 mm (-4.1%) 

No. 2 990 mm 970 mm (-2.0%) 

No. 3 655 mm 620 mm (-5.3%) 

No. 4 795 mm 730 mm (-8.2%) 

Total 3020 mm 2876 mm (-4.8%) 

  

FIGURE 17. Scatter plot of true versus estimated thicknesses. 

Three thicknesses for each crack, total twelve thicknesses were 

plotted as black circles. Adjusted coefficient of determination 𝑹𝟐 

was 0.98 with least square approximation as red line. 𝑹𝟐 shows 

the accuracy of estimated thicknesses.  
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sensing. The temporal accumulation of multimodal data in 

large scale areas will realize statistical analysis in time and 

space dimensions. A future sensing platform may be proposed 

offering up-to-date accurate condition assessment results, 

which strongly helps road administrators’ decisions.  

7 Conclusions 

In this research, an automatic, accurate, quantitative and 

simple evaluation method of road cracks is proposed using 

smartphone images and Lidar data. The algorithm consists of 

two steps. The trained segmentation algorithm based on U-Net, 

data augmentation and morphology transform showed the 

highest segmentation accuracy on the common crack database. 

After registering camera images to Lidar data by similarity 

transform after resampling, the algorithm estimated crack 

lengths and thicknesses, defining crack directions using 

skeletons. 95% length accuracy and 0.98 coefficient of 

determination for thickness estimation were achieved for the 

data with various crack shapes and asphalt pavement color 

patterns collected by the authors. The algorithm showed the 

persuasive segmentation and quantification results even for 

non-practitioners.  

The possible future works are that we are developing road 

pothole and rutting detection algorithms based on smartphone 

images and Lidar data. Cracks on complicated surfaces such as 

buildings, steel bridge elements, manufactured products and 

concrete structures may be future applications. False 

detections may be reduced by introducing road appendage 

training data and considering the geometrical features of 

cracks such as lengths, thicknesses, line patterns and fractal 

dimensions. It is expected that the registration process can be 

facilitated, and databases can be increased by developing own 

Lidar measurement platform.  
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