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Abstract

In this work, we address the problem of speech enhancement in the context of binaural hearing. We propose deep learning models
which are connected by “fusion layers” that perform Hadamard products between specific generated latent representations.
Fusion layers are inspired by multi-task learning approaches that combine and/or share weights between models that tackle
related tasks. We first present a general fusion model and show that this approach is able to fit synthetic data better than
independent linear models, equalize activation variance between learning modules, and exploit input data redundancy to improve
the training error. We then apply the concept of fusion layers to enhance speech in binaural listening conditions. Our results
show that the proposed approach improves speech enhancement performance on unseen data with respect to the independent
models. However, we observe a trade-off between speech enhancement performance and predicted speech intelligibility based
on a short-time objective binaural speech intelligibility index, potentially due to distortions introduced by fully fused models.

Results also suggest that fusion layers should share parameterized latent representations in order to properly exploit the

information contained in each listening side. In general, this work shows that sharing information between speech enhancement

modules may be promising to improve binaural speech enhancement while keeping the number of trainable parameters constant

and improving generalization.
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Deep Latent Fusion Layers for
Binaural Speech Enhancement

Tom Gajecki & Waldo Nogueira

Abstract—In this work, we address the problem of speech
enhancement in the context of binaural hearing. We propose
deep learning models which are connected by “fusion layers” that
perform Hadamard products between specific generated latent
representations. Fusion layers are inspired by multi-task learning
approaches that combine and/or share weights between models
that tackle related tasks. We first present a general fusion model
and show that this approach is able to fit synthetic data better
than independent linear models, equalize activation variance
between learning modules, and exploit input data redundancy
to improve the training error. We then apply the concept of
fusion layers to enhance speech in binaural listening condi-
tions. Our results show that the proposed approach improves
speech enhancement performance on unseen data with respect
to the independent models. However, we observe a trade-off
between speech enhancement performance and predicted speech
intelligibility based on a short-time objective binaural speech
intelligibility index, potentially due to distortions introduced by
fully fused models. Results also suggest that fusion layers should
share parameterized latent representations in order to properly
exploit the information contained in each listening side. In
general, this work shows that sharing information between speech
enhancement modules may be promising to improve binaural
speech enhancement while keeping the number of trainable
parameters constant and improving generalization.

Index Terms—Fusion layers, Binaural speech enhancement,
Deep learning, Latent representations

I. INTRODUCTION

D eep learning technology has been successfully applied to
perform speech enhancement, i.e., removing or attenuat-

ing interfering noise from a speech signal. Recently, binaural
speech enhancement methods [1], [2] that share information
between listening sides have been developed to exploit re-
dundant information to further improve noise reduction. Here,
we address the problem of speech enhancement in binaural
listening by introducing a simple weight-sharing mechanism
between two monaural speech enhancement algorithms.

Commonly, deep learning models are trained to perform
one task at a time. For example, in image processing, a
deep neural network (DNN) can be trained to classify images
between a set of classes or to segment particular objects of
interest within images (e.g., [3]–[5]). In the context of speech
processing, DNNs can be trained to recognize the words in
speech sentences from the raw audio (e.g., [6]–[8]), or to
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automatically remove the unwanted components of a corrupted
speech signal, such as noise or other speakers (e.g., [9]–[12]).
These approaches work generally well, but they may ignore
potential rich sources of information contained in real-world
problems. For instance, speech enhancement systems improve
noise reduction performance when also relying on visual
feedback, giving rise to audio-visual speech enhancement [13].
Here is where multi-task learning (MTL) comes into play.

MTL is a subset of deep learning techniques in which
multiple learning tasks are solved at the same time while
exploiting similarities and differences between them. This
technique is generally the result of sharing parameters between
different models [14]–[16]. MTL can provide the models with
higher generalization capabilities by leveraging the domain-
specific information contained in the training signals of related
tasks. It does this by training tasks in parallel while sharing
latent representations of the input data. This method can be
used, for example, to identify an object within an image,
recognize the overall scene and generate a verbal caption for
it (e.g., [17], [18]). Also, for speech processing, MTL can be
used to improve speech activity detection (e.g., [19], [20]).

Much of the current deep learning research has focused on
coming up with better architectures, and it is not different for
MTL. Actually, architecture plays possibly even a larger role in
MTL because of the number of possibilities that one has to tie
multiple tasks together. In other words, the way the parameter
sharing between the networks is performed is not obvious. In
fact, there is research devoted to finding optimal latent multi-
task architectures [21], [22]. However, simple approaches such
as cross-stitch networks that learn linear combinations of
latent representations between the models have proven to be
successful in generalizing into multiple tasks [23], [24]. In this
work, we present a simple weight-sharing method to perform
binaural speech enhancement.

A healthy human auditory system is excellent at isolating
target signals in acoustically challenging conditions, this is due
to the ability it has to exploit both acoustic inputs captured by
each of the ears, and to centrally compare features contained
in them; this is known as binaural hearing [25], [26]. The
problem of binaural speech enhancement has been an active
research problem for already some time (e.g., [27]–[29]).
However, more recently, DNNs have proven to be successful at
performing speech separation in binaural listening by sharing
acoustic binaural features. For example, previous research has
used feature concatenation and self-attentive mechanisms to
perform binaural speech enhancement (e.g., [2], [30], [31]).
These methods rely on explicit feature extraction and are not
necessarily motivated by the human binaural auditory system.

gajecki.tomas@mh-hannover.de
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Although the exact fundamental physiological mechanisms
by which the binaural hearing system exploits different acous-
tic cues are not fully understood [32], [33], there have been
attempts to develop computational models that explain em-
pirically observed human binaural hearing abilities, such as
the equalization-cancellation model [34], [35]. This model
suggests explaining binaural masking level differences with
processes of relative delay compensation and then subtraction
of particular acoustic features captured by each ear to attenuate
the interfering noise. In this work, we propose DNNs that al-
though do not perform the same operations as the equalization
model, may learn to combine latent features to emulate neural
excitation and inhibition processes that happen in the brain
stem for binaural acoustic processing [33].

Inspired by MTL weight sharing and the binaural
equalization-cancellation model, we investigate the influence
that sharing the latent representation of two single-channel
end-to-end speech enhancement DNNs has on the speech
enhancement performance of binaural noisy speech signals.
We will share the latent representations through fusion layers
that apply element-wise dot product operations to each of the
features contained in them. The fusion layers are designed
to introduce non-linearities to the speech enhancement model
that will allow fitting better the training data while improv-
ing generalization without affecting the number of trainable
parameters. We expect that the fused models will emphasize
latent target feature representations in the fused layers by can-
celing unwanted noisy elements contained in the input audio
signal, causing also a decrease in layer activation variance.
This work extends a previous study1 presented at the 2021
Clarity speech enhancement challenge [36] by formalizing the
concept and by analyzing the effect of input data correlation,
latent activation variance, and encoding methods.

The rest of this manuscript is organized as follows. Section
II describes the method. The experimental results are presented
in Section III, and Section IV concludes this manuscript.

II. METHODOLOGY

A. General fused model

The main aspect we aim at investigating in this study is the
effect that sharing information between deep learning models
has on data fitting and generalization performance. We propose
to share this information by means of fusion layers that apply
dot-product operations to specific latent representations at
different stages of data processing. We will first describe a
general fused model to formalize the notation that will be
used throughout the manuscript.

Let Ym = Ωm(Xm) ∈ RDL , where DL is the dimension-
ality of the output tensors, be the output tensors computed by
a set of learning models given by Ωm(·), for a given set of
input tensors Xm ∈ RD0 , where D0 is the dimensionality of
the input tensors, {m = 1, . . . ,M}, and M is the number of
DNNs. Each of the models contains L learning modules (i.e.,
layers, multi-layer perceptrons, etc...) that apply a function
ωl,m(·) to transform its input tensor into a latent representation

1https://github.com/tomgajecki/FusionLayers/blob/main/Clarity 2021
gajecki.pdf

of it, i.e., Xl,m = ωl,m(Xl−1,m), {l = 1, . . . , L−1} (note that
for the input and output tensors the index l is omitted). At this
point, we introduce the fusion layer. This layer is designed to
share information between the different models by means of
an element-wise dot product of the latent representations at
different stages of the processing. Let ρ(·) be the Hadamard
product operator. The output of the fusion layers will be
represented by tensors χl,m = ρ(Xl,m,Λl,m), where Xl,m is
the output of the learning module (l,m), and Λl,m is the set
of tensors that will be fused at layer (l,m) with Xl,m, such
that Λl,m := {Xl,m′ |m′ ̸= m ∧ 1 ≤ m′ ≤ M}. Here, the
direct path without fusion is indicated by Λl,m = {Jl} ∈ RDl

(all-ones tensor), with Dl being the output dimensionality of
layer l. In this case χl,m = Xl,m.

A general deep fusion model is shown in Figure 1. In this
graph, learning modules and fusion layers are indicated by
black and white vertices, respectively, whereas the flow of
tensors is indicated by directed edges. This model can be
simply described with matrix notation through the deep latent
fusion matrix ∆ for each fusion set Λl,m ∈ RDl , as follows:

∆ =



Λ1,1 Λ1,2 · · · · · · · · · Λ1,M

Λ2,1 Λ2,2 · · · · · · · · · Λ2,M

...
...

. . .
...

Λl,1 Λl,2 Λl,m Λl,M

...
...

. . .
...

ΛL−1,1 ΛL−1,2 · · · · · · · · · ΛL−1,M


. (1)

The here presented fusion layers have three purposes,
namely: 1) Introduce non-linearities to the model in a con-
trolled way; 2) Leverage input feature redundancy (i.e., cor-
relations) to improve data fitting 2), and; Act as a channel
for the gradients to back-propagate through, to reduce the
activation variance between learning modules and improving
generalization on unseen data [37].
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Fig. 1. Graph diagram of a general fused model. Learning modules are
indicated by black-filled vertices and fusion layers by white vertices, whereas
the flow of tensors is indicated by directed edges.

https://github.com/tomgajecki/FusionLayers/blob/main/Clarity_2021_gajecki.pdf
https://github.com/tomgajecki/FusionLayers/blob/main/Clarity_2021_gajecki.pdf
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B. Fully fused linear models

To investigate the effects that the fusion layers have on
a specific model we will simplify the generic fused model
by assuming that all learning modules (i.e., fully connected
layers) are linear, and that input tensors are vectors Xm ∈
R1×T . This will allow us to assess how non-linearities are
introduced due to the interconnection of the independent
models, characterize how the input data correlation affects
the data fitting, and assess how the variance of the layer
activations is impacted. The general model shown in Figure 1
that does not contain any fusion layers will be be referred to
as “independent” (i.e., Λl,m = {Jl} ∀ l,m), where Jl ∈ Dl

is the all-ones tensor. Each of the models contains L lay-
ers (i.e., the learning modules) consisting of nl parameters.
Activation functions for each of the layers are defined by
ϕl,m(·), ∀ l,m. The output at layer l for model m is given by
Xl,m = ω(Xl−1,m;wl,m, bl,m) = ϕl,m(X⊤

l−1,mwl,m + bl,m),
where w ∈ R(nl−1)×nl and bl,m ∈ R1×nl are the weights
and biases, respectively. Assuming that all activations are
linear, the output of each layer and model Xl,m will satisfy
∂Ym(Xl,m)/∂Xl−1,m = Cl,m ∈ R; i.e., a constant. Hence,
every model m will be reduced to a linear regression.

1) Generating non-linear models through fusion: Now lets
define a fused model where all layers are multiplied with each
other for all learning modules, that is Λl,m := {Xl,m′ ∀ l ∧
m′ ̸= m}. We will introduce two fusion modalities, namely:
side-wise fusion and depth-wise fusion. These two ways of
making the models interact with each other will have different
effects on the non-linearities introduced and on how latent
information is transmitted throughout the models. These will
be described in the following lines.
Side-wise fusion level is defined at a given layer (l,m) as the
number of fusion layers, that is, |Λl,m|, where |A| represents
the cardinality of a set A. In general, the fusion output at layer
l with a side-wise fusion level of |Λl,m| = M −1 is given by:

χl,m =

M∏
m=1

ωl,m(Xl−1,m;wl,m, bl,m). (2)

This fusion operator (i.e., chained Hadamard products) will
cause the M models to no longer be independent, introducing
non-linearities at the output of a given learning module l such
that the leading order term (LOT) is:

LOT
( ∂χl,m

∂Xl−1,m

)
∼ O(nM−1). (3)

Depth-wise fusion level occurs for models with multiple
learning modules (i.e., deep multi-layer models), that include
deeper processing stages to increase the order of the modeled
function. If we consider a fully fused linear model, the fusion
output of layer l can be written as equation 2. At layer L−1 the
output of the fusion layer will not only depend on the side-wise
fusion operation but also on the previous latent representations.
This output can be written as a function of previous fusion
operations as follows:

χL−1,m =

L−1∏
l>1

M∏
m=1

ωl,m(Xl−1,m;wl,m, bl,m), (4)

where L is the number of learning modules that each model
contains. In this case the introduced non-linearities at the
output of a given learning module l such that the LOT is:

LOT
(∂χL−1,m

∂XL−2,m

)
∼ O

(
n(L−1)·M−1

)
. (5)

C. Experiment 1: Fusion for artificial data fitting

In this experiment, we aim at investigating the effects of
the fusion operation on simple regression problems on an
artificially generated dataset. We divide this experiment into
two sub-experiments; one will show empirically that non-
linearities are introduced by the operation shown in equation
2, and in the second one we investigate the trade-off between
the correlation of the input data at each model and its fitting
capabilities.

X1

X2

Y1

Y2

Ω1(·)

Ω2(·)

X1,2

Λ1,1

Λ1,2

Λ2,1

Λ2,2

X1,2

χ1,1 = χ1,2

X2,2

χ2,1= χ2,2

X1,1

X2,2

X2,1ω1,1(·) 

ω1,2(·) 

ω2,1(·) 

ω2,2(·) 

ω3,1(·) 

ω3,2(·) 

ρ(·) ρ(·)

X1,1 X2,1

~ 

~ 

Front layer

Front layer

Back layer

Back layer

Front fusion Back fusion

Fig. 2. Block diagram of a model comprised of two deep learning sub-
models, each containing three learning modules. Fusion layers are included
or bypassed using the switches depicted in the block diagram. Each sub-
model is represented by the grey blocks and each of the learning modules is
represented by the white blocks. This model has a side-wise fusion level of
one and a depth-wise fusion level of two.

Model: In this experiment we will keep the number of sub-
models m = 2. The input and output layers of all sub-models
consist of one single unit and the number of units in each of
the hidden layers will be specified by “layer size”, for which
we tested nl ={32, 64, 128, 256}.
Dataset: The dataset for this experiment was artificially gen-
erated by creating input vectors with elements sampled from
random uniform distributions. Because we keep the number of
models m = 2, two input vectors were created, X1 ∈ U{0, 1}
and X2 ∈ U{0, 1} containing 500 samples each (see Figure
5, first panel). From the input data we generated a non-linear
output for each sub-model (Y1 for sub-model 1 and Y2 for
sub-model 2) as follows:{

Y1=0.5·sin(10·X1)+Xn1+0.4

Y2=0.5·sin(10·(X1 ·(1−d)+d·X2)+2)+Xn2+0.9
,

(6)
where Xn1 and Xn2 are noisy samples with a maximum
amplitude of 0.3, and d is a multiplicative factor that controls
the amount of correlation at the input (d = 0 for fully
correlated inputs and d = 1 for fully uncorrelated inputs).
Loss function: To fit the artificial training data to the target
functions described in equation 6, we minimized the mean-
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squared-error (MSE) between the predicted output Y and the
target Ŷ. The MSE computed over n samples is defined as:

MSE(X, Ỹ) =
1

n

n∑
i=1

(Yi − Ỹi)
2. (7)

Training: The models were trained for a maximum of 100
epochs in batches of 10 samples. The initial learning rate was
set to 1e-3. The learning rate was halved if the accuracy of
the validation set did not improve during 3 consecutive epochs,
early stopping with a patience of 5 epochs was applied as a
regularization method, and only the best performing model
was saved. For the model optimization, Adam [38] was used
to minimize the MSE (see equation 7) between the estimated
and true outputs.

1) Experiment 1.1: In this experiment, we aim at inves-
tigating the effect that the non-linearities introduced by the
fusion mechanisms have on the training error. We do this by
comparing the output errors obtained by the linear independent
and fused models. Also, for this experiment the input vector
fed to each sub-model will be identical (X1 = X2). This
experiment may reveal if one can profit by adding non-
linearities in a controlled way through fusion when compared
to using a completely linear model.

2) Experiment 1.2: In this experiment, we aim at investi-
gating how susceptible is the proposed attention mechanism to
differences between inputs in each sub-model. We will aim at
answering this question by computing the errors at the output
of each independent and fused model as a function of the
correlation of the input data. This aspect is important because
of the motivation behind using fusion layers in binaural speech
enhancement systems, where the correlation between hearing
sides is present. However, we aim at assessing a potential
threshold below which fusion is no longer that beneficial to
fit the training data distribution.

3) Experiment 1.3: In this experiment, we empirically mea-
sure the activation variances across predictions of the fused
layers (See Λi,j ∀ {i, j} = {1, 2} in Figure 2) as well as their
counter independent layers. The variance of the activations
contained in each layer is defined as:

V ar[activations] = E[(wl,m − w̄l,m)2], (8)

where E[·] is the expected value operator, wl,m is the tensor
containing all of the learned wights in layer l in model m, and
w̄l,m is the average activation value in layer l and model m.

To assess how variance changes across models, we train
an independent and all possible fused models (from Figure
2 using only Λ1,1 and Λ1,2, only Λ2,1 and Λ2,2, both pair
of sets, or none of them) 50 times using different random
initialization seeds. This will give an idea of how the activation
variance is affected by the fusion operation. Also, we measure
the variance including correlated and uncorrelated input data
to remove possible training bias.

D. Experiment 2: Fusion layers for binaural speech signals

In this experiment, we investigate the effect that fusion
layers have on noise reduction performance in the context of
end-to-end speech enhancement.

Model: The speech enhancement algorithm relies on two end-
to-end audio speech enhancement models; each consisting of
three processing stages, as shown in Figure 3: an encoder,
a separator (a temporal convolution module, and a mask
estimator), and a decoder. The encoder extracts features from
the input audio signal that are then passed into the separator
that estimates a mask to remove noisy elements of the input
audio, and the de-noised audio is resynthesized by the decoder.
The implementation was done in TensorFlow 2.0 [39] and the
code for training and evaluating can be found online2.
Dataset: The speech material used for the evaluation of the
speech enhancement models was obtained from the TIMIT
acoustic-phonetic Continuous Speech Corpus [40] (consisting
of a set dedicated for training and another set for testing). The
interfering noisy signals were all obtained from the DEMAND
collection of multi-channel recordings of acoustic noise in
diverse environments [41]. The training set was obtained by
mixing all of the training data contained in the TIMIT speech
dataset with 50% of the DEMAND noise signals. The vali-
dation dataset, used to monitor the models’ training process,
consisted of 20% of the training material. The testing set was
obtained by mixing the remaining 50% of the DEMAND noise
signals with the TIMIT speech testing set.

Each acoustic scene corresponded to a unique target utter-
ance and a unique segment of noise from an interferer, mixed
at signal-to-noise ratios (SNRs) ranging from -6 to 6 dB.
The three sets were balanced for the target speaker’s gender.
Binaural room impulse responses (BRIRs) [42] were used to
model a listener in a realistic acoustic environment. The BRIR
recording data set3 consisted of 4 different rooms of different
sizes and acoustic properties. The audio signals for the scenes
were generated by convolving source signals with the BRIRs
and summing.
Tested topologies: To investigate how the fusion operation af-
fected the models’ performance, we tested four configurations
described in Table I.

TABLE I
SPEECH ENHANCEMENT ALGORITHMS AND THEIR CORRESPONDING

FUSION MATRIX.

Topology Fusion matrix

Independent ∆I =
(

{J} {J}
{J} {J}

)
Front fusion ∆F =

(
{Xf,r} {Xf,l}
{J} {J}

)
Back fusion ∆B =

(
{J} {J}

{Xb,r} {Xb,l}

)
Double fusion ∆D =

( {Xf,r} {Xf,l}
{Xb,r} {Xb,l}

)

To expand our intuition about the effect that fusion layers
have on speech enhancement performance, two different en-
coder/decoder module pairs (i.e., encodings) and two different
cost functions were investigated.
Tested encodings: We investigate how the fusion operation
affects the models’ performance for different encodings of
the input signals. Specifically, we test a non-deterministic
learned representation and a deterministic representation. This

2https://github.com/tomgajecki/FusionLayers
3https://github.com/IoSR-Surrey/RealRoomBRIRs

https://github.com/tomgajecki/FusionLayers
https://github.com/IoSR-Surrey/RealRoomBRIRs
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Fig. 3. Block diagram of the evaluated algorithms. “Independent” model bypasses both fusion layers. “Front fusion (∆F )” model, “Back fusion (∆B)”
model, and “Double fusion (∆D)” model.

analysis targets the question of whether these layers do indeed
leverage redundant binaural information by sharing latent
representations between models by introducing non-linearities
that adapt to the presented data.

The input mixture sound can be divided into overlapping
segments of length R, represented by Xk ∈ R1×R, where
k = 1, . . . , T̂ denotes the segment index and T̂ denotes
the total number of segments in the input. At the encoding
stage, Xk is transformed into an F -dimensional representation,
λk ∈ R1×1×F . This representation can be obtained through
1-d convolution operations (non-deterministic encoding; deep
encoding), such as in [9], or with a classic spectro-temporal
representation of the signal; i.e., deterministic encoding (short-
time Fourier transform; STFT), where the encoder and decoder
blocks shown in Figure 3 represent the STFT and iSTFT,
respectively.
Tested loss functions: To assess whether the effect of the
fusion mechanisms is dependent on the loss function used to
train the models, we investigated two typical cost functions
used in the context of speech enhancement, namely, the SNR
and the scale-invariant signal-to-distortion ratio (SI-SDR) [43].
The SNR between a given signal with T samples, X ∈ R1×T

and its estimate Ỹ ∈ R1×T is defined as:

SNR(X, Ỹ) = 10 · log10

(
||X||2

||X − Ỹ||2

)
. (9)

The SI-SDR between a given signal and its estimate is defined
as:

SI–SDR(X, Ỹ) = 10 · log10

(
||γ · X||2

||γ · X − Ỹ||2

)
, γ =

Ỹ
⊤

X
||X||2

.

(10)
Training: The models were trained for a maximum of 100
epochs on batches of two 4-s long audio segments. The
initial learning rate was set to 1e-3. The learning rate was
halved if the accuracy of the validation set did not improve
during 3 consecutive epochs, early stopping with a patience
of 5 epochs was applied as a regularization method, and
only the best performing model was saved. For the model
optimization, Adam [38] was used. The models were trained
and evaluated using a PC with an Intel(R) Xeon(R) W-2145
CPU @ 3.70GHz, 256 GB of RAM, and an NVIDIA TITAN
RTX as the accelerated processing unit.

III. RESULTS

A. Experiment 1
1) Experiment 1.1; Non-linearities introduced by the fusion

layers and their effect on data fitting: Figure 4 shows box
plots of the MSE improvement given by the fused models
with linear activations computed as δMSE = MSEind−MSEΛ,
where MSEind and MSEΛ represent the MSE produced by the
independent and fused model, respectively. δMSE is shown for
the front, back, and double fusion.

Front fusion Back fusion Double fusion
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Fig. 4. Box plots showing the increment in MSE error of the the different
fused models w.r.t. the independent linear model (δMSE = MSEind−MSEΛ),
for the front, back, and double fusion. The black horizontal bars within each
of the boxes represent the median, the diamond-shaped marks indicate the
mean improvement, and the top and bottom extremes of the boxes indicate
the 75% and 25% quartiles.

An illustrative example of how the fitting of a model of size
nl = 64 is affected by the addition of fusion layers is shown
in Figure 5. The first panel shows the raw data generated
by equation 6. The second panel shows the data fitted by an
independent model with L = 3 learning modules of size 16
units (see Figure 2). The third panel shows the non-linearity
introduced by this model using a side-wise fusion level of 1
and a depth-wise fusion level of 0 (i.e., a polynomial of order
2). Finally, the last panel shows the fitting performed by a fully
fused model with a side-wise fusion level of 1 and a depth-
wise fusion level of 1; obtaining a polynomial regression of
order 4 (see 3 local extrema).
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Fig. 5. Data regression plots obtained by the independent and fused models of size 64 on generated synthetic data. Left most plot shows the raw output data
Y as a function of the input data X for the left and right channels, and the remaining three plots show the obtained regressions on top of it.
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Fig. 6. Dot plot of the training error differences between the independent
and fused models (δMSE = MSEind − MSEΛ) as a function of input data
correlation for generated synthetic data. A second-order polynomial regression
is included to show the performance trend for each condition.

2) Experiment 1.2; The effect of input data correlation
on data fitting: Figure 6 shows a dot plot together with
its polynomial regression showing how input data correlation
affects the training δMSE. It can be seen that for the fully
fused model the performance is proportional to the input
data correlation whereas for the single fused models the
performance reaches its maximum at around 75% correlation.
Note that the error of the fully fused models is smaller than the
error of the independent models (i.e., δMSE > 0), indicating
that the introduced non-linearities do help the model fit the
input training data more accurately.

3) Experiment 1.3; Fusion layers and their effect on the
models’ variance: Figure 7 shows violin plots of the activation
variance (in the log10 domain) for the front and back fusion
layers in the different linear models and fused models. Box
plots are also overlapped above the violin plots to show the
mean, median, and overall locality of the data.

The violin plot shows, on the one hand, that fusion reduces
the range of activation values, especially in the back layers (see
in Figure 7 how the violin plots show less deviation from the
mean when adding the fusion operation). It can also be seen
that variance is not only equalized between sides due to fusion
but also between the front and back layers, as depicted by the
violin plots corresponding to the double fusion model. It is

Independent Front fusion Back fusion Double fusion
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Fig. 7. Violin plots indicating the activation variance across predictions for
the front and back fusion layers (see Figure 2) in the different models for
generated synthetic data. Data is plotted in a logarithmic scale for visualization
purposes. The black horizontal lines within each of the boxes represent the
median, the diamond-shaped marks indicate the mean improvement, and the
top and bottom extremes of the boxes indicate the 75% and 25% quartiles.

important to note here that the fact that variance is equalized
and balanced through the model is relevant to ensure that all
learning modules are learning at the same rate [37].

B. Experiment 2

1) Binaural speech enhancement results: Table II shows
the absolute testing and validation results of the speech
enhancement algorithm with no fusion layers for the tested
loss functions (SNR and SI-SDR), encodings (deep non-
deterministic encoding based on 1-D convolutions, and deter-
ministic encoding based on the STFT), N (encoding size; the
number of filters in the 1-D convolution or number of STFT
bins), and S (number of filters in the latent representation
at the output of the temporal convolutions, before the mask
estimation module; for more details refer to [9]).

In order to assess the generalization capabilities of the fu-
sion layers, we will be reporting on the test score difference (δ)
of the different fused models with respect to the values shown
in Table II. Figure 8 shows bar plots of the increment in the
validation and testing error (δ test score = Lossind−LossΛ) of
the different fused models (see Table I) as a function of fusion
size, loss function and encodings. Here it can be seen that
fusion seems to improve the performance of the “independent”
models only when using deep encoding. In the case of the
deterministic STFT encoding, the fusion mechanisms may
blur or distort the signal and fail in producing final faithful
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Fig. 8. Bar plots of the increment in the speech enhancement testing error with respect to the independent model (δ test score = Lossind − LossΛ) of the
different fused models as a function of fusion size, loss function, and encoding type.

TABLE II
ABSOLUTE VALIDATION AND TESTING VALUES OF THE INDEPENDENT

MODEL FOR THE DIFFERENT TESTED LOSS FUNCTIONS AND ENCODINGS.
BOLD VALUES SHOW THE BEST PERFORMANCE FOR EACH LOSS.

Validation Loss/Test Loss [dB]
Objective SNR SI-SDR

N /S
Enc. Deep STFT Deep STFT

64/64 9.18/9.23 8.91/8.83 15.63/15.74 15.75/15.34
64/128 9.15/9.18 8.89/8.77 16.97/15.84 15.85/15.44
64/256 9.26/9.26 8.90/8.94 15.89/15.99 15.87/15.25
128/64 9.29/9.28 9.35/9.15 15.91/15.98 16.94/16.25
128/128 9.23/9.26 9.32/9.09 16.01/16.01 16.99/16.44
128/256 9.28/9.33 9.44/9.29 16.11/16.21 17.11/16.71
256/64 9.23/9.26 9.84/9.56 15.88/16.02 17.90/16.99
256/128 9.37/9.42 9.91/9.45 15.95/16.01 18.01/16.90
256/256 9.42/9.51 9.79/9.54 15.95/15.86 18.13/17.51

decoding. This suggests that the shared information between
sides is learned.

To investigate how the number of fused channels between
the left and right speech enhancement models impact the
testing error, we correlated the total amount of fused channels
to the objective test loss, for the different encodings and loss
functions. Figure 11 shows the relation of the performance
difference between the fused and independent models as a
function of the total number of fused latent channels and
encoding type.

This plot corroborates that a deep encoding is necessary in
order to take advantage of the fusion layers, as we can see that
not only the STFT deterministic encoding is negatively cor-
related to the total number of fused channels (frequency bins

Deep STFT

Back fusion
Double fusion

Front fusion

Topology
Independent

SNR SI−SDR SNR SI−SDR

0.5

0.6

0.7

Loss

M
B

ST
O

I

0.4

Fig. 9. Box plots indicating the MBSTOI scores on the testing set for the
different tested models and encodings. The black horizontal bars within each
of the boxes represent the median, the diamond-shaped marks indicate the
mean improvement, and the top and bottom extremes of the boxes indicate
the 75% and 25% quartiles.

when fusing the encoder outputs) but also that this encoding
performs generally poorer than the independent model.

To further assess the effect of the fusion layers on speech
enhancement we computed the modified binaural short-time
objective intelligibility (MBSTOI) [44] for each of the deep
learning topologies. Figure 9 shows the box plots depicting the
MBSTOI for the independent and fused models for each tested
encodings and loss functions. A visual analysis of this plot
seems to suggest that the fused models obtain higher average
MBSTOI scores when compared to the independent model.
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Fig. 10. Box plots indicating the activation variance on the testing set. The
black horizontal lines within boxes represent the median, the diamond-shaped
marks indicate the mean improvement, and the top and bottom extremes of
the boxes indicate the 75% and 25% quartiles.

However, unlike the case of noise reduction amount (see Fig-
ure 8) the STFT encoding obtained higher performance than
the deep encoding. This indicates that there may be a trade-
off between the noise reduction amount and the preservation
of binaural cues, which MBSTOI relies on to compute its
intelligibility score.

2) Layer variance analysis: Figure 10 shows a box plot of
the layer activation variances of the different speech enhance-
ment algorithms tested in this study. The left panel shows the
layer variance of the encoder output (note that this analysis is
only applicable for the deep non-deterministic encoding) and
the right panel shows the variance of the temporal convolution
outputs. It can be seen that the activation variance is again
affected by the fusion operation. For example, note how the
single fusion models obtained an unbalanced variance being
smaller where the fusion operation is performed.

The fusion operation causes a reduced layer activation
variance. The double fusion model obtains activation values at
the front and back layers that are numerically closer to each
other, compared to the other three models. Fundamentally, this
may indicate that the fusion operation causes the gradients two
propagate between the left and right enhancement modules,
acting as a channel that balances the learning rate.

IV. CONCLUSION

In this manuscript, we propose deep fusion layers to im-
prove speech enhancement in binaural listening. We first in-
troduce and formalize the concept of the general fused model,
defining its basic notation and describing its properties. Specif-
ically, we prove that fusion layers introduce non-linearities in
the model allowing it to fit the input data distribution better.
We also show empirically that fused models are susceptible to
input decorrelation. Finally, we analyze the effect of the fusion
layers on binaural speech enhancement. Results indicate that
fused models may be promising in terms of noise reduction
when compared to independent models. In fact, based on our
experiments, the model using the largest double fusion layers
performs the best with respect to the other topologies on
unseen data. However, based on the MBSTOI measure, we
also show that there is a trade-off between noise reduction and
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Fig. 11. Regression of the testing error difference between the fused and
independent models as a function of the number of the total number of fused
channels for each of the investigated encoders. Shaded areas represent a point-
wise 95% confidence interval on the fitted values. Correlation analysis is
expressed as the adjusted-R and p-value, and it is considered to be significant
when p < 0.05. .
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predicted speech intelligibility, potentially due to distortions
introduced by largely fused models. Based on these results
we think that this approach could potentially be beneficial for
future binaural speech processing systems.

It is important to notice that in this work we assume the
transmission of information between listening sides is instan-
taneous. It should be pointed out that in real-life applications
this would not be the case. A relevant aspect to investigate
is how the latency and the bitrate reduction required for the
transmission of the latent spaces affect the performance of the
fused models.
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