
P
os
te
d
on

5
O
ct

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
12
20
24
7.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

The Dark Side of Native Code on Android

Antonio Ruggia 1, Andrea Possemato 2, Savino Dambra 2, Alessio Merlo 2, Simone Aonzo
2, and Davide Balzarotti 2

1University of Genova
2Affiliation not available

October 30, 2023

Abstract

From a little research experiment to an essential component of military arsenals, malicious software has constantly been growing

and evolving for more than three decades. On the other hand, from a negligible market share, the Android operating system is

nowadays the most widely used mobile operating system, becoming a desirable target for large-scale malware distribution. While

scientific literature has followed this trend, one aspect has been understudied: the role of native code in malicious Android apps.

Android apps are written in high-level languages, but thanks to the Java Native Interface (JNI), Android also supports calling

native (C/C++) library functions. While allowing native code in Android apps has a strong positive impact from a performance

perspective, it dramatically complicates its analysis because bytecode and native code need different abstractions and analysis

algorithms, and they thus pose different challenges and limitations. Consequently, these difficulties are often (ab)used to hide

malicious payloads. In this work, we propose a novel methodology to reverse engineering Android apps focusing on suspicious

patterns related to native components, i.e., surreptitious code that requires further inspection. We implemented a static analysis

tool based on such methodology, which can bridge the “Java” and the native worlds and perform an in-depth analysis of tag

code blocks responsible for suspicious behavior. These tags benefit the human facing the reverse engineering task: they clearly

indicate which part of the code to focus on to find malicious code. Then, we performed a longitudinal analysis of Android

malware over the past ten years and compared the recent malicious samples with actual top apps on the Google Play Store.

Our work depicts typical behaviors of modern malware, its evolution, and how it abuses the native layer to complicate the

analysis, especially with dynamic code loading and novel anti-analysis techniques. Finally, we show a use case for our suspicious

tags: we trained and tested a machine learning algorithm for a binary classification task. Even if suspicious does not imply

malicious, our classifier obtained a remarkable F1-score of 0.97, showing that our methodology can be helpful to both humans

and machines.

1

The Dark Side of Native Code on Android

ANTONIO RUGGIA*, University of Genoa, Italy

ANDREA POSSEMATO, EURECOM, France

SAVINO DAMBRA, Norton Research Group, France

ALESSIO MERLO, University of Genoa, Italy

SIMONE AONZO, EURECOM, France

DAVIDE BALZAROTTI, EURECOM, France

From a little research experiment to an essential component of military arsenals, malicious software
has constantly been growing and evolving for more than three decades. On the other hand, from a
negligible market share, the Android operating system is nowadays the most widely used mobile
operating system, becoming a desirable target for large-scale malware distribution. While scientific
literature has followed this trend, one aspect has been understudied: the role of native code in
malicious Android apps. Android apps are written in high-level languages, but thanks to the Java
Native Interface (JNI), Android also supports calling native (C/C++) library functions. While
allowing native code in Android apps has a strong positive impact from a performance perspective,
it dramatically complicates its analysis because bytecode and native code need different abstractions
and analysis algorithms, and they thus pose different challenges and limitations. Consequently,
these difficulties are often (ab)used to hide malicious payloads.

In this work, we propose a novel methodology to reverse engineering Android apps focusing
on suspicious patterns related to native components, i.e., surreptitious code that requires further
inspection. We implemented a static analysis tool based on such methodology, which can bridge the
“Java” and the native worlds and perform an in-depth analysis of tag code blocks responsible for
suspicious behavior. These tags benefit the human facing the reverse engineering task: they clearly
indicate which part of the code to focus on to find malicious code.

Then, we performed a longitudinal analysis of Android malware over the past ten years and
compared the recent malicious samples with actual top apps on the Google Play Store. Our work
depicts typical behaviors of modern malware, its evolution, and how it abuses the native layer to
complicate the analysis, especially with dynamic code loading and novel anti-analysis techniques.
Finally, we show a use case for our suspicious tags: we trained and tested a machine learning
algorithm for a binary classification task. Even if suspicious does not imply malicious, our classifier
obtained a remarkable F1-score of 0.97, showing that our methodology can be helpful to both
humans and machines.

CCS Concepts: ∙ Security and privacy → Software reverse engineering ; Malware and its mitiga-
tion; Mobile platform security .

Additional Key Words and Phrases: Android security, Android malware, Android JNI, Android
malware analysis and detection

1 INTRODUCTION

With more than 1.6 billion active users, and a market share covering almost 75% of
smartphone operating systems, Android is the world’s most-used OS today. First introduced
in 2010, Google’s operating system has seen almost constant growth over the years and now
covers the largest share of the market. This constant growth and the increasing number of

Authors’ addresses: Antonio Ruggia, antonio.ruggia@dibris.unige.it, University of Genoa, Genoa, Italy;

Andrea Possemato, EURECOM, Sophia Antipolis, France, andrea.possemato@eurecom.fr; Savino Dambra,
Norton Research Group, Sophia Antipolis, France, savino.dambra@nortonlifelock.com; Alessio Merlo,
University of Genoa, Genoa, Italy, alessio@dibris.unige.it; Simone Aonzo, EURECOM, Sophia An-

tipolis, France, simone.aonzo@eurecom.fr; Davide Balzarotti, EURECOM, Sophia Antipolis, France,
davide.balzarotti@eurecom.fr.

HTTPS://ORCID.ORG/0000-0003-2435-9993
HTTPS://ORCID.ORG/0000-0003-1223-0658
HTTPS://ORCID.ORG/0000-0002-0988-9366
HTTPS://ORCID.ORG/0000-0002-2272-2376
HTTPS://ORCID.ORG/0000-0001-9547-3502
HTTPS://ORCID.ORG/0000-0001-5957-6213
https://orcid.org/0000-0003-2435-9993
https://orcid.org/0000-0003-1223-0658
https://orcid.org/0000-0002-0988-9366
https://orcid.org/0000-0002-2272-2376
https://orcid.org/0000-0001-9547-3502
https://orcid.org/0000-0001-5957-6213

2 Ruggia et al.

users also attracted malware authors, and already in August 2010, the first malicious app for
Android (DroidSMS.A) was detected by security companies. Over the following years, mobile
malware has evolved by following trends in common with its more mature PC counterpart
and exploring new directions intrinsically driven by the evolution of the Android system. For
instance, the evolution of the operating system and its support for numerous programming
languages has resulted in apps written in various languages, from Java to .NET.

Since its very first version, Android has supported Java Native Interface (JNI), a mechanism
to connect the Java language, which typically runs inside a virtual machine, and C/C++
languages which are instead compiled into native code. While using JNI by benign apps
has brought numerous advantages in terms of performance and resource consumption, it
has also introduced numerous challenges when used by malicious software. In fact, while
apps written in Java or Kotlin are not dependent on the device’s architecture, the same
cannot be said for the native components that use JNI. This, combined with the fact that
today the Android system can run on many architectures, introduces numerous challenges
for a malware analysis pipeline. Moreover, JNI serves a variety of different purposes. For
instance, it can interact with the Android RunTime (ART) and instantiate new objects or
modify their fields. It can also perform low-level operations or be used as a trampoline to
jump back to the ART. This versatility and the additional complexity of its analysis have
led malware authors to increasingly use the native layer to hide malicious code, perform
suspicious operations, or complicate static and dynamic analysis [44, 55, 56].

At the time of writing, JN-SAF [56] and JuCify [46] represent the state-of-the-art solutions
to analyze apps with native code to detect data leaks statically. However, these tools only
focus on detecting data leaks through Java and native code. In addition, they rely on Angr’s
symbolic execution [54], which often incurs in path explosion that prevents it from completing
the analysis. However, despite the native code’s growing popularity, no previous work has
documented how Android malware uses and abuses the native layer. Furthermore, current
Android anti-malware engines seem to pay little attention to the native components. For
instance, we created and submitted to VirusTotal some malicious samples with well-known
publicly available exploits in the native code: half of the samples went undetected, and the
remaining were detected by just one engine.
To fill this gap, this paper presents a new approach for studying Android malware and

provides a methodology to reverse engineer Android apps that use native code, taking into
account all suspicious patterns that can be used for malicious purposes. Our methodology
has been developed in collaboration with industry experts who manually reverse engineer
Android malicious samples daily. We implemented our methodology in ANDani , a framework
to detect and tag suspicious native code usage in Android apps. These tags are very useful
because they can be imported into reverse engineering frameworks and highlight portions of
code that the analyst needs to focus on, as they may conceal malicious code.

We decided to follow a different approach w.r.t. the state-of-the-art, and we developed our
analysis infrastructure by combining two components. The first is an extended version of
the Soot [53] framework for bytecode analysis; we improved the entry points detection and
managing concurrent execution. The second is an architecture-independent Ghidra plugin
for the native code analysis that can handle JNI data structures and propagate inferred
types from JNI methods’ signatures through various functions.

In order to study the evolution of suspicious native code patterns over the years, compare
the use of native functionalities in benign and malicious apps, and understand the underlying
motivation behind possible discrepancies, we analyzed with ANDani a total of 113, 476
APKs that include native code. Such APKs are divided into two different datasets: 97, 829

The Dark Side of Native Code on Android 3

malware from AndroZoo [7] spanning from 2010 to 2021, and 15, 647 benign apps from the
most downloaded apps of the Google Play Store.
Our measurements led to numerous insights into the use of native components. We

found that malware is more likely to trigger the native component without user interaction,
especially during the app startup and while reacting to Broadcast Receivers. For example,
waiting for the mobile phone to be charged can be a good indicator that it is the right
time for malware to perform intensive operations that would typically lead to excessive
battery consumption and consequently raise the victim’s suspicion. Native components
are often employed for obfuscation by dynamically loading and executing both Java and
other native code. In particular, the malware goes native to dynamically load and invoke
methods of the Android framework that require dangerous permission to get the user’s
sensitive information in a twisted way. This creates leaps between these two different code
“worlds,” consequently making the analysis particularly difficult. Moreover, we also report an
undocumented strategy: malware exploits JNI mechanisms to load malicious or harmless code
at will, depending on environment checks. Finally, we found that malicious native libraries
are often re-used among samples for several years without the authors even bothering to
change their hash.

Our measurement study also highlighted several differences in how benign and malicious
apps use native code. To prove the usefulness of ANDani and the reliability of the tags
that can be extracted from its output, we used them to train and test a Random Forest
algorithm able to classify goodware and malware. Our results are auspicious: the classifier
can distinguish between the two classes with an average error of 0.02 and achieve an F1-score
of 0.97. The output of the classification task allowed us to discriminate suspicious behaviors
that are more correlated to malware and whose presence can hint at potential malicious
patterns, thus providing valuable information to the malware analysts. For example, we
found that the way native components are triggered through JNI contributes to nearly 50%
percent of the accuracy.

In summary, this paper makes the following contributions:

∙ We defined a detailed methodology to assist analysts in reverse engineering native code
by Android apps, which focuses on the disclosure of suspicious (and potentially harmful)
operations;

∙ We developed ANDani , a static analysis tool for Android apps to perform an in-depth
behavior analysis of all aspects related to the native code;

∙ We performed the first longitudinal analysis on Android malware, specifically focusing on
native code, over the past ten years and in current “top apps” on the Google Play Store
to investigate the security impact of the native code and understand its behavior;

∙ We highlighted novel anti-analysis techniques, against both static and dynamic analysis,
that we found in malware and goodware;

∙ We showed a concrete use case of suspicious tags: they obtained remarkable performances
in a binary classification task as a sole feature.

Organization. The rest of the paper is organized as follows: Section 2 discusses the technical
background of the Android app, focusing on the use of JNI; Section 3 summarizes previous
works concerning strategies to analyze Java and native code; Section 4 details the motivation
and introduces our methodology for reverse engineering an Android app with JNI. Section 5
summarize the design and the implementation aspects of ANDani , while Section 6 and
Section 7 introduce respectively the dataset that we used for the longitudinal analysis and
their results, which highlight how and why malware uses the native code. Section 8 shows

4 Ruggia et al.

a concrete use case of the suspicious tags, investigating how our results can improve the
reliability of a binary classification task. Finally, Section 9 provides some discussion and
points out some future work.

2 ANDROID JNI INTERNALS

The Android system supports apps written with different programming languages and
frameworks. While apps were initially developed in Java, today, it is possible to write
Android apps in Javascript (with the Cordova framework [19], which wraps the HTML and
JavaScript code into a native app container), .NET (with the Mono [43] and Xamarin [37]
projects), and Kotlin, the new official programming language for the Android platform. In
cases where the app has to comply with very stringent performance constraints or interact
with low-level components of the device, Android allows developers to introduce native
components written in C and C++ into the app.
Although Android supports Java Virtual Machine-based (JVM) languages such as Java

and Kotlin, the compilation process of Android apps differs from that of regular Java apps.
On Android, the Java code is first compiled into the corresponding Java-bytecode, which
is then compiled into Dalvik-bytecode DEX (.dex extension). For the native component,
instead, the Android system provides an Android Native Development Kit (NDK), a set of
tools containing compilers, debuggers, and build systems that allow the developer to compile
native code for their Android app: at the end of the compilation process, the NDK generates
native libraries as Executable and Linkable Format (ELF) files, in the form of Shared Object
(.so extension). The interaction between bytecode and the native libraries, and vice versa,
is made possible thanks to the Java Native Interface (JNI).

When all the code has been compiled, it is embedded in an Android app PacKage (APK),
an archive containing different files among which all the program’s code (such as .dex and
.so files). When the APK is installed on an Android device, another compilation step –
that only affects DEX files – takes place on the device. Dalvik-bytecode files are compiled
Ahead-Of-Time (AOT) to generate an executable app for the target device architecture.
This approach brings numerous improvements in terms of performance and battery life:
since the bytecode has been compiled, the app will not require extensive CPU usage for
Just-In-Time (JIT) optimizations. Native libraries, on the other hand, are not affected by
this additional optimization step: in fact, they are already compiled for the architecture(s)
in which the app will run. This means that if an app wants to be installed on several devices
that differ in Application Binary Interface (ABI) and Instruction Set Architecture (ISA), it
must contain native components compiled for each target architecture it wants to support.
To date, Android supports the following ABIs: armeabi-v7a, arm64-v8a, x86, x86 64:
in the past the system supported ARMv5 (armeabi), and 32-bit and 64-bit MIPS, but
they are no longer supported [25].

The Android system allows an app to invoke and use native code, whether in the form of
shared objects or executable files, through four main techniques.

2.1 Native Library Loading

To allow the interaction between Java code and native components through JNI, libraries
must first be loaded into the app’s address space. An app can load these libraries by
using the load or loadLibrary methods, which are present in both java.lang.System and
java.lang.Runtime classes. The difference between the load and loadLibrary methods,
for both the implementations, is that the first method requires the library name to be
specified as an absolute path. In contrast, the second requires that the name passed as an

The Dark Side of Native Code on Android 5

argument must not contain a file extension or path, as the library will be automatically
searched in the default path where the app is installed.
When the library is loaded, the linker calls the initialization functions. The ELF file

format defines three sections that contain code (or pointers to code) that are in charge
of initialization procedures: .pre initarray, .init, and .initarray. The linker searches
them in this order and runs the code of the present ones. In Android, the .pre initarray

section is ignored for shared libraries [28]. Finally, the linker invokes a JNI-specific initializer,
the JNI OnLoad function.

2.2 Bridging Functions

The JNI allows the interaction between Java and native components. Thus, it is possible
to invoke a native function defined within a shared object from a Java method. Vice versa,
the native component, always via JNI, can interact freely with the Java counterpart. For
example, the native component can create objects, invoke methods of the Android framework
or defined within the app itself, or even modify field values: all these operations are possible
thanks to the use of JNI Callbacks.
In the Java code, the methods that are declared with the keyword native represent the

functions defined and exported within the shared library, accessible from the app. The
redirection of the execution flow and the mapping between the native method definition and
its implementation is all handled via JNI. In particular, when a native library is loaded, the
JNI tries to resolve the native methods dynamically and map them into the corresponding
defined Java method [42].
These steps are possible thanks to the fixed structure in the naming convention of the

native methods. For instance, in the following example

1 package xx . yyy ;
2 class Clazz { public nat ive St r ing t e s t (int x) ; }

the class Clazz declares a native method test. When the shared library containing the
function is loaded, the system will search for the symbol corresponding to the function name:
Java xx yyy Clazz test(JNIEnv*, jobject, jint)

The name of the function, translated from Java to native, is made of three parts: the
Java string, concatenated with a mangled fully-qualified class name of the related Java
class, concatenated with the name of the method.

Furthermore, the definition of native methods requires the first additional argument always
to be a pointer to JNIEnv. Then, in the case of a static method, JNI requires the second
argument to be a pointer to the corresponding Java class (jclass); on the other hand, a
pointer to the corresponding Java object (jobject). Both the first and the second arguments
are implicit, and the developer does not directly handle them.
The third and last argument of the example, the type int defined in the Java method

signature, matches the native type jint. For a complete list of Java primitive types and
their machine-dependent native equivalents, please refer to [41].

The JNIEnv type – a struct when the shared object is written in C, or a class in C++
– contains pointers to functions that allow the interaction between the native component
and the Android framework or the app itself. These functions are called JNI callbacks,
and the most relevant are NewObject, FindClass, GetMethodID, GetStaticMethodID, and
the Call* family (e.g., CallVoidMethod). Through these functions, the native code can,
respectively: instantiate objects, find a reference to a class or a method, and then call a
method.

6 Ruggia et al.

Moreover, the JNIEnv provides the RegisterNatives function to dynamically map a Java
method defined as native to its implementation in the shared library at runtime. However,
in this case, there is no requirement to follow a fixed naming convention. For a complete
listing of all the JNI functions, please refer to [40].

2.3 Native Activity

Developers who require their app to have high-performance in terms of execution speed, or
that need to interact with low-level system components, may decide to develop the entire
app natively. For this, the NDK introduces and supports the concept of “Android Native
Activity.” The native code implements the Android activity component, and its methods
are invoked according to the activity lifecycle functions (e.g., onCreate, onDestroy [24]).
If the app does not contain any Java code, a (Java) “stub” is created at compile-time

with the sole task of loading and running the native code, since it is released in the form of
Shared Objects and therefore has to follow the entire loading process described above.
There are several requirements for the developer to create a native app: it must target

an API level greater than 8, and it must specify whether it contains Java code via the
android:hasCode attribute of the manifest. Then, each Activity defined as native must
indicate in which library it is located: the name of the shared library is specified in the
android:name attribute.

2.4 Process Execution Methods

Shared Objects are not the only types of ELF that can be executed within Android
apps. The Android framework allows apps to execute shell commands, scripts, or ELF
executable in a separate process through the Runtime class, with its exec methods, or via
the ProcessBuilder class and its start method. These methods allow the app to execute
binaries that do not contain, potentially, any JNI components. The execution of these new
processes takes place in a different process, and therefore the interaction between the native
component and the app is not handled by JNI. Therefore, as JNI interaction is not present
in this scenario, this category is beyond the scope of our research. However, we analyze the
scenario in which a binary or shell script executes within a function defined in a shared
library using JNI.

Lastly, we would like to point out that, for the sake of brevity, we will refer to the
Dalvik-bytecode as Java. We use this simplification to remain consistent with the Java
Native Interface and avoid specifying on every occasion the distinction with high-level code
that is itself compiled into bytecode.

3 RELATED WORK

There are mainly two areas of work relevant to this paper: the analyses focusing on the Java
layer and those considering JNI.

Java. In 2013, Octeau et al. [39] implemented Epicc, an analysis framework based on Soot –
a Java optimization framework proposed by Vallee et al. [53] – to resolve Inter-Component
Communication (ICC) in Android apps. In 2014, Arzt et al. [9] proposed FlowDroid, a
dataflow analysis framework for taint detection of the Java code of an Android app. It is
a full context, object, and flow-sensitive taint analysis which considers the Android app
lifecycle. FlowDroid extends the Soot framework and creates an app-level dummy Main class
to collect all Android system events. In the same year, Wei et al. [57] proposed Amandroid
to conduct static analysis for security vetting of Android apps. It builds a context and

The Dark Side of Native Code on Android 7

flow-sensitive inter-procedural control flow graph (ICFG) of the whole app and computes
the point-to information to detect several security-related problems. In 2015, Li et al. [35]
proposed a new static taint analyzer to detect privacy leaks among components in Android
apps, named IccTA. It propagates the context information among different components to
resolve call parameters and return values. In the same year, Gordon et al. [29] proposed
DroidSafe, a static analysis framework able to resolve ICC and Remote Procedure Call calls
to detect potential data leaks by tracking information flows. Then, Yang et al. [61] proposed
AppContext, a static analysis approach to extract context security-sensitive behavior to
assist the app analysis focusing only on the Java layer. In 2021, Wu et al. [58] proposed
BackDroid, an inter-procedural analysis of Android app, with the primary goal of improving
the performance of the static analyzer described earlier by implementing a novel technique
named on-the-fly bytecode search which searches the disassembled app bytecode text just in
time when a caller needs to be located.

JNI. In 2012, Yan et al. [60] proposed DroidScope, an emulation-based Android malware
taint-analysis engine used to analyze the Java and native components (x86 and ARM
architectures) of an Android app to track information leakage. In 2014, Qian et al. [44]
performed the first large-scale study on information flows using JNI. This study leverages
NDroid, a novel dynamic taint propagation tool based on QEMU, which tracks JNI and
system library functions in Java and native code. Alfonso et al. in 2016 [3] performed
an extensive analysis on the adoption of the native code on Android apps, highlighting
potential usage of JNI, and proposed a new method to generate a native code sandboxing
policy automatically. The same year, Sun et al. [48] proposed TaintART, a customized ART
compiler that inserts the taint logic and retains the original ahead-of-time optimizations
that perform taint analysis to track data flow. Rasthofer et al. [45] proposed Harvester, an
hybrid analysis tool that combines static backward slicing to identify interesting code with
the execution of the code for extracting runtime values. In 2017, Alam et al. [6] proposed
DroidNative, a static Android malware detector based on the analysis of the native code.
It introduces the concept of Malware Analysis Intermediate Language (MAIL) to create
a high-level representation of the native code, which is then used to build a behavioral
signatures template.
Xue et al. [59] presented Malton, a dynamic analysis platform built on Valgrind for

malware detection based on information flow tracking on Java and JNI code. In 2018, Wei et
al. [56] presented JN-SAF to conduct static cross-language dataflow analysis of Android apps
to track information leaks through the Java and the native parts. JN-SAF builts the analysis
of the Java part of the app on top of Amandroid [57]: the analysis of the native components
instead – for both 32 and 64-bit versions of ARM, MIPS, PPC, and Intel architectures
– relies on the Angr’s symbolic execution engine [54], In 2019, Lee Sungho [34] proposed
a novel JNI program analysis technique that combines the analysis of Java and C code
separately to extract semantic summaries of C code from JNI programs. In 2020, Andarzian
et al. [8] proposed the CTAN framework, which extends JN-SAF to improve its performance.
The same year, Fourtounis et al. [20] proposed an approach to recover JNI callbacks in the
native code: disassemble native binaries, recover static symbol information, and produce a
model for statically linking the native callbacks. In 2021, Samhi et al. [46] proposed JuCify,
a framework that combines Android bytecode and native code into a unified model to detect
data leaks. The native code analysis is built on top of Angr, while the Java code analysis
and the unified model rely on the Soot framework.

8 Ruggia et al.

4 MOTIVATION & METHODOLOGY

We open this section by showing a practical example of the limitations of antivirus engines
in analyzing native code. Then, after defining what we mean by “suspicious,” we proceed to
illustrate our methodology guided by an example.

4.1 Native Components and Antivirus Software

To begin with, we show how the static module of many Android anti-malware engines
completely ignores the presence of native components. In this respect, we collected well-
known exploits (CVE-2011-1823 [12, 49], CVE-2014-3153 [13, 49], CVE-2016-5195 [14, 31],
and CVE-2019-2215 [11, 15, 16, 32]) from public repositories that date back respectively to
2015, 2016, and 2019. It is worth noting that those do not simply contain a Proof-of-Concept
for a given vulnerability but working exploits. Moreover, anti-malware engines are aware of
these exploits; for example, the malicious app cdde1 is labeled with the exploit name or the
associated CVE (i.e., CVE-2016-5195 is also known as DirtyCow).

Then, we created a native (x86 and ARM32) Android app for each exploit. Each app loads
and runs the exploit immediately at startup: it loads the library in the static constructor
of the Application class and calls the function in charge of running the exploit directly
from JNI OnLoad, making the program flow to reach the exploit straightforward and trivial
to analyze. The apps were signed with the default debug key and did not use any form of
obfuscation or shrinking. The resulting six apps were uploaded to VirusTotal and scanned
with at least 61 different engines. Three apps were detected by only one engine (i.e., samples
7383, e088, and 1f26), and we obtained no detections for the remaining three (i.e., samples
5bd3, 858e, and f7b9). Since we used only publicly available and well-known exploits (with
no changes), our experiment reveals a clear limitation in the existing commercial solutions
to which this work hopes to contribute.

4.2 Suspicious Pattern

As the first contribution of this paper, we propose a methodology for reverse engineering an
Android app that uses the JNI. It is composed of seven different Steps to analyze native-code
execution flows and identify suspicious patterns effectively.
We define a suspicious pattern as any use of native code that shows characteristics of

surreptitious code [38] (e.g., obfuscation and anti-tampering). It is worth emphasizing
that suspiciousness does not necessarily imply maliciousness. Such techniques are typically
concerned with preventing others from exploiting the intellectual effort invested in producing
a piece of software, regardless of whether the effort is for uncovering malicious purposes.
Therefore, when using the word ‘suspicious’, we refer to a code snippet that needs further
investigation without binding our definition to a particular technique or malicious behavior.

4.3 Running Example

To better present our methodology, we continue the discussion guided by the code presented
in Listing 1, which shows an example of an Android app that displays a string to the user in
a blank Activity. The string is generated [line 1.11] from two native functions, fun1 [line 1.4]
and fun2 [line 1.5] implemented in the xmplib library (loaded at [line 1.3]). The C code
(reported in Listing 2) declares three functions: JNI OnLoad [lines 2.18-23], Java com xmp -

NatClass fun1 [lines 2.1-3] and sensitive [lines 2.5-13]. The native functions reachable

1Due to space limitation, in this paper, we use the first four bytes of the sha256. The complete list is in

Table 6 in the Appendix.

The Dark Side of Native Code on Android 9

Listing 1. JNI example – Java side

1 package com .xmp;
2 public class MainActivity extends AppCompatActivity {
3 static { System . loadLibrary (" xmplib ") ; }
4 public nat ive boolean fun1 (int a , int b) ;
5 public static nat ive St r ing fun2 (Object obj , boolean b) ;
6 public St r ing ge tSubsc r ib e r Id () { return " no_id " ; }
7 @Override protected void onCreate (Bundle b) {
8 super . onCreate (b) ;
9 ActivityMainBinding bind = ActivityMainBinding . i n f l a t e (g e tLayou t In f l a t e r ()) ;

10 setContentView (bind . getRoot ()) ;
11 St r ing s = fun2 (getSystemServ ice (Context .TELEPHONY SERVICE) , fun1 (2 , 1)) ;
12 bind . sampleText . setText (s) ; } }

Listing 2. JNI example – Native side

1 extern "C" JNIEXPORT
2 jboo l ean JNICALL Java com xmp MainActivity fun1
3 (JNIEnv* env , j o b j e c t th iz , j i n t a , j i n t b){ return a>b ;}
4
5 static j s t r i n g s e n s i t i v e
6 (JNIEnv* env , j c l a s s j c l a z z , j o b j e c t obj , jboo l ean b) {
7 char* cName ;
8 if (b) cName = " android / telephony / TelephonyManager " ;
9 else cName = " com / xmp / MainActivity " ;

10 j c l a s s f c l a z z = env−>FindClass (cName) ;
11 jmethodID method = env−>GetMethodID(
12 f c l a z z , " getSubscriberId " , " () Ljava / lang / String ;") ;
13 return (j s t r i n g) env−>CallObjectMethod (obj , method) ;}
14
15 static JNINativeMethod nat methods [] = {
16 {" fun2 " , "(Ljava / lang / Object ;Z) Ljava / lang / String ;" , (void *) s e n s i t i v e } ,} ;
17
18 j i n t JNI OnLoad (JavaVM* vm, void* r e s e rved) {
19 JNIEnv* env = nu l l p t r ;
20 vm−>GetEnv(reinterpret_cast<void **>(&env) , JNI VERSION 1 4) ;
21 j c l a s s c l a z z = env−>FindClass (" com / xmp / MainActivity ") ;
22 env−>Reg i s t e rNat ive s (c lazz , nat methods , 1) ;
23 return JNI VERSION 1 4 ; }

from the Java code are those that respect the JNI naming convention [42] or the ones that
are registered through the RegisterNatives callback. In particular, the JNI OnLoad binds
at runtime, through the RegisterNatives, the Java method fun2 to the native function
sensitive [line 2.22]. Instead, function fun1 leverages the JNI name convention to register it
and returns a boolean depending on a comparison between its two integer parameters. Lastly,
the sensitive function, depending on the value of its boolean parameter, uses FindClass
to get the reference to the user-defined MainActivity class or the TelephonyManager of
the Android framework, and, finally, invokes the getSubscriberId method of such class.
In our example we call fun2 with a True argument (because fun1 with such arguments
returns True) to obtain the IMSI via getSubscriberId. However, more complex flows could
dynamically load a DEX file that calls fun2 passing False as argument, thus making it
possible for the getSubscriberId of the MainActivity to be invoked.

4.4 Anatomy of the Analysis

The execution order of runtime code is crucial to preserve when reverse engineering an
Android app that uses the JNI. To tightly follow the execution flow, we have broken down
our analysis pipeline into the seven main steps represented in Figure 1.

10 Ruggia et al.

DEXDEX
DEX

#1
Load Library

JNI

Arch1

ArchN

.
.

.

#6A
Native Reflection

#4
RegisterNatives

Android OS #6C
Library Function

#6B
Dynamic
Loading

#3
Initialization

Function

#2
ELF Files

#5
Native Call

#0
Application
Lifecycle

Fig. 1. JNI behaviour

The very first step, Step #0, extracts the possible entry points of the app from its
Manifest file to understand the Android components (i.e., Activity, Service, Broadcast
Receiver, Content Providers) and their lifecycles. Such information is fundamental to
identifying all the application components that can be triggered and could potentially reach
the JNI. For example, malware can gain persistence by registering a Broadcast Receiver for
the BOOT COMPLETED intent filter to start each time the device boots and load the malicious
native component. In our example, the onCreate method of the MainActivity [line 1.7]
class is an entry point.
In Step #1, the Java code loads a native library. Calls to load methods mostly occur

in the static constructor of the class that contains the native methods (e.g., line 1.3). An
app can load these libraries by using the load or loadLibrary methods of the System and
Runtime classes. The load method requires the library name to be specified as an absolute
path. In contrast, the loadLibrary requires that the name passed as an argument must not
contain a file extension or path, as the library will be automatically searched in the default
path. From a malicious perspective, the load method can be used to hide which ELF file
is loaded. This type of analysis can reveal (e.g., sample 04CE) whether a native library is
not present in the APK but is downloaded at runtime once specific conditions are met, or
whether the app loads a file that is not supposed to contain executable code (e.g., loads a
PNG file as ELF file). Moreover, this approach can uncover the author’s will to hide the
actual library loaded by the app if the string passed as an argument to the load method is
not defined in the code but computed at runtime.

In Step#2, JNI automatically loads the correct library according to the device architecture.
However, malware can ship libraries with the same name, exposing and implementing
functions with different names or semantics. For instance, if malware authors knew that
specific antivirus solutions run the app in x86 emulators, they could avoid detection by
restricting the malicious logic to the ARM architecture and placing a harmless code into the
x86 library. The malicious component would evade the analysis since the sandbox will only

The Dark Side of Native Code on Android 11

load the x86 library. However, the malware would show its real behavior when executed on
a real device that supports ARM.

In Step #3, the dynamic linker first invokes the initialization functions of the ELF file (e.g.,
.init array), then the JNI automatically calls the JNI OnLoad function (e.g., line 2.18). A
malicious actor can hide the logic to perform evasive checks in the initialization functions.
For example, we found samples (e.g., 019E) using the ptrace function as an anti-debugging
technique when it is loaded in memory.
Furthermore, in Step #4, the JNI OnLoad is used to dynamically link the JNI methods

through the RegisterNatives API (e.g., line 2.22). In this way, the mapping between Java
methods and native functions is not statically explicit anymore but is performed at runtime.
Thus, an attacker can perform environment checks and use the RegisterNatives to map
different function depending on their results (e.g., 7900, discussed in Section 7).
At this point, Step #5, the Java methods can call the native functions of the loaded

library (e.g., line 1.11). This transition is crucial as it might be impossible to determine
the mapping between methods and functions statically and as different architectures might
result in different semantics. For this reason, we designed three specific Steps (#6A, #6B,
#6C in no particular order) to be followed once the execution moves from Java to the native
library. Step #6A tracks the native reflection, which allows native code to manage Java
objects through the JNI callbacks (e.g., create Java objects, invoke Java methods, or modify
fields). For example, the sensitive method of the Listing 2 [lines 2.5-13] uses the JNI
callbacks FindClass, GetMethodID, and CallObjectMethod to get a reference of the object
TelephonyManager and call its method getSubscriberId. This possibility significantly
complicates the analysis because it makes it impossible to statically determine which code
will be executed without resolving the arguments of such methods. In addition, it is also
worth noting that the native reflection can also use Java reflection features to hide methods
or accessed fields. For instance, sample 4E4B uses the getDeclaringClass method of the
java.lang.reflect.Method class to dynamically retrieve the class representing an object.
Then, it leverages the native reflection (e.g., FromReflectedMethod callback function) to
retrieve the corresponding method from the reflected object.
In Step #6B, the native code can dynamically load and invoke exported functions of

other libraries by relying on the dlopen and dlsym functions. This technique aims to conceal
the usage of a particular shared library from static analysis, given that it is no more present
in the dependencies. Even if the system should prevent loading or linking those kinds of
libraries since Android 7, we found multiple samples (e.g., 1306) that use dynamic loading
to load and call functions from a library that is not present in the APK.

The last step to consider, #6C, is the usage of library functions that can affect security,
for example, to run exploits against specific subsystems, or perform environment checks
(e.g., debugger detection). We divided them into nine categories: Dynamic Loading (e.g.,
dlopen), Execution (e.g., system), File Permission (e.g., chmod), Kernel Interaction (e.g.,
ioctl), Identity (e.g., geteuid), Memory Protection (e.g., mprotect), Network (e.g., geth-
ostbyname), Open Special File (e.g., open("/proc/version")), Process Management (e.g.,
ptrace), and Monitoring (e.g., inotify add watch). We report the complete list in Table 5
in the Appendix.

5 SUSPICIOUS ANALYSIS FRAMEWORK

This section describes our second contribution: ANDani , a cross-architecture analysis
framework that implements our analysis methodology.

12 Ruggia et al.

5.1 Overview

Our system receives as input an APK file. It first unpacks and extracts its DEX, JAR, and
ELF files. This operation is performed recursively on all the archives (e.g., ZIP, TAR) inside
the APK. It also parses the AndroidManifest.xml file to extract relevant information, such
as the Android components, the required permissions, and the various intent filters. Next,
ANDani starts the analysis by computing an Inter-Procedural Control Flow Graph (IPCFG)
for both the Java and the native code. First, it computes the IPCFG of every code file, then
merges them into a single IPCFG, keeping track of whether the code file was found in a
standard or non-standard location within the APK. This information is crucial to identify
potentially malicious code in non-standard locations (e.g., in an archive file).
The IPCFG is based on two types of nodes: code blocks that are the traditional basic

blocks that are interrupted by function calls, and call blocks that represent the function
calls or method invocations. Moreover, our analysis also considers that from a call block of
a Java native method, we can have multiple edges to different native functions of different
architectures. In the same way, when we deal with the native reflection (see Step #6A of
Section 4) where the function can take multiple arguments (e.g., lines 2.8-10), the graph can
also have different edges to Java methods.

The Bytecode module handles the IPCFG for all the bytecode components, and it is built
on top of the Soot framework [30, 53]. For the native components, the analysis is performed
by the Native module, which leverages the Ghidra [4] API to process the ELF files.

Performance. On our machine, an Ubuntu 20.04 with 64 CPUs (Intel Xeon 8160 @
2.10GHz) and 128 GiB of RAM, we measured an average execution time of 614 seconds (std.
dev. 182) for a single APK. Such variance is due to the fact that the analysis duration of
ANDani grows up proportionally with the code (i.e., ELF or DEX files) in the APK.

5.2 Bytecode Module

The Bytecode module performs the analysis of DEX and JAR files. It is written in 1814
lines of Java code, and it is based on the Soot framework. The module starts by translating
the bytecode into Jimple, a three-address code [5] intermediate representation that Soot
needs to build the preliminary IPCFG.

Soot suffers from many known limitations in case of parallel and asynchronous Java classes,
i.e., those that extends or implements Thread, Runnable, AsyncTask, or Timer (we show
an example in Appendix 9.1). Such drawbacks make the IPCFG incomplete, and therefore
we had to add the necessary code –complete with test cases– to handle them.

Once the IPCFG is computed, our system continues the analysis by identifying the calls
to the load methods that allow loading native libraries. Each time a call is found, it tries
to resolve the argument (a string) to identify which native library is loaded. For this, we
perform a backward intra-procedural taint data analysis. This is sufficient in most cases
because, as we previously mentioned, calls to load methods almost always occur in the static
constructor of the class that contains the native methods, which also references the plaintext
string with the library’s name.

The system then repeats this procedure for each DEX and JAR file, and at the end of this
phase, it produces the IPCFG of the whole bytecode found in the APK. Then, the analysis
identifies the entry points of the app by combining the information from the manifest file
(e.g., the onCreate method of the main activity) and the list of entry point methods of
previous studies [9, 57]. As the last step, the system identifies all native methods and extracts
their signatures, which serve as input to the next module.

The Dark Side of Native Code on Android 13

5.3 Native Module

The Native module is written with 5198 lines of Java code, and it uses the Ghidra reverse
engineering framework API to perform headless analysis of all ELF files. The analysis
leverages the Ghidra P-code intermediate representation to model the behavior of many
architectures. Since the signatures of the Java native methods are fundamental to propagate
types of information in the native code properly, this module is executed after the Bytecode
module. The output of the Native module is the final, complete, and merged IPCFG.

The analysis performed at this stage can be divided into three different phases:

I) ELF information and JNI entry point identification. Given an ELF file, the module
extracts generic information from the ELF header (e.g., architecture, sections, segments,
symbols, strings), and it initializes the set of the JNI entry points, i.e., the native functions
that can be reached by Java code. To start, we consider as JNI entry points the functions
whose symbol name respects the JNI naming convention – i.e., symbol name starts with
Java or JNI – and all ELF initializers. If we consider the example shown in the previous
section, the entry points are: JNI OnLoad [line 2.18] and Java com xmp MainActivity fun1

[line 2.2].

II) Entry point arguments type definition. The module iterates the entry points: for
JNI OnLoad and ELF initializers, if present, it creates an edge from the respective Java
load method to the first of these being called, and the others are propagated. For the
Java functions, given the signatures of Java native methods collected from the Bytecode
module, it creates an edge from the corresponding Java method and applies the proper JNI
data type to all the input parameters. In case a Java function is not found, it just applies
the JNIEnv* type to the first one. Once the argument types are updated in the JNI entry
point, the module propagates them to the called functions. If we consider our initial example,
in that case we have an edge from the loadLibrary [line 1.18] to the JNI OnLoad [line 2.18].

However, in case the native functions are dynamically registered through the RegisterNa-
tives (e.g., lines 2.20-22), the function names may not start with Java , as it is the case in
our example for the sensitive function. To handle these cases, the module searches for all
RegisterNatives calls in the code of the entry points, and, for each of them, it performs a
backward taint data analysis again on its second and third arguments. The second argument
of the RegisterNatives is a jclass object obtained from a call to the method FindClass

of the JNIEnv. In turn, the FindClass takes a string with the corresponding Java class name;
it is marked as tainted and searched backward. The third argument is a JNINativeMethod

that contains the mapping between the Java methods and native functions. Lastly, after this
procedure, the module re-iterates the JNI entry points to apply the correct data types. This
phase is crucial to get the correct types, especially JavaVM and JNIEnv since they expose all
the JNI callbacks.
Following the example, the module, after correctly resolving the arguments, can now

create an edge from the Java method fun2 to the sensitive native function and apply the
correct type to its arguments.

III) Graph construction. At this last stage, since all the entry points and the types of
their arguments have been retrieved, the module can create and merge the final IPCFG.
This is done by following the call blocks with a depth-first strategy, propagating the types
of the arguments to the called functions each time. However, we are not just interested in
JNI callbacks but also specific Android system library calls, as their arguments can reveal

14 Ruggia et al.

helpful information about the app’s capabilities. The analysis of the information collected
by analyzing the topics of these calls is discussed in more detail in Section 7.

Once the module finds an argument of interest, it marks it as tainted, and it performs a
recursive backward taint analysis on the tainted arguments to resolve them. For example,
ANDani would try to resolve the path of each opened file to detect suspicious accesses to
Linux special files, such as /proc/version to retrieve the version of the Linux kernel [33]
(sample 0259). For more complex cases, such as the one in our running example in which the
argument is not unique [lines 2.8-10], this part of the analysis considers all the values that
the variable can take (among those that were able to recover). In the example, the graph
construction would add two edges from the CallObjectMethod to the getSubscriberId

method: the first to the TelephonyManager class, and the second to the MainActivity class.

5.4 Suspicious Tags

At the end of the analysis, the tool visits the IPCFG, and if it finds a match with one
of the patterns described in our methodology, it assigns a tag to the corresponding node
where the violation occurs. A tag is made of the concatenations of two strings (the category
and the title) with the symbol “-”. Referring to Section 4.4, the categories are each of the
steps presented in Figure 1, while a title is a short description of a suspicious pattern of the
methodology.

We report all the tags in Table 7 in the Appendix. To give an example, a node tagged with
NR FINDCLASS-JAVA REFLECTION (category: “NR FINDCLASS”, title “JAVA REFLECTION”) de-
notes that ANDani found a call to the FindClass callback, that it was able to resolve the
argument, and such argument refers to a Java class related to reflection.

These tags serve mainly three purposes. First, they can assist a human analyst by showing
precisely which parts of the code need to be inspected because they might hide, for example,
some evasive technique, malicious behavior, or protection mechanisms. Second, it provides
automated analysis systems with target locations that could be investigated using more
costly but more precise analysis routines (e.g., symbolic execution or dynamic analysis).
Finally, the suspicious tags can improve classification tasks, as we show in Section 8.

5.5 Comparision with state-of-the-art tools

During the design phase of ANDani , we investigated the state-of-the-art tools for static
analysis to understand which technologies are best to rely on.
As discussed in Section 3, most of the works focus on the Java layer and do not handle

native code. However, we noticed that there is a tool in common among the most cited
works (e.g., Epicc [39], and Flowdroid [9]): the Soot framework [53], which is still under
active development [30], and therefore it was our choice since the alternatives are no longer
supported (e.g., Amandroid [57]). However, as already discussed, we had to improve the
analysis of some typical Android mechanics, namely, the detection of entry points and
concurrent execution management.

Then, for inter-language analysis, we identified JN-SAF [56] and JuCify [46]; these tools
perform taint analysis between different code layers to detect data leaks. As for the analysis
of the Java layer, the former is based on Amandroid, while the latter is based on Soot. On
the other hand, they both use Angr [54] to analyze the native layer.

We tested Angr with the same configuration of JuCify. However, from several preliminary
tests on native Android libraries taken from real-world goodware apps (the same we used in
Section 6) we discarded it because the one-hour timeout was often reached (because of the
path explosion typical of symbolic execution), thus making it unsuitable for our large-scale

The Dark Side of Native Code on Android 15

Table 1. Distribution of the AndroZoo suspicious samples

Detection Range

Year Fam. 1 Fam. 2 Fam. 3 Singleton Total

2010/11 5.0% 5.0% 5.0% 8.4% 5,065

2012/13 5.0% 5.0% 5.0% 7.0% 15,458

2014/15 5.0% 5.0% 5.0% 16.5% 19,127

2016/17 5.0% 4.8% 4.4% 37.3% 20,268

2018/19 5.0% 5.0% 4.3% 48.5% 19,610

2020/21 3.7% 0.5% 0.5% 84.3% 18,301

Total: 97, 829

measurement. Moreover, JuCify’s approach is not suitable for our needs. Using Soot, they lift
Java code to Jimple, a 3-address intermediate representation (provided by Soot); then, they
extended Angr to lift native code to Jimple so they can reason on a unified representation.
The issue is that we are interested in every single instruction in the native code, as we
need as much precision as possible; instead, JuCify just considers call instructions because
its purpose is to create a call graph while we need the interprocedural control flow graph.
Regarding JN-SAF, it is no longer maintained and does not investigate specific aspects of
native code we are interested in (e.g., library calls and their arguments). Given that it is
also based on Angr, we did not investigate further and then decided to write the analysis of
native code from scratch.

6 DATASET

To perform our analysis, we built a comprehensive dataset of Android apps, which is divided
into malware samples collected over the past ten years and a goodware dataset of benign apps.
All malicious samples are downloaded from AndroZoo [7]. In addition to the file, AndroZoo
also provides the date associated with the APK file, the number of antivirus (AV) engines
that detected the app as malicious on VirusTotal (VT), and the date on which the app was
submitted to VT. However, according to their documentation, most apps from Google Play
have 1980 as the APK date. Therefore, we assigned each app to a year by applying the
following procedure: if a year was present and had a plausible value, i.e., other than 1980
and between 2010 and 2021, we consider that to be the year. Otherwise, we assign the year
of the app as the year in which the first scan in VT was performed. On the other hand,
benign apps were collected among the most downloaded apps from the Google PlayStore for
each of the 50 categories [27]: 15 categories are related to Games while the remaining 35
vary from Communications to Social.

Since this research focuses on the usage of the native component via JNI by Android apps,
our dataset consists only of apps that make use of this technology. Therefore, each app in
our dataset respects at least one of the following two constraints: it must contain a DEX file
with a declaration of at least one native method that is not defined in the standard Android
libraries, or it must contain an ELF Shared Object file with a JNI entry point method.

Malware. First, we considered “malware” all samples with at least five AV detections.
Then, Androzoo does not give any indication about the family the samples belong to, so
we had to download the respective report from VirusTotal and determine the family via
AVClass2 [47]. From a preliminary analysis, we found that the samples, grouped by year, are
overrepresented by a few families (e.g., among 10k random APKs the 41% of the malicious
samples in the year 2014 belong to just three families). We, therefore, opted to group samples

16 Ruggia et al.

by pair of years, with a maximum of 5% for each family, and the sha256 hash of each sample
belongs to just a pair of year (namely, the intersection between the samples for each pair of
years is empty).

We ended up with 97, 829 native malicious apps, whose distribution is summarized in
Table 1, where we report the percentage of the three most frequent families. It is worth
noting that the number of malware that AVClass2 cannot assign to a family (Singleton)
has increased over the years. This is due to the fact that the number of AV engines has
increased, and there are more inconsistencies in the naming convention of family labels;
furthermore, we observed that in the Androzoo dataset, the average number of detections
(also by referring to updated VirusTotal reports) in recent malware is lower than the old
one.

Goodware. We collected the package names of the 500 most downloaded free apps for each
of the 50 official Google Play Store categories. We extracted this information using Google
Play Scraper [17], and we downloaded the samples with Playstore Downloader [21]. The tool
was able to download 27, 665 apps successfully. After our pre-filtering, which only retained
apps that use native components, we were left with 15, 647 samples. The fact that more than
the half (57%) use a JNI compovnent is a clear sign that, nowadays, native components
constitute a fundamental part of the Android userspace ecosystem.

7 RESULTS

This section presents and discusses the results of the longitudinal measurement we conducted
over malware and goodware datasets. To better understand why malware uses native code
and how it is tied to the app’s lifecycle, we will report the results according to the seven main
steps of our methodology (discussed in Section 4.4). Since we have grouped the malware
into pairs of years, we will refer only to the highest year in the pair (e.g., 2011 refers to
the pair 2010/2011) to improve readability. For the same reason, we omit the decimal place
from percentages when not strictly necessary.

7.1 Application Lifecycle

The first question we want to answer with our measurement is when apps invoke JNI methods,
i.e., whether the native component comes into play immediately after the application starts
or whether it is only invoked when specific conditions are met.
For each of the native functions, ANDani first visits the Java IPCFG to verify if a

native method is reachable (we consider a method to be reachable if there is at least one
block of the IPCFG that calls such method) and, if it is, it extracts all the possible entry
points of the different paths that lead to it. This first analysis shows that among goodware,
91% of the native functions are reachable from nearly all (99.8%) of the DEX files in the
standard location. Thus, the code invoking the native component is easy to identify and
is not obfuscated nor dynamically loaded. Moreover, it is essential to highlight how 94%
of these functions are reachable only under specific user interaction with the app, such as
a click on a GUI item. Among the remaining, 4.4% of the native functions are reachable
from the lifecycle methods of Activity components, and the remaining (1.2%) is triggered
at the app’s startup, from static constructors, or other Android components (i.e., Service,
Broadcast Receiver, and Content Provider).
The picture is utterly different for malware. In fact, among malicious apps, the average

number of reachable native functions has decreased from 81% in 2013 to 21% in 2021.
Moreover, the number of reachable native code only from DEX files not located in the

The Dark Side of Native Code on Android 17

standard position is always higher than 2%. These results suggest that malware uses resources
loaded at runtime to invoke native methods. Furthermore, since 2017, more than 34% of the
native functions have been reachable at the startup (i.e., directly from the Application class),
with a peak of 53% in 2021. This observation is significant because it shows how malware,
unlike goodware, tries to start the native component as quickly as possible. Comparing
the 2021 percentages for both malware and goodware, we observe that for the malicious
applications, 55% of the entry points are Application (53%) or Activity (2.4%) lifecycle
methods, and only 44% are related to user interaction. This highlights once more that
current malware mainly invokes native code at the beginning of the process and does not
wait for the user to interact with the application.

Another interesting aspect that differentiates the use of alternative entry points used by
goodware and malware concerns Broadcast Receivers. Although their use is very limited
in percentage, our data shows that malicious apps are more prone than goodware to use
broadcast receivers to invoke native functions when they are notified that: the user is present,
an existing app has been added or removed from the device, an external power has been
(dis)connected to the device, or the device boots.

The final analysis measured when an app declares Java native functions that are not
exposed by shared libraries and vice versa (i.e., exported JNI entry points not declared in
Java code). Our results show that these discrepancies are much more prevalent in malware
than in goodware. For instance, in 2017, 49% of malicious apps exported JNI entry points
were never declared in the Java code, and it grew over the years until 84% in 2021. In
goodware, this behavior only appears in 21% of the apps. One possible explanation, confirmed
later in this section, is that malicious apps dynamically load Java code from native and then
use this new Java code to invoke other exported native functions. This cycle of redirection
between Java and native layers is a form of obfuscation that makes static analysis much
more complicated to perform.

Observations: The native methods declared by benign apps are reachable in most
cases from the main application code, and the trigger for their execution is very often
dependent on user interaction. Concerning malware, we observed a significantly different
trend: the average number of reachable native functions from the main application
codes has significantly decreased, consequently implying a strong presence of Dynamic
Code Loading. Moreover, we noticed how the invocation of native methods is almost
immediate and occurs mainly without user interaction. Finally, malware often uses
Broadcast Receivers to wait for a particular event and trigger the native code.

7.2 Load Methods

Android apps can load native libraries through the load and loadLibrary methods. We
recall that the former accepts the full path of the library, while the latter accepts only the
name of the library – which is loaded from the default folder.
The 86% of loading operations in the goodware dataset load shared libraries directly

from the standard location using the loadLibrary method. Until 2013 this was also the
preferred method among the malicious app, with more than 89% of such operations relying on
loadLibrary and only 11% on the load method. From 2013 to 2021 instead, this percentage
steadily decreased, and today the load method accounts for 42% of loading operations
against 14% in goodware.

18 Ruggia et al.

A second crucial aspect is when these libraries are loaded to make the native methods
accessible. The JNI common practice suggests loading the libraries within the static con-
structor so that native methods will be immediately available and exposed to the rest of the
application. We measured this from 2011 to 2015: more than 69% of malware was loading
libraries from a static constructor. However, from 2017, we observed a change that saw
samples loading libraries in other points of the app’s execution until 2021, when 80% of
malware loads native libraries from other code locations. Goodware reinforces this phenome-
non by loading libraries from different entry points, but still, 42% of loading operations are
performed by static constructors.
Other interesting aspects of the Application Lifecycle analysis concern user interaction

and response to specific system events. In the first case, our experiments show that 52% of
goodware loads native libraries only in response to user interaction, while malware performs
this behavior only in 16% of the samples. Moreover, malware tends to use broadcast receivers
to load native libraries in response to particular events, such as an external power has been
(dis)connected to the device, an external media is (un)mounted, or the device boots.

Finally, we analyzed the name of the libraries that goodware and malware load. Our
data shows that, throughout the years, malware loads significantly more libraries related
to packing (e.g., jiagu [1]), obfuscation, encoding/encryption, or audio recording. On the
other hand, a high percentage of goodware includes libraries from well-known frameworks,
such as Unity [50] and Flutter [18].

Observations: Goodware is much more adherent to the good practices, like loading
libraries via the loadLibrary method; thus making the analysis easier – given that they
are loaded from a single location and must be present in the APK. This was the same
trend observed in malware until 2015, while it is changing in favor of the use of load
method. This fact brings numerous problems to static analyses as it may not be possible
to know in advance what library will be loaded or where it is located. In addition, recent
malware is more likely to include protection libraries, such as packers and obfuscators.

Table 2. Supported architectures over the years [%]

ARM
32-bit

ARM
64-bit x86 x86 64

MIPS
32-bit

MIPS
64-bit Others

Good ’21 80.49 81.26 59.32 43.27 11.18 6.71 0.15
Mal ’11 99.98 1.68 7.65 0.68 4.05 0.10 0.00
Mal ’13 99.99 0.33 8.92 0.13 2.59 0.04 0.01
Mal ’15 99.99 3.52 38.42 1.77 12.29 1.53 0.00
Mal ’17 99.99 30.93 65.49 22.86 17.86 9.97 0.18
Mal ’19 99.96 46.42 69.98 29.31 8.90 5.36 0.50
Mal ’21 99.54 78.51 87.97 45.69 2.19 1.20 1.43

7.3 ELF files

To support different architectures, APKs include ELF libraries in lib folder, which are in
turn divided into different subfolders, one for each architecture supported by the app. Table
2 details the evolution of the architectures supported by malware and goodware.

Google Play introduced the App Bundle [26], a new publishing format to generate and
serve optimized APKs for each device configuration. This ensures that new applications that
use native libraries do not have to ship their APK with multiple versions of the same native
library since the correct version will be directly shipped at installation time. Despite this
new feature, we observed that 75% of the goodware still ships the same library object for

The Dark Side of Native Code on Android 19

multiple architectures, and more than 11% still includes MIPS – even though it is no longer
supported [25]. In comparison, almost all malware samples include ELF files for ARM32, and
the number of samples with multiple architectures grew over the year, from 9% in 2011 to
74% in 2021. Since 2017, malware samples contain also few ELF files which target different
architectures (e.g., SPARC and PowerPC), which grows up to 1.4% in 2021. We also observed
a small percentage (about 0.1% every year) of ELF files with a broken header section, while
none of the goodware had this peculiarity. By inspecting some of these cases manually, we
identified a common technique that is used to prevent static analysis: the authors have
removed a part of the ELF header from the libraries, and the missing part is only restored
at runtime.

Afterward, we analyzed where the ELF files are located in the APK. Most of the goodware
(78%) contain ELF files only in the standard lib folder, while 10% ships ELF files only in
non-standard (e.g., assets folder or archives) locations. On the other hand, about 85% of
the malware contains ELF files in a non-standard location, which reflects the high usage
of the load method in malware. Moreover, malicious APKs also embed ELF libraries in
archives or try to disguise the analyst by hiding the executable with a wrong and harmless
extension name (i.e., different from .so). More than 5% of ELF files in the malware samples
were extracted from an archive or have an extension that did not match the file type. The
most common wrong extension names we found are: png, jar, sdk, and lib.
We also found another interesting phenomenon: since 2017, more than 1% of malware

contains an ELF file with the same name that targets the same architecture both in the
standard folder and in a non-standard location. Therefore, we decided to manually examine
those ELF files with the same name and architecture. We computed the Jaccard similarity
coefficient between the set of JNI entry points and obtained an average index of 0.7 when
there should be no difference. It indicates that the two files have very different entry points.
For instance, sample 213c contains an ARM library in both the lib and the assets folders.
The ELF library under the assets folder exports one entry point more than the one in the
lib folder, and such an entry point is in charge of executing a well-known exploit [49] to
escalate privileges and obtain root capabilities. In general, from 2015, more than 6% of such
libraries (with a peak of more than 30% in 2019) implement the JNI OnLoad entry point
only in the non-standard location.
Finally, we searched how many ELF files are shared among different malware samples

and found that the percentage of ELF files shared between at least two malicious APKs
is 46% (60, 895/131, 325). Among the top 1,000 shared ELF files, 59 (6%) have more than
four detections, and some have up to 41 detections in VirusTotal. Interestingly, among the
top shared ELFs in a non-standard location (e.g., asset folder), more than 10% has a VT
detection higher than five. Moreover, 7% of the shared ELFs are contained in different
places depending on the malware. It highlights how malware tends to include malicious
executables not in the lib/ folder, reinforcing the results of the previous sections that
malware leverages the load method to get libraries from various locations. For instance, the
6c6e ELF file is shared among 293 APKs, and it is loaded from the res/ folder. We then
measured the number of years in which these malicious ELFs were observed in our dataset,
and we obtained a median of four years. The most extreme case is d867 which is shared by
54 APKs from 2011 to 2021 and has 32 detections on VT. As it turns out, malware authors
are not too concerned about antivirus software and do not even try to change the hash of
the malicious components they kept reusing year after year.

Last, our data shows that 6% of the ELF files is shared between at least one malware and
one goodware sample. This highlights how malware provides goodware-like features to fool

20 Ruggia et al.

the final user (e.g., repackaged apps), or goodware’s developers try to protect their code
with obfuscation techniques.

Observations: From these results, we can conclude how malware has adapted to
support more and more architectures. This can indicate many factors, the first of which
is to try to be effective on as many devices as possible. Changing the file’s extension
is a trivial trick, but it is common, while removing the ELF header and restoring it at
runtime is certainly more sophisticated and thus less prevalent. Using the same name
for different libraries is a clear sign that the dispatch might change depending on some
checks. We have noticed that the reuse of malicious native libraries is a frequent practice
that lasts over the years, showing carelessness in concealing it. Finally, we highlighted
how malware and goodware have native components in common to protect their code
from reverse engineering.

7.4 Initialization Functions & JNI OnLoad

When the dynamic linker loads a library, it first calls the initialization functions defined
in well-known ELF sections. Samples in both datasets have about the same percentages of
initialization functions distributed across sections: while the .init section is used by less
than 1% on average, .init array is more prevalent, being present in roughly 30% of the
apps.

After the ELF initialization functions are executed, JNI calls JNI OnLoad. Here we noticed
an interesting trend: while the usage of JNI OnLoad in the goodware dataset is around 60%,
the percentage of malware that uses it had been steadily increasing over the years until 2017,
after which it remained stable at 92%. This brings another important observation: JNI -

OnLoad is the function where usually the RegisterNatives is used to register the methods
dynamically, thus hiding the mapping between Java and native functions. Therefore, it is
possible that malware use this construct more frequently specifically to prevent the detection
of which native methods are executed by the sample. During the years, the percentage of
such malware that exports only the JNI OnLoad as JNI entry point decreased from 48.1% to
18.1%, while, for goodware, it is stable at around 42%. This shows that malware authors
jointly use both techniques to register the JNI entry points to hide the mapping for specific
functions. Moreover, we measured the average number of branches of the JNI OnLoad: for
malware, it grew up over the years until 91 (std. dev. 131) in 2021, while, for goodware, it is
only 44 (std. dev. 110); a clear sign that this function is often abused by malware authors
and must be analyzed with particular care.
ANDani tries to resolve which methods are dynamically registered by computing the

arguments of the RegisterNatives calls. The usage of this callback in malicious apps has
increased over the years up to 71% of samples, while it accounts only for 30% of the goodware
samples. We recall that the RegisterNatives dynamically maps a Java method defined
as native to its implementation in the shared library at runtime, accepting two distinct
input parameters: the Java class and the function-method mapping. ANDani resolved the
mapping in 88% of the cases for benign samples, thanks to the fact that goodware often uses
hardcoded values. For malware, the percentage decreases to 79% averaged over the years,
as a consequence of the fact that these samples tend to obfuscate the parameters’ value.
Conversely, resolved Java classes are approximately 60% for goodware and 55% for malware
since 2019. For the arguments we were able to resolve, we inspected whether the related
classes were defined within the code of the APK, the framework, or if they were not present
in either. We identified how the number of Java classes used in the RegisterNatives that

The Dark Side of Native Code on Android 21

are not present in the APK is higher in malware. In goodware, 78% of the resolved classes
point to defined references (and all the other points to Android framework classes, such as
androidx.renderscript.RenderScript), while for malware since 2019, this only accounts
for 36% of the classes.

We also noticed that malware samples perform various checks (e.g., environment controls,
anti-debugging checks, etc.) and map different functions depending on their results. For
example, we identified one APK (7900), which loads a native library (32cd), and it leverages
this technique to invoke the RegisterNatives callback and to map different Java methods
depending on the context in which it is analyzed. A more detailed manual analysis revealed
that the sample decrypts a string, and if a class with the same name exists, it maps the
native functions to such class; otherwise, if the check fails, it decrypts another string and
repeats the procedure.

Observations: The investigation of the JNI OnLoad function is a crucial aspect in
the analysis of Android malware. In particular, using RegisterNatives with different
hidden arguments, based on environment checks, with the goal of mapping different
functions at runtime, can be considered an anti-analysis technique for both static and
dynamic analysis – that, to the best of our knowledge, has not yet been documented.

7.5 Native Behavior

Finally, the native libraries (steps #6A, #6B, #6C of our methodology presented in
Section 4).

Native reflection. A shared library might leverage the JNI callbacks to communicate back
with the Java world. Our measurement revealed that malware samples, especially the most
recent ones, adopt this behavior more often than goodware.
Over the years, the usage of native reflection by malicious apps significantly increased,

reaching over the 90% in 2021. On the other hand, the adoption of JNI callbacks in benign
software is present in 57.1% of the applications that use native components. In particular,
among the several JNI callbacks available, we noticed that the usage of the FindClass

and GetMethodID callbacks are about 35% higher in malicious apps than in goodware. In
addition, ANDani succeeded in recovering over 81% of the arguments for goodware for both
the callbacks, while it resolved less than 68% of FindClass and 70% of GetMethodID for
malware from 2017. In half of the cases, both goodware and malware apps access classes
and methods of the Android framework, while the remaining involves app-specific classes.
About goodware, over 72% of these custom classes are present in the APK, whereas, in
malware, this happens only in 21%. This second result could indicate how malware tries
to communicate natively with Java components not present in plain within the APK. We
suppose that these classes are present in obfuscated files or retrieved from the internet and
loaded at runtime.

We investigated further the classes and methods of the Android framework accessed with
the native reflection, and we have noticed a significant difference between the apps of the
two datasets. In order of frequency, the native reflection is used by malicious apps to: load a
DEX or a JAR file through the DexClassLoader (or its superclass ClassLoader) class, get a
handle to a system-level service such as with the getSystemService method of the Context
class, interact with Android managers, inspecting incoming exceptions, and perform crypto
and encoding operations. The adoption of such techniques is approximately six times more
frequent in malware than goodware, which is less than 4%.

22 Ruggia et al.

Concerning the analysis of the Android managers, our result shows that malware mainly
interacts with PackageManager to retrieve app information or verify the permission through
the checkPermission method, WifiManager to check the connection, and TelephonyMan-

ager to retrieve sensitive information, such as getting the IMEI and IMSI with getDeviceId

and getSubscriberId methods. Collecting unique identifiers for the device (IMEI) and SIM
card (IMSI) is a well-known procedure malware uses to profile the victim. However, they
moved this logic into the native code over the years.

Moving to the exploitation of the ClassLoader from native code, we noticed how recent
malware loads the target Java classes by directly invoking Java methods, such as loadClass.
This technique can be used to replace the FindClass JNI callback, making the analysis
much more complicated. Besides, we notice that malware in 2021 tends to leverage the
Java reflection technique in the native code; for instance, the ToReflectedMethod and
FromReflectedMethod callbacks are used four times more in malware than goodware.

Moreover, it is interesting to highlight how the malicious apps natively retrieve and handle
the stack trace, using the getStackTrace method of the Throwable class to inspect its
content. This technique is applied as a form of anti-hooking: by looking at the content of
the stack trace, an app can detect the presence of either the Cydia Substrate or the Xposed
framework (e.g., sample 4a7e), as both manipulate the call stack [10].

Finally, every time we found a native reflection pattern, we applied the technique described
by Aafer et al. [2] to check if the method needed: no permission, normal permission, or
dangerous permission. If the argument of FindClass could not be statically retrieved, we
used the argument of GetMethodID. In fact, the Android framework method names are often
unique, and in case we found multiple matches (like read or open), we excluded these cases
from our analysis. First, more than 10% of malware, regardless of the year but with a gradual
increase in such percentage over the years (up to 16% in 2021), invokes methods that require
normal/dangerous permission; on the other hand, this percentage is negligible for goodware.
Then, on average, comparing recent malware and goodware, we obtained respectively: 84%
(vs. 94% for goodware) of the methods required no permissions, 8% (vs. 3%) required normal
permissions, and 6% (vs. 3%) required dangerous permissions. This shows how malware
abuses native reflection to perform privileged operations and, in particular, malware invokes
methods for reading SMS, accessing the location, and reading contacts.

Observations: The inspection of Native reflection confirms and brings to light new
techniques with which malware executes dynamic code loading exploiting the native layer.
While malware increasingly tends to interact with classes that are loaded at runtime,
this behavior is rarely exposed by goodware. In addition, to make the analysis and the
identification of harmful patterns more challenging, malware tends to move malicious
techniques from Java to the native layer (such as anti-hooking or accessing sensitive user
information), and they start to replace JNI callbacks with a direct invocation of Java
methods.

Library function. An ELF file might rely on external functions exposed by other shared
libraries, in which symbols are dynamically resolved or included in the ELF file during
the compilation (i.e., statically linked ELF files). Our analysis reveals that almost all the
apps in the goodware and malware datasets import libc.so (which in Android include also
libpthread.so and librt.so), libm.so, and liblog.so libraries. The only noteworthy
relevant differences are the libz.so (a compression/decompression library), used by 90% of
malware and 6% of goodware. This discrepancy is due to the fact that malicious apps often
decompress components that will be used at runtime (e.g., sample 05b4).

The Dark Side of Native Code on Android 23

We identified several discrepancies between goodware and malware in the prevalence of
usage of security-relevant functions (Table 5 in the Appendix). For instance, in 2011, only
3% of the malicious apps used chmod, and 7% used mprotect, which are respectively used
to change the owner of a file and the permission of a mapped area in the memory. The use
of these functions has grown steadily over the years, to the point where, nowadays, more
than 59% of the samples in our dataset uses the first function and 87% uses the second.

Then, we investigated the files that are opened through the *open family. In the first case,
malware use native code to open or access the files under the /dev and /proc folders more
often than goodware. For instance, in 2021, 54% of malware and 2% of goodware opened
the /proc/version. Another common target in the proc folder is /proc/self/maps, which
describes the virtual memory in a process, and it is used by 84% of malware and 10% of
goodware. Checking the contents of the maps file by an application can provide information
about injected libraries, and it is a known technique used especially by malware to identify
frameworks such as Frida. On the other hand, identifying access to device drivers located
under /dev is another crucial aspect over the years; numerous vulnerabilities have affected
that subsystem (e.g., the recent Use-After-Free vulnerability in the Android Binder [23]).
In fact, the results highlight how recent malware is more prone to open drivers, such as
/dev/tty to read the output of processes or /dev/ashmem to share large quantities of memory
among processes, in which vulnerabilities have been found over the years [22].
Furthermore, some malware checks device-related information or opens system shared

libraries, while the number of goodware is negligible (< 0.1%). For instance, in 2021, 10% of
malicious apps verify if an SELinux policy is enabled accessing the /sys/fs/selinux/en-

force file, and 9% of malware explicitly interacts with the /system/bin/linker to load and
run a dynamic executable, even if they are contained in a ZIP file. These are new techniques
that grew up in the last years, performed by malware to detect the environment where they
are executed or evade anti-malware controls.
Observations: The analysis reveals that malware is more prone to call security-relevant
library functions, indicating operations that require further investigation. Moreover, we
highlight the high discrepancy in the usage of libz for (de)compression and network-
related functions, which are probably used to retrieve resources at runtime. Finally,
malware: often reads the content of some particular files to perform environment controls
(e.g., emulator/sandbox), interacts with low-level components (e.g., linker) to bypass
common checks, and runs command line programs more frequently than goodware.

Dynamic loading of DLLs. Dynamic loading refers to the ability to load and invoke
functions of other shared objects at runtime without the need to link the library to the
executable. In particular, this technique is based on two specific library functions: dlopen
to load the library and dlsym to retrieve a pointer to the target function. The prevalence of
this technique had increased over the years, from 2011, when 24% of malware employed it,
until today when the percentage is over 90%. In comparison, around 55% of benign apps in
our dataset perform dynamic loading.

Looking at libraries and functions invoked with such technique, we found that for goodware,
half of the loaded shared objects are well-known Android libraries, while more than three-
quarters are for malware. Among the remaining quarter, most of the libraries are not included
in the APK – we suppose these libraries are present in obfuscated files or retrieved from the
internet and loaded at runtime. The most common libraries that are dynamically loaded
are related to (de)compression and decryption/encryption operations; for example, the
uncompress function of the libz.so library is dynamically loaded from more than 90% of

24 Ruggia et al.

malware, but only from 0.4% of goodware apps. This finding again reinforces our idea that
malware uses native components to prepare resources that will be used at runtime to evade
static analysis.
Even if some Android libraries are widely loaded from both goodware and malware, on

average, their usage is very different, and this can be used to pinpoint suspicious operations.
For instance, the libc library is loaded though dlopen by more than 30% of goodware and
malware. However, malicious apps rely more on dynamic loading to invoke libc functions
such as system property get to retrieve the value of device-related properties and chown

to modify the owner of some resource. In addition, we found an unconventional and rather
peculiar use of these functions by malicious applications in which few apps called dlopen

and dlsym to obtain a function pointer to dlopen and dlsym themselves, and use that later
on in the execution. Lastly, we observed how at least the 9% recent malicious apps load
Dalvik and ART runtime libraries, namely libdvm.so and libart.so, but this phenomenon
occurs in less than 2% of goodware – such libraries can be (ab)used to bypass Android
Runtime restrictions [51].

Observations: Most malware abuses the dynamic loading of DLLs, and, very often,
the loaded library is “generated” at runtime, while goodware does the opposite. This
reinforces the consideration that malware is more prone to prepare resources (e.g., decrypt
or download code) from native code in an evasive way. Moreover, most loaded functions
could hide suspicious operations, such as (de)compression or permission management.

8 USE CASE: BINARY CLASSIFICATION

In the previous section, we discussed the many facets of native code execution in Android
apps and highlighted core differences between how benign and malicious applications use
native code. In this section, we test to what extent the suspicious tags assigned by our
system can be used to detect malware. For this task, we built a dataset using all the 15, 647
goodware at our disposal and sub-sampling the same amount of malicious apps collected in
2021. We selected all samples classified as “Singleton” (15, 427) (those for which AVClass2
was unable to determine the family), and we sampled the remaining 220 malicious apps
one per family to avoid bias towards particular families. We extracted the suspicious tags
defined in our methodology for each sample and created a vector of 74 features (62 booleans
and 12 floats). In Table 7 in Appendix, we annotated each tag with the data type used in
the vector. We then used a Random Forest classifier due to its ability to handle numeric and
categorical features without needing encoding. We set the split criterion of the algorithm
to be the Gini impurity and tune the remaining hyperparameters (such as the number of
trees, their depth, and the number of features to consider when splitting a node) by using
the Out Of Bag (OOB) error computed during the training phase. As reported in Figures 2
and 3 in the Appendix, we obtained the optimal OOB error when considering 141 trees with
depth 32 and the sqrt as a metric to define the number of features to test when extending a
node. We used a 10-fold cross-validation approach to train and test our classifier, each round
training the model on k-1 folds and testing its performance on the remaining fold —different
for each round— to measure how well the classifier generalizes on unseen samples. Table 3
summarizes the average performance obtained on the test sets, including accuracy, precision,
recall, and F1-score. Even though we opted for a simple classification scheme, our results
were surprising. In fact, by simply leveraging the suspicious tags to distinguish between
goodware and malware, the average error rate was 2.21%, with an accuracy, respectively, of
0.99 and 0.96 and a mean F1-score of 0.97.

The Dark Side of Native Code on Android 25

Table 3. Left: confusion matrix; right: classification report

A
c
tu

a
l
v
a
lu

e

Goodware Malware

99.01 0.99 Goodware

3.43 96.57 Malware

Prediction outcome

Metric Goodware Malware

Precision 96.57 99.02

Recall 99.01 96.57
F1-score 97.77 97.78

Accuracy 99.01 96.57

Accuracy 97.79

Feature importance. We ranked the features used in the classifier based on their Mean
Decrease Impurity (MDI) and reported in Table 4 the top-10 of them together with their
relative importance normalized as a percentage.
The tags belonging to the categories J NATIVE METHODS and J LOAD METHODS (the first

two steps of our methodology, which capture native/load methods in the Java code and the
entry point from which they can be reached) accounts for almost 50% of the total feature
relevance. This shows that the insights gleaned in Section 7.1 and 7.2 represent the most
discriminating traits for the classification of goodware and malware; namely, our results
suggest that a reliable indicator of malicious behavior is when an app reaches the native
code without user interaction and such native code is not statically available.

Furthermore, four of the top-10 entries belong to the category SUS LIB CALL, which denotes
the use of security-relevant functions within the native code. Interestingly, the most impactful
are the ‘Memory Protection’ calls mmap and mprotect that are a prerequisite to execute
dynamically loaded code. Finally, the fifth entry indicates the presence of build.prop key
strings. The build.prop is a file that contains build properties and settings in the format
key=value. Some contents are specific to the device or manufacturer, while others vary
according to the operating system version. Retrieving these values significantly impacts
security because attackers can fingerprint the device and engage in evasive behavior or select
a valid exploit for the system.

Classification errors. In the last part of our analysis, we investigated the root causes of
classification errors and whether those were attributable to any particular characteristics of
the samples. In our setting, we define a false positive (FP) as a classification error in which
a benign sample is labeled as malware; vice versa, the classifier produces a false negative
(FN) when predicting malware as goodware. We repeated our classification task 100 times
by using independent folds for each experiment, thus resulting in training and testing 1K
different classifiers. The rationale behind this choice is to isolate those samples that are
always mispredicted as FPs (0.5% - 81/15, 647) or FNs (3.1% - 483/15, 647). These samples
were further investigated by analyzing the tags extracted with our methodology and by
resorting to manual reverse engineering for a subset of them.

When narrowing down to FNs, we detected that the model errs when the malicious logic
(e.g., sample c227) is fully contained in classes.dex files – which is out of our scope, and
it includes well-known legitimate native libraries. For example, sample 58b3 only ships two
open-source libraries in the standard location, namely LAME to manipulate MP3 files, and a
second one that provides WebRTC capabilities. However, many samples contain the definition
of some native methods in the Java code, but do not contain the relative ELF file, neither

26 Ruggia et al.

in standard nor in non-standard locations. The respective sample is then characterized by
the sole presence of the NO ELF NAME tag (J LOAD METHODS category), whereas almost all the
other tags are missing. In such a case, the model does not have enough information for an
accurate classification.
On the other hand, we discovered that misclassifications of goodware (FPs) are mainly

due to the heavy usage of Dynamic Code loading (DYNAMIC LOADING category) or suspicious
library calls (Table 5 of the Appendix). In particular, almost all FPs are samples with
native libraries that try to protect the intellectual properties of the developers with integrity
checks, obfuscation, and packing techniques. By nature, such techniques generate exactly
surreptitious code that represents the core of our analysis.

Table 4. Top 10 features sorted by MDI score

Tag Category Tag Title MDI score (%)

J NATIVE METHODS NO REACHABLE 15.88 %
J LOAD METHODS APP LIFECYCLE EP 13.17 %
J NATIVE METHODS APP LIFECYCLE EP 11.50 %
J LOAD METHODS PATH LOAD METHOD 8.87 %
STRING PROPERTIES 7.15 %
J NATIVE METHODS ACTIVITY LIFECYCLE EP 5.90 %
SUSP LIB CALL MEMORY PROTECTION 4.02 %
SUSP LIB CALL PROCESS MANAGEMENT 3.65 %
SUSP LIB CALL IDENTITY 3.45 %
SUSP LIB CALL PERMISSION 2.83 %

Average 1.35 %
Standard deviation 0.24 %

9 LIMITATIONS AND CONCLUSIONS

We performed the first longitudinal analysis of the use of native components in Android
malware, which allowed us to identify several suspicious uses related to the JNI code.
Moreover, we showed how our automatically-assigned suspicious tags could pinpoint the
code region to inspect and speed up the analysis process, inspecting the behavior for all
supported architectures. Our work significantly differs and complements all state-of-the-art
tools for both the type of analysis performed and the goal of the analysis. In particular,
ANDani is not limited only to a Java to native dataflow analysis: it also analyzes all aspects
of the native components, from the entry point analysis and the triggering condition of JNI
methods to the suspicious library function invoked by the native code. With this design, we
can improve the automatic detection of Android malware in a binary classification task by
including the native-related features extracted by ANDani . However, our implementation
has all the intrinsic limits of the static analysis, in particular, the backward taint data
analysis [36]. In addition, if the code that is dynamically loaded is not present in the APK,
we are obviously not able to analyze it, and given the current spread of droppers in the
PlayStore [52], it is an issue that will need to be addressed.

With this paper, we have tried to contribute to this cat-and-mouse game hoping that our
suspicious tag will be the building block for future research on Android malware and their
detection.

The Dark Side of Native Code on Android 27

REFERENCES

[1] 2022. Jiagu. http://jiagu.360.cn/. Accessed September 28, 2022.
[2] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li. 2018. Precise Android

API protection mapping derivation and reasoning. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. 1151–1164.

[3] Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupé, Mario Polino, Paulo de Geus,
Christopher Kruegel, and Giovanni Vigna. 2016. Going native: Using a large-scale analysis of android
apps to create a practical native-code sandboxing policy. In The Network and Distributed System

Security Symposium. 1–15.

[4] NSA National Security Agency. 2022. Ghidra: A software reverse engineering (SRE). https://ghidra-
sre.org/. Accessed September 28, 2022.

[5] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles, techniques. Addison
wesley 7, 8 (1986), 9.

[6] Shahid Alam, Zhengyang Qu, Ryan Riley, Yan Chen, and Vaibhav Rastogi. 2017. DroidNative:
Automating and optimizing detection of Android native code malware variants. computers & security
65 (2017), 230–246.

[7] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016. Androzoo: Collecting
millions of android apps for the research community. In 2016 IEEE/ACM 13th Working Conference on
Mining Software Repositories (MSR). IEEE, 468–471.

[8] Seyed Behnam Andarzian and Behrouz Tork Ladani. 2020. Compositional Taint Analysis of Native
Codes for Security Vetting of Android Applications. In 2020 10th International Conference on Computer
and Knowledge Engineering (ICCKE). IEEE, 567–572.

[9] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein,
Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps. Acm Sigplan Notices 49, 6 (2014),

259–269.

[10] Neil Bergman. 2015. Android Anti-Hooking Techniques in Java. https://d3adend.org/blog/posts/andro
id-anti-hooking-techniques-in-java/. Accessed September 28, 2022.

[11] c3r34lk1ll3r. 2020. CVE-2019-2215 Exploit. https://github.com/c3r34lk1ll3r/CVE-2019-2215. Accessed
September 28, 2022.

[12] The MITRE Corporation. 2011. CVE-2011-1823. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2011-1823. Accessed September 28, 2022.
[13] The MITRE Corporation. 2014. CVE-2014-3153. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2014-3153. Accessed September 28, 2022.

[14] The MITRE Corporation. 2016. CVE-2016-5195. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-
2016-5195. Accessed September 28, 2022.

[15] The MITRE Corporation. 2019. CVE-2019-2215. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2019-2215. Accessed September 28, 2022.
[16] DimitriFourny. 2020. CVE-2019-2215 Exploit. https://github.com/DimitriFourny/cve-2019-2215.

Accessed September 28, 2022.
[17] facundoolano. 2022. Google Play Scraper. https://github.com/facundoolano/google-play-scraper.

Accessed September 28, 2022.

[18] Flutter. 2022. Flutter. https://flutter.dev/. Accessed September 28, 2022.
[19] The Apache Software Foundation. 2022. Apache Cordova Framework. https://cordova.apache.org/.

Accessed September 28, 2022.

[20] George Fourtounis, Leonidas Triantafyllou, and Yannis Smaragdakis. 2020. Identifying java calls in
native code via binary scanning. In Proceedings of the 29th ACM SIGSOFT International Symposium

on Software Testing and Analysis. 388–400.

[21] Gabriel Claudiu Georgiu. 2022. Playstore Dowloader. https://github.com/ClaudiuGeorgiu/PlaystoreD
ownloader. Accessed September 28, 2022.

[22] Google. 2017. BitUnmap: Attacking Android Ashmem. https://googleprojectzero.blogspot.com/2016/

12/bitunmap-attacking-android-ashmem.html. Accessed September 28, 2022.
[23] Google. 2020. Android Use-After-Free in Binder. https://googleprojectzero.github.io/0days-in-the-

wild/0day-RCAs/2019/CVE-2019-2215.html. Accessed September 28, 2022.
[24] Google. 2022. The Activity Lifecycle. https://developer.android.com/guide/components/activities/acti

vity-lifecycle. Accessed September 28, 2022.

http://jiagu.360.cn/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://d3adend.org/blog/posts/android-anti-hooking-techniques-in-java/
https://d3adend.org/blog/posts/android-anti-hooking-techniques-in-java/
https://github.com/c3r34lk1ll3r/CVE-2019-2215
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1823
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1823
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3153
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3153
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2215
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2215
https://github.com/DimitriFourny/cve-2019-2215
https://github.com/facundoolano/google-play-scraper
https://flutter.dev/
https://cordova.apache.org/
https://github.com/ClaudiuGeorgiu/PlaystoreDownloader
https://github.com/ClaudiuGeorgiu/PlaystoreDownloader
https://googleprojectzero.blogspot.com/2016/12/bitunmap-attacking-android-ashmem.html
https://googleprojectzero.blogspot.com/2016/12/bitunmap-attacking-android-ashmem.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2019/CVE-2019-2215.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2019/CVE-2019-2215.html
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle

28 Ruggia et al.

[25] Google. 2022. Android ABIs. https://developer.android.com/ndk/guides/abis. Accessed September 28,
2022.

[26] Google. 2022. Android App Bundle. https://developer.android.com/guide/app-bundle. Accessed

September 28, 2022.

[27] Google. 2022. Android App Categories. https://support.google.com/googleplay/android-developer/an
swer/9859673. Accessed September 28, 2022.

[28] Google. 2022. Android linker source code, call constructors method. https://android.googlesource.com
/platform/bionic/+/master/linker/linker soinfo.cpp#516. Accessed September 28, 2022.

[29] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen, and Martin C Rinard.

2015. Information flow analysis of android applications in droidsafe.. In NDSS, Vol. 15. 110.
[30] Sable Research Group. 2022. Soot - A Java optimization framework. https://github.com/soot-oss/soot.

Accessed September 28, 2022.

[31] j0nk0. 2019. Android DirtyCow. https://github.com/j0nk0/GetRoot-Android-DirtyCow. Accessed
September 28, 2022.

[32] kangtastic. 2019. CVE-2019-2215 Exploit. https://github.com/kangtastic/cve-2019-2215. Accessed
September 28, 2022.

[33] Michael Kerrisk. 2021. proc.5. https://man7.org/linux/man-pages/man5/proc.5.html. Accessed

September 28, 2022.

[34] Sungho Lee. 2019. JNI program analysis with automatically extracted C semantic summary. In
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.

448–451.

[35] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried
Rasthofer, Eric Bodden, Damien Octeau, and Patrick McDaniel. 2015. Iccta: Detecting inter-component

privacy leaks in android apps. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. IEEE, 280–291.

[36] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre Bartel, Damien Octeau,

Jacques Klein, and Le Traon. 2017. Static analysis of android apps: A systematic literature review.
Information and Software Technology 88 (2017), 67–95.

[37] Microsoft. 2022. Xamarin. https://dotnet.microsoft.com/apps/xamarin. Accessed September 28, 2022.

[38] Jasvir Nagra and Christian Collberg. 2009. Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection: Obfuscation, Watermarking, and Tamperproofing for Software

Protection.

[39] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques Klein, and
Yves Le Traon. 2013. Effective inter-component communication mapping in android: An essential step

towards holistic security analysis. In 22nd {USENIX} Security Symposium ({USENIX} Security 13).
543–558.

[40] Oracle. 2022. JNI Functions. https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functi

ons.html. Accessed online: September 28, 2022.
[41] Oracle. 2022. JNI Types and Data Structures. https://docs.oracle.com/javase/7/docs/technotes/guides

/jni/spec/types.html. Accessed September 28, 2022.

[42] Oracle. 2022. Oracle JNI. https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.h
tml. Accessed September 28, 2022.

[43] Mono Project. 2022. Mono Project. https://www.mono-project.com/. Accessed September 28, 2022.

[44] Chenxiong Qian, Xiapu Luo, Yuru Shao, and Alvin TS Chan. 2014. On tracking information flows
through jni in android applications. In 2014 44th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks. IEEE, 180–191.

[45] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016. Harvesting Runtime
Values in Android Applications That Feature Anti-Analysis Techniques.. In NDSS.

[46] Jordan Samhi, Jun Gao, Nadia Daoudi, Pierre Graux, Henri Hoyez, Xiaoyu Sun, Kevin Allix, Tegawendé F
Bissyandé, and Jacques Klein. 2022. JuCify: A Step Towards Android Code Unification for Enhanced

Static Analysis. In 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE).

IEEE, 1232–1244.
[47] Silvia Sebastián and Juan Caballero. 2020. Avclass2: Massive malware tag extraction from av labels. In

Annual Computer Security Applications Conference. 42–53.

[48] Mingshen Sun, Tao Wei, and John CS Lui. 2016. Taintart: A practical multi-level information-flow
tracking system for android runtime. In Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security. 331–342.

https://developer.android.com/ndk/guides/abis
https://developer.android.com/guide/app-bundle
https://support.google.com/googleplay/android-developer/answer/9859673
https://support.google.com/googleplay/android-developer/answer/9859673
https://android.googlesource.com/platform/bionic/+/master/linker/linker_soinfo.cpp#516
https://android.googlesource.com/platform/bionic/+/master/linker/linker_soinfo.cpp#516
https://github.com/soot-oss/soot
https://github.com/j0nk0/GetRoot-Android-DirtyCow
https://github.com/kangtastic/cve-2019-2215
https://man7.org/linux/man-pages/man5/proc.5.html
https://dotnet.microsoft.com/apps/xamarin
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://www.mono-project.com/

The Dark Side of Native Code on Android 29

[49] Hacking Team. 2015. HackingTeam Exploits. https://github.com/f47h3r/hackingteam exploits/tree/m
aster/android. Accessed September 28, 2022.

[50] Unity Technologies. 2022. Unity. https://unity.com/solutions/mobile/android-game-development.

Accessed September 28, 2022.

[51] Romain Thomas. 2019. Android Runtime Restriction Bypass. https://blog.quarkslab.com/android-
runtime-restrictions-bypass.html. Accessed September 28, 2022.

[52] ThreatFabric. 2021. 300.000+ infections via Droppers on Google Play Store. https://threatfabric.com
/blogs/deceive-the-heavens-to-cross-the-sea.html. Accessed September 28, 2022.

[53] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan.

2010. Soot: A Java bytecode optimization framework. In CASCON First Decade High Impact Papers.
214–224.

[54] Fish Wang and Yan Shoshitaishvili. 2017. Angr-the next generation of binary analysis. In 2017 IEEE

Cybersecurity Development (SecDev). IEEE, 8–9.
[55] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep ground truth analysis

of current android malware. In International conference on detection of intrusions and malware, and
vulnerability assessment. Springer, 252–276.

[56] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong Zhang. 2018. Jn-saf: Precise

and efficient ndk/jni-aware inter-language static analysis framework for security vetting of android
applications with native code. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 1137–1150.

[57] Fengguo Wei, Sankardas Roy, and Xinming Ou. 2014. Amandroid: A precise and general inter-component
data flow analysis framework for security vetting of android apps. In Proceedings of the 2014 ACM
SIGSAC conference on computer and communications security. 1329–1341.

[58] Daoyuan Wu, Debin Gao, Robert H Deng, and Chang Rocky KC. 2021. When Program Analysis
Meets Bytecode Search: Targeted and Efficient Inter-procedural Analysis of Modern Android Apps in

BackDroid. In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN). IEEE, 543–554.
[59] Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu. 2017. Malton: Towards On-Device

Non-Invasive Mobile Malware Analysis for {ART}. In 26th {USENIX} Security Symposium ({USENIX}
Security 17). 289–306.

[60] Lok Kwong Yan and Heng Yin. 2012. Droidscope: Seamlessly reconstructing the {OS} and dalvik seman-

tic views for dynamic android malware analysis. In 21st {USENIX} Security Symposium ({USENIX}
Security 12). 569–584.

[61] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck. 2015. Appcontext:

Differentiating malicious and benign mobile app behaviors using context. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, Vol. 1. IEEE, 303–313.

https://github.com/f47h3r/hackingteam_exploits/tree/master/android
https://github.com/f47h3r/hackingteam_exploits/tree/master/android
https://unity.com/solutions/mobile/android-game-development
https://blog.quarkslab.com/android-runtime-restrictions-bypass.html
https://blog.quarkslab.com/android-runtime-restrictions-bypass.html
https://threatfabric.com/blogs/deceive-the-heavens-to-cross-the-sea.html
https://threatfabric.com/blogs/deceive-the-heavens-to-cross-the-sea.html

30 Ruggia et al.

APPENDIX

9.1 Example of Thread handling

Listing 3. Example of how start a new thread in Java.

1 class MyThreadA extends Thread {
2 void run () {
3 System . out . p r i n t l n (" My Thread A - called ") ;
4 }
5 }
6
7 class MyThreadB extends Thread {
8 void run () {
9 System . out . p r i n t l n (" My Thread B - never called ") ;

10 }
11 }
12
13 class Main {
14 static void s t a r t t h r e ad (Thread t) {
15 t . s t a r t () ;
16 }
17
18 static void main (St r ing [] argv) {
19 s t a r t t h r e ad (new MyThreadA()) ;
20 }
21 }

Listing 3 shows a simple Java snippet where the run() method of a Thread subclass is exe-
cuted through the Thread.start() call. The code contains two Thread classes, respectively
MyThreadA and MyThreadB, but only the first one is used. The Bytecode module has been
designed to consider the context of the call and to propagate the arguments. In this example,
the module is able to create an edge from Main.start thread to MyThreadA.run().

9.2 Suspicious Library Calls

Table 5. Security-relevant library calls

Category Library Calls

Dynamic Loading dl(v)sym, dl(m)open

Execution exec*, system, popen

File Permission *chmod*, *chown*, access

Kernel Interaction ioctl, syscall

Identity get(e)uid, get(e)gid

Memory Protection mmap, mprotect

Network socket, listen, connect, gethostbyname

Open Special File *open* <special file path>

Process Management kill, ptrace, fork

Monitoring inotify *

Table 5 details the list of libraries call that we considered and a briefly description of their
main usage.

9.3 Hash of the samples

Due to space limitations and readability, we never used the whole sha256, but only the first
4 bytes. In Table 6, for each sample, we report the full hash with the first 4 bytes in bold.
Each entry is a hyperlink to the corresponding VirusTotal webpage.

The Dark Side of Native Code on Android 31

Table 6. Sha256 of the samples mentioned in the paper

0009b9d191236fef80c954feb2eeea998d8c2a1e2ca6dc273a0a68836851423f

019e12c7233d7324667d9e49aba4787c67204c5c8f2c38754f469a5b600bddde

0259d084a78ddc98e663ae5799898a0afb4d021c6486cb61bdf7285731476d61

04cef547b64e459936dd243bfb19575bc905f6271c94723788000088f9e7e278

05b4c4dd8bf9f376c767330e649d725ad35c0c9c3b1b2dbbfab7f39e90c5bac4

13068932cd52ffa257fa35bba7860e618416f0d53eecd7650a7700607220d4c0

180f897219b41b01441d3fd275699b9eb7e922000b7ce16f60152389cc978f2e

1ac7fad8a64016e4fdc185f604365b2333cabe65b8083242ed5d41c92a25a9fb

1f267514222943779bdd642b9c7322a31a87d8f17790be4f31d59c2f4fade4d3

213c997dc02dfc4e83e872243c9217c7481a18a386b4fd79c049a5e27dad97f0

25caa43d5d96069b1cb8b9a9d5b18bd858b8ca2c4c0960d7b69d38d8414f68f0

32cd907d3343c44180294a7c279c2a5f139a6ee443cbf443eb2bd663bca37c6e

338c09c3ded12f3d6fed78706b1505d7cdf696fd6ac32913d2f710502853ba94

3c0b88d1b054e275c4fa8b3496030bab8395b8789d1d4599bbd7ef4a13fca2c5

4a7e913d491f715bb00b37ad5b8802a00c919070486212e8d1d1a802f4bdf6bf

4e4be579cffdd690cef4bb0d779d66ede95cfd955eb27eb797e0704f59d61e6d

58b34234bd375ac81753cb8cc793a60cf9f0a220383bf332d15ce51917488623

5bd3e6f49aaab9e7fe566d92cceb9a5701a072426434de5bb2cdbc34a7d265f2

6c6eeed1b91913db0d6232edb1979c67d6fb48ca3da4f83dc49fb565a4e5f4fe

73837b030f031d532741b7e84068aabed24e7a6ac118c4272005e6ecd18a17d7

775c3e036f3a1fc18fd683fa9e5da2a2e68f19feb7e7a0f609ba775a0a2e6571

79009a3bbdb9f73faa3d8b3a35306957fbd2bfb362d0c2d658079ff6a49b69e0

7adba016acdcafac4b5fa2eb44e3103b5cd80be16ae483d2008c72f79a22e0ac

7f9dce517a39bca41752f2deb028ea02b5408d0892133ec815e044354e95ceed

84a2aabef11c823d55529f6424155dbf1f86ec32b601519457f79989cd992b1b

858ebffaa54e40cc4787280da60e5854e8776359340bdf5287e32a580878a2c0

8cda6e90ae30175dcfce5fca040abb525df4d2d74e81f52bd83971297683348a

919530d756b8e759023585656f8ae91ed743cb83c7f6765ee7244a93a17c8e7d

97e0e7da3bacf383150d7ea1b4fe9ea502fe84aa856f1f51355b71260c453084

b816209838a43e77dba33ed8d574f66735d9b1a239a110e53a82fa62e0a35f40

c227edef2d823059f261b2101a21c4deeda2ee016671ce06b28dde0297018550

cdde49edda06e3856755e5b847892ee91fb3ac334595328b1a742d9b898992a7

d86731c8fa5ed48f13fadbf761a0869697dd56bbf963028e57d35395cf217f74

dcb72f950cbcbb6a8661b80ff15f83627a2ad4c55fdb8a3fc44fa752a96b4c91

e0881b869add4b86628abb53255990aabb5db2548b259ecb04d03834dcf54d38

ecd2981d192282fd72ca82cd3c13bc04fe366a411ebe8f76d8303298ac541f7d

f7b906ec2ce1c39979092dbd220d0b9bf7fb770122c4de31e239935aa4763fea

9.4 Suspicious Tags

Table 7 details the list of suspicious tags divided by categories that we identify in Section
4. ‘<SYMBOL>’ denotes that there is a specific tag for each suspicious library call family
(Table 5). A TAG is made of the concatenations of its category and title with the symbol -.

9.5 Random Forest hyperparameters tuning

https://www.virustotal.com/gui/file/0009b9d191236fef80c954feb2eeea998d8c2a1e2ca6dc273a0a68836851423f
https://www.virustotal.com/gui/file/019e12c7233d7324667d9e49aba4787c67204c5c8f2c38754f469a5b600bddde
https://www.virustotal.com/gui/file/0259d084a78ddc98e663ae5799898a0afb4d021c6486cb61bdf7285731476d61
https://www.virustotal.com/gui/file/04cef547b64e459936dd243bfb19575bc905f6271c94723788000088f9e7e278
https://www.virustotal.com/gui/file/05b4c4dd8bf9f376c767330e649d725ad35c0c9c3b1b2dbbfab7f39e90c5bac4
https://www.virustotal.com/gui/file/13068932cd52ffa257fa35bba7860e618416f0d53eecd7650a7700607220d4c0
https://www.virustotal.com/gui/file/180f897219b41b01441d3fd275699b9eb7e922000b7ce16f60152389cc978f2e
https://www.virustotal.com/gui/file/1ac7fad8a64016e4fdc185f604365b2333cabe65b8083242ed5d41c92a25a9fb
https://www.virustotal.com/gui/file/1f267514222943779bdd642b9c7322a31a87d8f17790be4f31d59c2f4fade4d3
https://www.virustotal.com/gui/file/213c997dc02dfc4e83e872243c9217c7481a18a386b4fd79c049a5e27dad97f0
https://www.virustotal.com/gui/file/25caa43d5d96069b1cb8b9a9d5b18bd858b8ca2c4c0960d7b69d38d8414f68f0
https://www.virustotal.com/gui/file/32cd907d3343c44180294a7c279c2a5f139a6ee443cbf443eb2bd663bca37c6e
https://www.virustotal.com/gui/file/338c09c3ded12f3d6fed78706b1505d7cdf696fd6ac32913d2f710502853ba94
https://www.virustotal.com/gui/file/3c0b88d1b054e275c4fa8b3496030bab8395b8789d1d4599bbd7ef4a13fca2c5
https://www.virustotal.com/gui/file/4a7e913d491f715bb00b37ad5b8802a00c919070486212e8d1d1a802f4bdf6bf
https://www.virustotal.com/gui/file/4e4be579cffdd690cef4bb0d779d66ede95cfd955eb27eb797e0704f59d61e6d
https://www.virustotal.com/gui/file/58b34234bd375ac81753cb8cc793a60cf9f0a220383bf332d15ce51917488623
https://www.virustotal.com/gui/file/5bd3e6f49aaab9e7fe566d92cceb9a5701a072426434de5bb2cdbc34a7d265f2
https://www.virustotal.com/gui/file/6c6eeed1b91913db0d6232edb1979c67d6fb48ca3da4f83dc49fb565a4e5f4fe
https://www.virustotal.com/gui/file/73837b030f031d532741b7e84068aabed24e7a6ac118c4272005e6ecd18a17d7
https://www.virustotal.com/gui/file/775c3e036f3a1fc18fd683fa9e5da2a2e68f19feb7e7a0f609ba775a0a2e6571
https://www.virustotal.com/gui/file/79009a3bbdb9f73faa3d8b3a35306957fbd2bfb362d0c2d658079ff6a49b69e0
https://www.virustotal.com/gui/file/7adba016acdcafac4b5fa2eb44e3103b5cd80be16ae483d2008c72f79a22e0ac
https://www.virustotal.com/gui/file/7f9dce517a39bca41752f2deb028ea02b5408d0892133ec815e044354e95ceed
https://www.virustotal.com/gui/file/84a2aabef11c823d55529f6424155dbf1f86ec32b601519457f79989cd992b1b
https://www.virustotal.com/gui/file/858ebffaa54e40cc4787280da60e5854e8776359340bdf5287e32a580878a2c0
https://www.virustotal.com/gui/file/8cda6e90ae30175dcfce5fca040abb525df4d2d74e81f52bd83971297683348a
https://www.virustotal.com/gui/file/919530d756b8e759023585656f8ae91ed743cb83c7f6765ee7244a93a17c8e7d
https://www.virustotal.com/gui/file/97e0e7da3bacf383150d7ea1b4fe9ea502fe84aa856f1f51355b71260c453084
https://www.virustotal.com/gui/file/b816209838a43e77dba33ed8d574f66735d9b1a239a110e53a82fa62e0a35f40
https://www.virustotal.com/gui/file/c227edef2d823059f261b2101a21c4deeda2ee016671ce06b28dde0297018550
https://www.virustotal.com/gui/file/cdde49edda06e3856755e5b847892ee91fb3ac334595328b1a742d9b898992a7
https://www.virustotal.com/gui/file/d86731c8fa5ed48f13fadbf761a0869697dd56bbf963028e57d35395cf217f74
https://www.virustotal.com/gui/file/dcb72f950cbcbb6a8661b80ff15f83627a2ad4c55fdb8a3fc44fa752a96b4c91
https://www.virustotal.com/gui/file/e0881b869add4b86628abb53255990aabb5db2548b259ecb04d03834dcf54d38
https://www.virustotal.com/gui/file/ecd2981d192282fd72ca82cd3c13bc04fe366a411ebe8f76d8303298ac541f7d
https://www.virustotal.com/gui/file/f7b906ec2ce1c39979092dbd220d0b9bf7fb770122c4de31e239935aa4763fea

32 Ruggia et al.

Table 7. List of suspicious tags used in the ML validation.
†: float computed as # 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑡𝑜𝑡𝑎𝑙

S: boolean

Step TAG Category TAG Category Description TAG Title TAG Example

#0 J NATIVE METHODS
Presence/absence of native methods

and the entry point from which
they can be reached

NO NATIVE METHOD†

NO REACHABLE†

APP LIFECYCLE EP†

ACTIVITY LIFECYCLE EP†

EXTERNAL DEX†

SUSPICIOUS INTENTS

#1 J LOAD METHODS
Presence/absence of load methods
and the entry point from which

they can be reached

NO LOAD METHODSS

PATH LOAD METHOD†

APP LIFECYCLE EP†

ACTIVITY LIFECYCLE EP†

SUSPICIOUS INTENTS

EXTERNAL DEX†

NO ELF NAME†

ELF IN LIB AND NOTS

#2 CODE LOCATION
Code file in suspicious location or
with extension name mismatch

ELF IN ARCHIVES

DEX EXT MISMATCHS

ELF EXT MISMATCHS

#4 REGISTERNATIVES RegisterNatives callback
UNRESOLVED METHODSS

MULTIPLE PATHS

CLASS NON IN APKS

#6A

NR FINDCLASS
Native Reflection:
FindClass callback

ANDROID MANAGERS

CONTEXTS

CLASSLOADERS

JAVA REFLECTIONS java.lang.reflect.Method

THREADS

SYSTEMS

CRYPTOS javax.crypto.Cipher

APP INFOS android.content.

SharedPreferences

ZIPS

ANDROID INTERNALSS android.app.LoadedApk

STACK TRACES java.lang.

StackTraceElement

EXCEPTIONS

PARTIAL RESOLUTION†

NO RESOLUTION†

NR METHOD
Native Reflection:
GetMethodID callback

WITH DANGEROUS PERMS

ANDROID MANAGERS

CONTEXTS getSystemService

SENSIBLE INFORMATIONS getImei

CLASSLOADERS loadClass

JAVA REFLECTIONS getClass

THREADS

PERMISSIONS

STACK TRACES getStackTrace

PARTIAL RESOLUTION†

NO RESOLUTION†

#6B DYNAMIC LOADING
The tags report the usage of library
call to dynamically load and invoke
exported functions of other libraries

<SYMBOL>S (see Table 5) dlsym(fd, "chmod")

NO RESOLUTIONS

ANDROID DVM ARTS libdvm.so

#6C
SUSP LIB CALL Suspicious library calls

<SYMBOL>S (see Table 5) execve

CREATEJAVAVMS JNI CreateJavaVM

LIB CALL SUSP PARAM
Suspicious argument to

the library calls
<SYMBOL>S (see Table 5)

open("/proc/version")

open("/sys/devices")

CREATEJAVAVMS JNI CreateJavaVM

#6A
#6C

STRING Presence of meaningful strings
CLASSLOADERS

ANDROID INTERNALSS

PROPERTIESS ro.product.cpu.abi

The Dark Side of Native Code on Android 33

100 200 300 400 500
Trees

0.0205

0.0210

0.0215

0.0220

0.0225

0.0230

0.0235

0.0240

0.0245

OO
B

er
ro

r r
at

e

RF, max_features='sqrt'
RF, max_features='log2'
RF, max_features='None'

Fig. 2. OOB error to determine the optimal number of trees and the number of features to test when
splitting a node. The optimal value for the number of trees has been chosen using the Elbow method,
after calculating that there is no performance improvement above 259 trees.

0 20 40 60 80 100
Trees depth

0.021

0.022

0.023

0.024

0.025

0.026

0.027

0.028

OO
B

er
ro

r r
at

e

RF, trees='141', max_features='sqrt'

Fig. 3. OOB error to determine the optimal depth of trees. The optimal value for the depth of the
trees has been chosen using the Elbow method and of trees is chosen using the Elbow method after
calculating that there is no performance improvement above a depth of 34.

	Abstract
	1 Introduction
	2 Android JNI Internals
	2.1 Native Library Loading
	2.2 Bridging Functions
	2.3 Native Activity
	2.4 Process Execution Methods

	3 Related work
	4 Motivation & Methodology
	4.1 Native Components and Antivirus Software
	4.2 Suspicious Pattern
	4.3 Running Example
	4.4 Anatomy of the Analysis

	5 Suspicious Analysis Framework
	5.1 Overview
	5.2 Bytecode Module
	5.3 Native Module
	5.4 Suspicious Tags
	5.5 Comparision with state-of-the-art tools

	6 Dataset
	7 Results
	7.1 Application Lifecycle
	7.2 Load Methods
	7.3 ELF files
	7.4 Initialization Functions & JNI_OnLoad
	7.5 Native Behavior

	8 Use case: binary classification
	9 Limitations and Conclusions
	References
	9.1 Example of Thread handling
	9.2 Suspicious Library Calls
	9.3 Hash of the samples
	9.4 Suspicious Tags
	9.5 Random Forest hyperparameters tuning

