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Abstract

Performance comparison of clustering algorithms are often done in terms of different confusion matrix based scores obtained on

test datasets when ground truth is available. However, a dataset comprises several instances having different difficulty levels.

Therefore, it is more logical to compare effectiveness of clustering algorithms on individual instances instead of comparing

scores obtained for the entire dataset. In this paper, an alternative approach is proposed for direct comparison of clustering

algorithms in terms of individual instances within the dataset. A direct comparison matrix called \emph{Prayatul Matrix}
is prepared, which accounts for comparative outcome of two clustering algorithms on different instances of a dataset. Five

different performance measures are designed based on prayatul matrix. Theoretical analysis shows proposed measures satisfy

five important properties such as scale invariance, data invariance, permutation invariance, monotonicity and continuity.

Efficacy of the proposed approach as well as designed measures is analyzed empirically with four clustering algorithms on

widely used standard datasets. Indications of proposed measures are compared with confusion matrix-based measures as well

as other three permutation invariant measures. Results are evident that the newly designed measures are capable of giving

some important insight about the clustering algorithms, which were impossible with the existing measures.
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Abstract—Performance comparison of clustering algorithms
are often done in terms of different confusion matrix based
scores obtained on test datasets when ground truth is available.
However, a dataset comprises several instances having different
difficulty levels. Therefore, it is more logical to compare effective-
ness of clustering algorithms on individual instances instead of
comparing scores obtained for the entire dataset. In this paper,
an alternative approach is proposed for direct comparison of
clustering algorithms in terms of individual instances within
the dataset. A direct comparison matrix called Prayatul Matrix
is prepared, which accounts for comparative outcome of two
clustering algorithms on different instances of a dataset. Five
different performance measures are designed based on prayatul
matrix. Theoretical analysis shows proposed measures satisfy five
important properties such as scale invariance, data invariance,
permutation invariance, monotonicity and continuity. Efficacy
of the proposed approach as well as designed measures is
analyzed empirically with four clustering algorithms on widely
used standard datasets. Indications of proposed measures are
compared with confusion matrix-based measures as well as
other three permutation invariant measures. Results are evident
that the newly designed measures are capable of giving some
important insight about the clustering algorithms, which were
impossible with the existing measures.

Index Terms—Machine Learning, Unsupervised Learning,
Clustering, Direct Comparison, Performance Measures.

I. INTRODUCTION

CONFUSION matrix has been the central element of per-
formance evaluation of Machine Learning (ML) models,

irrespective of application domains [1], [2], [3], [4], [5]. A
confusion matrix is a kind of contingency table, where each
row represents an actual class, while each column represents
a predicted class. Be it classification [6] or clustering al-
gorithm [7], confusion matrix is prepared to evaluate and
visually describe the performance of the model on a test
dataset for which the ground truth labels are known. For eval-
uating clustering algorithms in particular, different measures
are computed based on confusion matrix to enumerate the
performance. The confusion matrix or the measures that are
computed based on confusion matrix are single model driven.
Thus, to compare performance of two clustering algorithms,
two separate confusion matrices have to be prepared for
each algorithm and relevant measures have to be computed.
One of the major drawbacks of this kind of performance
comparison is it lacks direct comparison of algorithms on
individual instances of the dataset. For instance, one can
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compare true positive value of one confusion matrix with
another, which determines how many times two algorithms
are correct. However, it cannot determine exactly on which
instances the algorithms are correct or whether the algorithms
are correct on the same or different instances. Important to
note that both the algorithms can have the same true positive
values but instance-wise those may be completely opposite.
Therefore, the same true positive values or accuracy or any
other measures designed based on confusion matrix do not
mean that performance of both the algorithms will be same.

Though, different measures are available that are not based
on confusion matrix [1], [8], mostly share the same draw-
back as mentioned above. Specifically for clustering, several
intrinsic measures [9], [10] are designed that determines the
quality of clustering. However, these measures also exhibit
the same issue as they neither indicate direct comparison at
instance level nor they consider instance level outcome for
comparison. In this paper, an alternative approach is proposed
that enables direct comparison of clustering algorithms at the
level of instances within the dataset. A direct comparison
matrix called Prayatul Matrix is prepared for accounting as
well as visualizing the comparative outcome of two clustering
algorithms. The key features of the proposed approach are as
follows:

• Pairwise instance level comparative outcome of two clus-
tering algorithms is presented in a direct comparison
matrix called prayatul matrix.

• Instance level outcomes of both the clustering algorithms
are compared pairwise in reference to the ground truth.

• Five performance measures are designed based on the
elements of prayatul matrix, which indicate a direct
comparative scores between two clustering algorithms.

• All five measures satisfy important properties such as
scale invariance, data invariance, permutation invariance,
monotonicity and continuity.

Rest of the paper is organized as follows. Section II dis-
cusses the works related to contingency matrix based mea-
sures. Section III elaborates the proposed direct comparison
approach for evaluating clustering algorithms, the prayatul
matrix and measures designed. Section IV details about ex-
perimental analysis covering experimental setup, datasets, and
result analysis. Section V concludes highlighting the key
advantages of the proposed approach.

II. RELATED WORK

The origin of widely used confusion matrix for ML models
can be traced back to Kerl Pearson’s work [11], where it was
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referred as contingency table. Later on the term confusion
matrix [12] was used in the context of psychology. While the
confusion matrix used in ML to evaluate both classification [6]
and clustering algorithms [7] is prepared on the basis of ground
truth labels and predicted labels. The conventional way to
compare accuracy of two clustering algorithms in particular is
to prepare two separate confusion matrices for each model and
generate scores to compare. One of the major drawbacks of
this approach is it lacks direct comparison of clustering algo-
rithms on individual instances of the dataset. Moreover, clus-
tering labels obtained with clustering algorithms are arbitrary.
Thus, often pair confusion matrix [13] is prepared instead
of confusion matrix. Different measures like Adjusted Rand
Index (ARI) [14], Normalized Mutual Information (NMI) [15]
and Adjusted Mutual Information (AMI) [16] are designed to
deal with arbitrary cluster labels. However, these attempts also
lack direct comparison at instance level.

The proposed direct comparison approach prepares a sin-
gle comparison matrix by comparing pair of instance level
outcomes of two clustering algorithms w.r.t. ground truth.
Earlier Dietterich [17] demonstrated a similar idea to con-
struct comparison matrix for misclassified instances two ML
models, particularly for the classification algorithms as an
application of McNemar’s test [18]. However, Dietterich’s
approach focuses simply on misclassified instances limited to
supervised learning only, and analysis is done under the null
hypothesis the two algorithms should have the same error rate.
Whereas, proposed approach considers all instances to prepare
the comparison matrix and analysis is done on the basis of
scores not null hypothesis.

In recent years, few attempts are being made to prepare
confusion matrix alternatively. A three-way confusion matrix
is designed that visualizes the degree of algorithm confusion
within different classes [19]. The construction of basic prob-
ability assignment (BPA) based on the confusion matrix has
also been studied in the context of classification problem [20].
Simplified confusion matrix visualization techniques are also
designed for better visualization of classes [21], [22]. How-
ever, none of these approaches considered direct comparison
of ML models at instance level and are specifically designed
for classification algorithms.

III. DIRECT COMPARISON APPROACH

The direct comparison approach involves two clustering al-
gorithms in the process. The role of the participating clustering
algorithms in the direct comparison approach are defined as
follows:

Definition 1 (Primary Algorithm (Ap)). The algorithm whose
performance is to be evaluated in comparison to other algo-
rithm is referred as primary algorithm.

Definition 2 (Alternative Algorithm (Aq)). The algorithms
with whom the primary algorithm is to be compared is referred
as alternative algorithm.

The primary algorithm can be compared with multiple
alternatives on same or different datasets. Let us consider
a test dataset having N instances with ground truth labels

Alternative

Right Wrong Total
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Fig. 1: Prayatul Matrix for two clustering algorithms (Primary
and Alternative) with different abstractions

G = {g1, g2, g3, ..., gN}. Let us consider N predicted cluster
labels obtained for N different instances of test dataset with
primary algorithm Ap and alternative algorithm Aq are P =
{p1, p2, p3, ...pN} and Q = {q1, q2, q3, ...qN} respectively.

Since clustering algorithms assign the labels arbitrarily to
the instances of test dataset, instead of comparing the labels
of instances, sameness of labels for the pair of instances are
compared. The sameness of predicted labels of all pairs of
instances of Ap are compared directly with that of Aq w.r.t.
ground truth. Thus, N(N − 1)/2 number of pairs obtained
for N different instances of test dataset considered for direct
comparison of instance pairs in terms of sameness of the
predicted labels.

A. Prayatul Matrix

A 2 × 2 dimensional direct comparison matrix D named
Prayatul Matrix is prepared by comparing the instances pair-
wise in terms of sameness of the predicted labels of Ap with
that of Aq w.r.t. ground truth G of the test dataset. The prayatul
matrix is a kind of contingency table that has two levels
of abstractions Right and Wrong both in rows and columns,
which indicate the correctness of outcomes obtained with both
primary and alternative algorithms pairwise. The abstractions
Right and Wrong means a pair of outcomes of the algorithm is
correct and incorrect respectively w.r.t. G. Abstractions related
to primary and alternative algorithms are placed in rows and
columns respectively as shown in Fig. 1.

Given the arbitrary predicted cluster labels, if the instance
pair belongs to same cluster and the ground truth labels of
that pair of instances also imply both belong to same cluster
then the predicted labels of instance pair is considered as a
match with the ground truth i.e. abstraction Right. Similarly,
if the instance pair belongs to different clusters and the ground
truth labels of that pair of instances also imply both belong
to different cluster then the predicted labels of instance pair
is considered as a match with the ground truth i.e. abstraction
Right. Otherwise, the predicted labels of instance pair is
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considered as mismatch i.e. abstraction Wrong. Let Rp and
Rq respectively are the set of instance pairs where predicted
labels of Ap and Aq are correct i.e. the predicted labels of
instance pairs match the ground truth so the pair comes under
the abstraction Right. Let Wp and Wq respectively are the set
of instance pairs where prediction of Ap and Aq are incorrect
i.e. the predicted labels of instance pairs mismatch the ground
truth so the pair comes under the abstraction Wrong. Now, the
instance pairs for which both Ap and Aq are Right is given
by {Rp ∩ Rq} and the corresponding entry for the matrix D
is computed as follows:

D11 = |Rp ∩Rq| (1)

Likewise, the instance pairs for which Ap is Right but Aq

is Wrong is given by {Rp ∩Wq} and the corresponding entry
for the matrix D is computed as follows:

D12 = |Rp ∩Wq| (2)

The instance pairs for which Ap is Wrong but Aq is Right
is given by {Wp ∩ Rq} and the corresponding entry for the
matrix D is computed as follows:

D21 = |Wp ∩Rq| (3)

Lastly, the instance pairs for which both Ap and Aq are
Wrong is given by {Wp ∩Wq} and the corresponding entry
for the matrix D is computed as follows:

D22 = |Wp ∩Wq| (4)

Interpretation of different elements of the prayatul matrix D
for the instance pairs of test dataset in terms of abstractions
Right and Wrong are done as follows:

• Both Right (BR): The instance pairs for which both Ap

and Aq are right w.r.t. G.
• Right Wrong (RW): The instance pairs for which Ap is

right but Aq is wrong w.r.t. G.
• Wrong Right (WR): The instance pairs for which Ap is

wrong but Aq is right w.r.t. G.
• Both Wrong (BW): The instance pairs for which both

Ap and Aq are wrong w.r.t. G.

B. Comparative Performance Measures

The elements of the prayatul matrix i.e. BR, RW, WR and
BW are used to design five comparative performance measures
for a pair of clustering algorithms Ap and Aq as follows:

The elements RW and WR are the counts of instance
pairs, where both algorithms are having disagreement i.e.
deviates from each others decision. If RW count is more that
means primary algorithms is better in taking right decisions
compared to alternative and it means opposite if WR is more.
Subtractions of WR from RW penalizes the wrong decisions of
primary algorithm. Normalizing it with all deviating instance
pair counts i.e. RW+ WR gives the comparative deviation.
This measure indicates how two algorithms are deviating from
each other when outcomes of both are different. Positive
value implies primary algorithm is better, while negative

value implies alternative algorithm is better in terms of right
outcomes. Formally, the comparative deviation of Ap and Aq

is defined as follows:

Definition 3 (Comparative Deviation (σc)). The comparative
deviation of primary algorithm over alternative algorithm is
defined as:

σc(P,Q) =
RW −WR

RW +WR
(5)

On the other hand, the elements BR and BW are the
counts of instance pairs, where both algorithms agree. If BR
is more then it means both algorithms are polarized towards
right decision, whereas it means opposite if BW is more.
Subtractions of BR from BW penalizes the wrong decisions
of both algorithms. Addition of RW with BR-BW gives the
polarization of primary algorithm towards right decision in
comparison to alternative algorithm. Normalizing it with the
total paired outcome counts gives the polarization of primary
algorithm. This measure indicates how the primary algorithm
is polarized towards right or wrong decision. Positive value
implies primary algorithm is good at taking right decision and
negative implies bad at taking right decision in comparison
to alternative. The polarization of Ap in comparison to Aq is
defined as follows:

Definition 4 (Polarization (α)). The polarization of primary
algorithm and alternative algorithm is defined as:

α(P,Q) =
BR+RW −BW

BR+RW +WR+BW
(6)

The elements BR and RW together gives the count of
instance pairs where primary algorithm is right. Normalizing
it with the count of instance pairs where at least one of
the algorithms is right (i.e. BR + RW + WR) gives the
comparative rightness of primary algorithm. While penalizing
wrong decisions of primary gives the effective rightness of pri-
mary algorithm. Formally, comparative rightness and effective
rightness of Ap in comparison to Aq are defined as follows:

Definition 5 (Comparative Rightness (ξc)). The comparative
rightness of primary algorithm over alternative algorithm is
defined as:

ξc(P,Q) =
BR+RW

BR+RW +WR
(7)

Definition 6 (Effective Rightness (ξe)). The effective rightness
of primary algorithm over alternative algorithm is defined as:

ξe(P,Q) =
BR+RW −WR

BR+RW +WR
(8)

Higher ξc and ξe values indicate primary algorithm is good at
taking right decisions and primary algorithm is good at taking
right decisions despite of its wrong decisions respectively.

Effective rightness measure indicates how good the primary
algorithm is on taking right decision considering all right
decisions and penalizing its wrong decision. However, it is
from the perspective of all decisions where at least one of
the algorithms is right. To have superiority over alternative
algorithm, the primary algorithm has to perform better from
the perspective of all decisions. Thus, effective superiority of
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primary algorithm in comparison to alternative is defined as
follows:

Definition 7 (Effective Superiority (ϕe)). The effective superi-
ority of primary algorithm over alternative algorithm is defined
as:

ϕe(P,Q) =
BR+RW −WR

BR+RW +WR+BW
(9)

Higher ϕe value indicates primary algorithm is superior at
taking right decisions in comparison to alternative algorithm.

Theorem 1. The measures σc, α, ξe and ϕe have the range
[-1, +1], but ξc has the range [0, 1].

Proof. The proof is quite straight forward. Since all the
measures except ξc has a negative element in numerator, which
can have maximum N(N − 1)/2 value and apparently other
elements will be 0 in that case, implying minimum value -1.
While both the elements in numerator of ξc can have 0 simul-
taneously implying minimum value 0. For all measures, one
positive element in numerator can have maximum N(N−1)/2
value and apparently other elements will be 0 in that case,
implying maximum value +1.

C. Properties of Comparative Performance Measures

Unlike the measures that are defined based on confusion
matrix indicate the performance of a standalone algorithm,
the five measures defined based on prayatul matrix indicate
comparative performance of one algorithm over another. The
properties of proposed comparative performance measures are
analyzed theoretically in the context of following four axioms:

• Scale Invariance: Metric should scale irrespective of
sample size small or large.

• Data Invariance: Metric should not be affected by
unbalances within the dataset.

• Permutation Invariance: Metric should not be affected
by permutation of labels.

• Monotonicity: Metric has to be non-decreasing under
monotonic consistent improvement.

• Continuity: Small change in #samples N has to cause
a smaller impact on the metric.

Theorem 2. All five measures σc, α, ξc, ξe and ϕe are scale
invariant.

Proof. All the proposed measures are multivariate functions
only. Let us consider, the case of σc. By replacing RW and
WR with variables x1 and x2 respectively, σc can be written
in the form of a function as follows:

σc(x1, x2) =
x1 − x2

x1 + x2
. (10)

A multivariate function f(x1, x2, ...) said to be scale invari-
ant if it satisfies

f(λ1x1, λ2x2, ...) = C(λ1, λ2, ...)f(x1, x2, ...). (11)

Since, RW and WR are dependent on the predictions of
primary and alternatives i.e. P and Q, change in size of the test
samples will imply change in RW and WR. Let the changes
in RW and WR be obtained as factors of λ1 and λ2. Thus,

σc(x1, x2) will be scale-invariant if power-low dependency can
be shown considering the following

σc(λ1x1, λ2x2) =
λ1x1 − λ2x2

λ1x1 + λ2x2
(12)

where, λ1 and λ2 are the factors for RW and WR resulted
in due to change in size of the test samples. First, taking the
logarithm of both sides yields

lnσc(λ1x1, λ2x2) = ln

(
λ1x1 − λ2x2

λ1x1 + λ2x2

)
. (13)

Introducing a new function F (x) defined as F (lnx) =
σc(x) to above equation gives

lnF (lnλ1 + lnx1, lnλ2 + lnx2) = ln

(
λ1x1 − λ2x2

λ1x1 + λ2x2

)
= ln(λ1x1 − λ2x2)− ln(λ1x1 + λ2x2)

= lnλ1 + lnx1 − lnλ2 − lnx2 − lnλ1 − lnx1 − lnλ2 − lnx2

= lnλ1 − lnλ2 − lnλ1 − lnλ2 + lnx1 − lnx2 − lnx1 − lnx2

= ln(λ1 − λ2)− ln(λ1 + λ2) + ln(x1 − x2)− ln(x1 + x2)

= ln

(
λ1 − λ2

λ1 + λ2

)
+ ln

(
x1 − x2

x1 + x2

)
= ln

(
λ1 − λ2

λ1 + λ2

)(
x1 − x2

x1 + x2

)
.

Finally, the equation becomes

lnF (lnλ1+lnx1, lnλ2+lnx2) = ln

(
λ1 − λ2

λ1 + λ2

)(
x1 − x2

x1 + x2

)
.

(14)
Now, taking inverse function both sides yield

eF (lnλ1+ln x1,lnλ2+ln x2) = e

(
λ1−λ2
λ1+λ2

)(
x1−x2
x1+x2

)
. (15)

Applying logarithm on both sides to above equation gives

F (lnλ1 + lnx1, lnλ2 + lnx2) =

(
λ1 − λ2

λ1 + λ2

)(
x1 − x2

x1 + x2

)
.

(16)
Changing the function back to σc(x) gives

σc(λ1x1, λ2x2) =

(
λ1 − λ2

λ1 + λ2

)(
x1 − x2

x1 + x2

)
. (17)

Representing right side as functions yields

σc(λ1x1, λ2x2) = C(λ1, λ2)σc(x1, x2) (18)

where, C is a function of two variables λ1 and λ2. Hence,
proved that σc is scale invariant. Similarly, measures α, ξc, ξe
and ϕe can also be proven as scale invariant.

Theorem 3. All five measures σc, α, ξc, ξe and ϕe are data
invariant.

Proof. Since the measures do not directly depend on the
number of samples in each class or sequence in which samples
are considered, balance or unbalance dataset, it does not
have any direct impact on the measures. Moreover, measure
considers the elements of prayatul matrix, which are counts
of sameness of instance pairs for comparative outcomes of
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two algorithms. Therefore, even if the dataset is unbalanced,
it will not have any impact on the measures. For instance,
the measure σc has two elements RW and WR. The element
RW will be influenced only when the outcomes of primary
algorithm is right and alternative algorithm is wrong for the
same instances of the dataset it does not matter which instance
pairs belong or even all the instance pairs may belong to single
cluster. Likewise, element WR will be influenced only when
the outcomes of primary algorithm is wrong and alternative
algorithm is right for the same instances of the dataset. Same
is the case for the elements BR and BW. Therefore, all five
measures σc, α, ξc, ξe and ϕe are data invariant.

Theorem 4. All five measures σc, α, ξc, ξe and ϕe are permu-
tation invariant.

Proof. Let us consider instances i and j have the same ground
truth labels gl i.e. gi = gj = gl. Say, predicted labels for
instances i and j with primary and alternative algorithms are
also same i.e. pi = pj = pl and qi = qj = ql. Thus, the
instance pair i and j will lead to increment of BR by one in
the prayatul matrix, since predicted labels for instances i and j
with primary and alternative algorithms are same and ground
truth labels are also same. Important to note that, predicted
labels pl and ql of instance i or j are not compared the
ground truth label gl. Just checked the sameness of the labels
of instance pairs.

As the instances are expected to have arbitrary clustering
labels, so the instance pair i and j can also have any arbitrary
labels p′l and q′l instead of pl and ql respectively for primary
and alternative algorithms. However, as long as pi = pj and
qi = qj remains true for instance pair i and j, only BR
value will change. Similarly, any instance pair affecting other
elements RW, WR or BW remain unaltered by any arbitrary
permutation of labels as long as sameness or difference of
labels for the instance pair is preserved.

Since, all five measures σc, α, ξc, ξe and ϕe are designed
based on the elements of prayatul matrix only, so all are
permutation invariant.

Theorem 5. All five measures σc, α, ξc, ξe and ϕe are mono-
tonic.

Proof. Consistent improvement of σc, α, ξc, ξe and ϕe in the
context primary algorithm means non-decreasing changes in
these measures. Consistent improvement can happen either
when the primary algorithm is right or alternative algorithm is
wrong in majority of the instance pairs i.e. the prayatul matrix
elements which involves abstraction Right for primary is more
or abstraction Wrong for alternative is more. Likewise, con-
sistent improvement can also happen when the prayatul matrix
elements which involves abstraction Wrong for primary is less
or abstraction Right for alternative is less.

Now, considering the measure σc, where numerator is sum
of a positive RW and negative WR. Thus, increment of RW or
decrement of WR implies consistent improvement of σc and
it will have non-decreasing values. Similarly, increment of BR
and RW or decrement of BW implies consistent improvement
of α and the values will be non-decreasing as well. In the
same way, consistent improvement of ξc, ξe and ϕe will happen

if BR and/or RW increases or if WR and/or BW decreases.
Therefore, σc, α, ξc, ξe and ϕe, all are non-decreasing under
monotonic consistent improvement.

Theorem 6. All five measures σc, α, ξc, ξe and ϕe are contin-
uous.

Proof. For continuity of a measure, small changes in number
of sample has to cause a smaller impact on it. Let us consider
a new instance is added in the test dataset. Now, let us examine
the impact of newly added instance on each of the elements of
the prayatul matrix and on all five measures. Clearly, by the
definition of prayatul matrix, only one of the values among
BR, RW, WR and BW will be increased or decreased by 1 for
every pair of instances, while other three will remain same.
Since, the newly added instance will be paired with N existing
instances, there will be N such changes.

Considering, the measure σc which involves only two ele-
ments of the prayatul matrix i.e. RW and WR. Thus, there has
the possibility that both RW and WR may remain unchanged
for any instance pair. If any one of RW and WR increase by
1, we will have

σc(P,Q) =


RW−WR+1
RW+WR+1 if RW increases

RW−WR−1
RW+WR+1 if WR increases

(19)

Replacing RW-WR and RW+WR by a and b the above
becomes

σc(P,Q) =


a−1
b+1 if RW increases

a−1
b+1 if WR increases

(20)

By Theorem 1 we have a ≤ b always, which implies a+1 ≤
b + 1 as well as a − 1 < b + 1. If a >> 1 and b >> 1 then
by properties of ratio, 

a+ 1

b+ 1
≡ a

b
a− 1

b+ 1
≡ a

b

(21)

Same is true for additional N − 1 number of instances
if a >> N and b >> N . Since, both a and b can have
maximum N(N − 1)/2, which grows exponentially with N ,
so a >> N and b >> N will be true from large N . Thus,
small change in number of samples σc will have minimal so
it is continuous. Similarly, the other measures α, ξc, ξe and ϕe

can also be proven as continuous.

D. Prayatul Matrix Generation

Prayatul matrix generation process is quite simple and
straight forward. A simple algorithm called D-Matrix Algo-
rithm is designed for generating prayatul matrix as shown in
the Algorithm 1. The algorithm takes three inputs: ground
truth G, outcome P of the primary algorithm and outcome
Q of the alternative algorithm. The entries of prayatul matrix
is computed based on the abstraction levels as specified above
and finally the algorithm returns the prayatul matrix D. The
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time complexity of the algorithm is O(N2), where N is the
number instances.

Algorithm 1: D-Matrix Algorithm
Input: G,P,Q
Output: Prayatul Matrix (D)

1 procedure generatePrayatulMatrixCluster(G,P,Q)
2 Dij ← 0,∀i, j ∈ [1, 2]
3 N ←number of instances in G
4 for i = 1 to N do
5 for j = i+ 1 to N do
6 if (pi = pj AND qi = qj AND gi = gj) OR

(pi ̸= pj AND qi ̸= qj AND gi ̸= gj) then
D11 ← D11 + 1

7 else if (pi = pj AND qi ̸= qj AND gi = gj)
OR (pi ̸= pj AND qi = qj AND gi ̸= gj)
then D12 ← D12 + 1

8 else if (pi ̸= pj AND qi = qj AND gi = gj)
OR (pi = pj AND qi ̸= qj AND gi ̸= gj)
then D21 ← D21 + 1

9 else if (pi = pj AND qi = qj AND gi ̸= gj)
OR (pi ̸= pj AND qi ̸= qj AND gi = gj)
then D22 ← D22 + 1

10 return D

IV. EXPERIMENTAL ANALYSIS

A. Experimental Setup

B. Datasets

To analyze efficacy of the proposed prayatul matrix based
method as well as newly designed performance measures,
three widely used standard datasets Noisy Circles (NC), Noisy
Moons (NM), and Aniso (NS) are considered from Scikit-
learn package [23]. All of the three datasets contain 1500 in-
stances. Noisy Circles dataset is generated using Make Circles
base dataset with noise=0.05 and cluster parameter values as
damping=0.77, preference=-240, quantile=0.2, n clusters=2,
min samples=20, and ξ=0.25. Similarly, Noisy Circles dataset
is generated using Make Circles base dataset with noise=0.05
and cluster parameter values as ϵ=0.15, n neighbors=2,
min samples=20, ξ=0.1, and min cluster size=0.2. Likewise,
Aniso dataset is generated using Make Bloobs base dataset
with transformation = [[0.6, -0.6], [-0.4, 0.8]] and cluster
parameter values as ϵ=0.15, n neighbors=2, min samples=20,
ξ=0.1, and min cluster size=0.2.

1) Clustering Algorithms: Four popular clustering algo-
rithms namely Spectral, K-Means (KMeans), DBSCAN, and
BIRCH are considered for unsupervised learning. Specific
parameters related to clustering algorithms are set as fol-
lows. For KMeans n clusters=2 or 3, for DBSCAN ϵ=0.3,
for Spectral n clusters=2 or 3, eigen solver=“arpack”, affin-
ity=“nearest neighbors”, and for BIRCH n clusters=2 or 3 are
considered for the experiments.

2) Implementation Details and System Configuration: All
implementations and executions are done under Jupiter Note-
book server 6.4.10 environment with Python 3.10.4. The D-
Matrix Algorithm for generating prayatul matrix and proposed
performances measures are implemented in Python language 1.
As mentioned above, widely used clustering algorithms that
are already implemented and openly available in Scikit-learn
package [23] are considered. Publicly available source code
for classification [24] is considered as reference to setup the
experimental environment. All the experiments are done on
the Computer having Intel(R) Core(TM) i7-8565U CPU @
1.80GHz with 8 Cores, 4.6GHz Speed, NVIDIA GeForce
MX130 Graphics card, 16 GB RAM, 1TB HDD and 64-bit
(AMD) Windows 10 Operating System.

C. Result Analysis

The proposed direct comparison measures obtained with the
four clustering algorithms are analyzed from the perspective
measure values as well as instance level comparison through
prayatul matrix. Proposed measures are compared with the
indications of existing measures and then re-verified with the
instance level comparison entries in the prayatul matrix.

1) Measure Value-based Analysis: It is clear from the
results presented in Figure 2 that DBSCAN and Spectral
produced exactly the same clusters as in the ground truth for
Noisy Circles and Noisy Moons datasets. However, cluster
labels are opposite in Noisy Circles dataset for Spectral,
although it produced exactly same clusters as in the ground
truth. In the case of BIRCH and KMeans, almost half of the
instances are wrongly clustered for Noisy Circles. In Noisy
Moons also cluster labels are opposite w.r.t. ground truth
for DBSCAN and Spectral, though both produces exactly
the same clusters as in ground truth. While all four algo-
rithms misclustered few instances in Aniso dataset, though
misclustered instances are comparatively low for DBSCAN
and Spectral. With the preliminary visual inspection of results,
let us now examine the effectiveness of the measures designed
for proposed direct comparison approach.

Since, the proposed direct comparison approach pairs two
algorithms for computing performance measure values, the in-
terpretation of these measures are also to be done in the context
of pair of two algorithms. Pair of two instances from each
algorithm of the two comparing algorithms are considered for
direct comparison. The measure values obtained with one-to-
one comparison of algorithms are presented in Table I. For
the pair DBSCAN vs Spectral, comparative deviation value is
0 for both Noisy Circles and Noisy Moons, which indicates
that there is no difference between the two when there is
disagreement on the outcomes. Polarization value is 1 for both
Noisy Circles and Noisy Moons for both DBSCAN vs Spectral
and Spectral vs DBSCAN, which indicates that both are highly
polarized towards right decision. Comparative rightness, ef-
fective rightness and effective superiority value is also 1 for
both DBSCAN vs Spectral and Spectral vs DBSCAN, which

1Source codes of prayatul matrix and five scores released through GitHub
under GPLv3 License is available here https://github.com/anupambis/Prayatul-
for-clustering
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Fig. 2: Results with clustering algorithms

TABLE I: Proposed measures obtained for one-to-one comparison of each algorithm with three other clustering algorithms

B
IR

C
H

Algos DBSCAN KMeans Spectral
Data σc α ξc ξe ϕc σc α ξc ξe ϕc σc α ξc ξe ϕc

NC -1 0.5028 0.5028 0.0055 0.0055 0.0062 0.2538 0.6695 0.3389 0.2545 -1 0.5028 0.5028 0.0055 0.0055
NM -1 0.8252 0.8252 0.6505 0.6505 0.5565 0.6829 0.9622 0.9244 0.7928 -1 0.8252 0.8252 0.6505 0.6505
NS -0.9068 0.7981 0.8005 0.6009 0.6002 -0.1785 0.6962 0.8915 0.7829 0.7021 -0.9396 0.7869 0.8095 0.6190 0.6113

D
B

SC
A

N Algos BIRCH KMeans Spectral
Data σc α ξc ξe ϕc σc α ξc ξe ϕc σc α ξc ξe ϕc

NC 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
NM 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
NS 0.9068 0.9877 0.9902 0.9805 0.9792 0.8976 0.9871 0.9909 0.9817 0.9798 0.2639 0.9881 0.9899 0.9797 0.9788

K
M

ea
ns

Algos BIRCH DBSCAN Spectral
Data σc α ξc ξe ϕc σc α ξc ξe ϕc σc α ξc ξe ϕc

NC -0.0062 0.2507 0.6653 0.3307 0.2483 -1 0.4997 0.4997 -0.0007 -0.0007 -1 0.4997 0.4997 -0.0007 -0.0007
NM -0.5565 0.6016 0.8674 0.7347 0.6301 -1 0.7439 0.7439 0.4878 0.4878 -1 0.7439 0.7439 0.4878 0.4878
NS 0.1785 0.7257 0.9243 0.8487 0.7611 -0.8976 0.8270 0.8305 0.6609 0.6597 -0.9474 0.8149 0.8407 0.6815 0.6719

Sp
ec

tr
al

Algos BIRCH KMeans DBSCAN
Data σc α ξc ξe ϕc σc α ξc ξe ϕc σc α ξc ξe ϕc

NC 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
NM 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
NS 0.9396 0.9693 0.9941 0.9881 0.9758 0.9479 0.9676 0.9956 0.9913 0.9774 -0.2639 0.9808 0.9826 0.9652 0.9643

TABLE II: Accuracy, Precision and Recall based on confusion matrix for clustering algorithms

Algos BIRCH DBSCAN KMeans Spectral
Data Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec
NC 0.5393 0.5417 0.5107 1 1 1 0.5 0.5 0.5013 0 0 0
NM 0.0967 0.0129 0.0107 0 0 0 0.8493 0.8447 0.8560 0 0 0
NS 0.1947 0.1361 0.1947 0.3253 0.2 0.3253 0.25 0.2520 0.25 0.3467 0.3455 0.3467

indicates that both algorithms produce exactly same clusters
as noted during visual analysis. Even though cluster labels
are opposite w.r.t. ground truth still the measures indicate that
Spectral produced exactly the same clusters as in the ground
truth. On the other hand, confusion matrix based measures
presented in Table II failed miserably to capture this fact as
Accuracy, Precision and Recall values are 0. Whereas, ARI,
NMI and AMI presented in Table III clearly indicate that both
DBSCAN and Spectral produced exactly the same clusters as
in the ground truth.

For BIRCH vs KMeans, comparative deviation value is
positive but low in Noisy Circles and Noisy Moons datasets,
which indicates BIRCH is capable of taking right decision

on some instances where KMeans is wrong. Alternatively,
negative values for KMeans vs BIRCH also indicate the
same. However, in Aniso dataset, KMeans seems to be better
than BIRCH. Polarization value is positive but relatively low
for all the datasets, which means both BIRCH and KMeans
are less polarized towards right decision. Clearly, relatively
low values of effective rightness and effective superiority
in Noisy Circles indicate that BIRCH performance is poor
specially when its wrong decisions are penalized. Moreover,
for BIRCH vs DBSCAN and BIRCH vs Spectral, BIRCH
seems to be worst performer as indicated by negative com-
parative deviation, which means that whenever BIRCH has
disagreement with DBSCAN and Spectral, the decisions of
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TABLE III: NMI, ARI and AMI scores obtained for clustering algorithms

Algos BIRCH DBSCAN KMeans Spectral
Data NMI ARI AMI NMI ARI AMI NMI ARI AMI NMI ARI AMI
NC 0.0045 0.0055 0.0040 1 1 1 0 -0.0007 -0.0005 1 1 1
NM 0.5994 0.6505 0.5992 1 1 1 0.3886 0.4878 0.3883 1 1 1
NS 0.6321 0.5656 0.6316 0.9551 0.9749 0.9549 0.6279 0.6149 0.6275 0.9444 0.9588 0.9443

DBSCAN

B
IR

C
H

Right Wrong

N
oi

sy
C

ir
cl

es

R
ig

ht

565231 0

W
ro

ng

559019 0

DBSCAN

B
IR

C
H

Right Wrong

N
oi

sy
M

oo
ns

R
ig

ht

927775 0

W
ro

ng

196475 0

DBSCAN

B
IR

C
H

Right Wrong

A
ni

soR
ig

ht

887807 10952

W
ro

ng

224034 1457

(a) BIRCH vs DBSCAN

KMeans

B
IR

C
H

Right Wrong

N
oi

sy
C

ir
cl

es

R
ig

ht

282661 282570

W
ro

ng

279089 279930

KMeans
B

IR
C

H

Right Wrong

N
oi

sy
M

oo
ns

R
ig

ht

799881 127894

W
ro

ng

36445 160030

KMeans

B
IR

C
H

Right Wrong

A
ni

soR
ig

ht

822470 76289

W
ro

ng

109436 116055

(b) BIRCH vs KMeans

Spectral

B
IR

C
H

Right Wrong

N
oi

sy
C

ir
cl

es

R
ig

ht

565231 0

W
ro

ng

559019 0

Spectral

B
IR

C
H

Right Wrong

N
oi

sy
M

oo
ns

R
ig

ht

927775 0

W
ro

ng

196475 0

Spectral

B
IR

C
H

Right Wrong

A
ni

soR
ig

ht

892168 6591

W
ro

ng
211503 13988

(c) BIRCH vs Spectral

Fig. 3: Prayatul Matrices of BIRCH with three other classification algorithms

BIRCH always turnouts to be wrong. KMeans also shows
the similar performance as indicated by negative comparative
deviation for KMeans vs DBSCAN and KMeans vs Spectral.
However, as noted during visual inspection for Aniso dataset,
all four algorithms misclustered some instances, the measures
comparative rightness, effective rightness and effective superi-
ority clearly indicate the same. Overall DBSCAN and Spectral
are better performing algorithms over BIRCH and KMeans.

The confusion matrix based measure values accuracy, pre-
cision and recall as shown in Table II clearly indicate that
performance of BIRCH and KMeans is poor. However, as
noted earlier, these measures failed to indicate that both
DBSCAN and Spectral are best performing algorithms across
all three datasets. This happens because these measures are
incapable of handling arbitrary cluster labels, which is clearly
visible for Noisy Moons dataset as both DBSCAN and Spec-
tral produces exactly same clusters as ground truth but with
opposite labels. On the other hand, though NMI, ARI and

AMI values presented in Table III clearly indicate the poor
performance of both BIRCH and KMeans. However, these
values certainly cannot tell us that the almost 50% of the
instances in Noisy Circle dataset are clustered correctly for
both BIRCH and KMeans, when compared to DBSCAN and
Spectral. In contrast, polarization values clearly indicate this
fact. Similarly, polarization value also clearly indicate that
more than 50% of the instances in Noisy Moons and Aniso
datasets clustered correctly for both BIRCH and KMeans,
when compared to DBSCAN and Spectral. It is nearly im-
possible to get this important insight with the NMI, ARI and
AMI values. The proposed comparative deviation measure can
give another important insight about algorithms. For instance,
KMeans is better than BIRCH in Noisy Circles and Noisy
Moons dataset, which is clearly indicated by comparative
rightness, effective rightness and effective superiority as well
as NMI, ARI and AMI. However, the NMI, ARI and AMI
values or confusion matrix based measures certainly cannot
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tell us that KMeans is incapable of taking right decisions on
certain instances while BIRCH can do as indicated by positive
comparative deviation values for BIRCH vs KMeans.

2) Instance Level Analysis: Since the prayatul matrix ele-
ments are the counts of instance level comparison (instance
pairs) of two clustering algorithms and the proposed mea-
sures are designed based on it, so the measure values give
instance level comparative performance of the two clustering
algorithms. To reaffirm this, the indications noted above are
analyzed with the prayatul matrices obtained for BIRCH in
comparison to other three clustering algorithms as presented
in Figure 3. Clearly, prayatul matrices for clustering algorithms
show that BIRCH has high WR values, which means that
large number of instance pairs are assigned to wrong clusters
but the same has been assigned to right clusters by others, in
particular DBSCAN and Spectral. This reaffirm worst perfor-
mance of BIRCH in comparison to DBSCAN and Spectral.
However, BIRCH mostly having more right decision count
in comparison to KMeans as RW count is more than WR
count but difference is low. This reaffirms the indications in
measure based analysis as well as visual analysis that BIRCH
and KMeans performance almost same. Moreover, RW values
are 0 for both DBSCAN and Spectral in both Noisy Circles
and Noisy Moons, which means that no instance pair has been
wrongly clustered by DBSCAN or Spectral that are rightly
clustered by BIRCH. At the same time, WR values are very
large, which means that many instance pairs that are wrongly
clustered by BIRCH are rightly clustered by both DBSCAN
and Spectral. Negative comparative deviation values are clear
indicative of this fact.

V. CONCLUSION

In this paper, an alternative approach is proposed for direct
comparison of clustering algorithms at instance level of test
datasets. A direct comparison matrix called Prayatul Matrix
is prepared to account pairwise instance level comparison of
two clustering algorithms. Five measures are designed based
on the elements of prayatul matrix, which include comparative
deviation, polarization, comparative rightness, effective right-
ness and effective superiority. Results on widely used standard
datasets showed that these measures can give some important
insight about the outcomes of algorithms by comparing those
directly at instance level. Also, these measures are equally
capable of indicating the right decisions of algorithms as
conventional measures. For instance, two clustering algorithms
having same NMI, ARI or AMI value doesn’t mean that their
outcomes are same at instance level, comparative deviation and
polarization give indications on such differences. While com-
parative rightness, effective rightness and effective superiority
measures give the indication for right decisions of comparing
algorithms. Moreover, interpretation of the measures is simple,
the rule-of-thumbs for end-users is highly positive values im-
ply good performance and negative implies bad performance
of primary algorithm.
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