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Abstract

Virtual reality (VR) is increasingly being used to promote exercise among older adults. The data captured through VR may

be useful indicator of the game user’s experience as well as providing insight into functional ability of older adults. This paper

presents classifiers to predict game user experience variables using VR data from community-dwelling older adults. Head-

kinematic data of the VR headset was collected from 13 participants over a six-week period with three 20-minutes exergame

sessions per week (e.g., 360 minutes per participant). Cognitive function was assessed using the Montreal Cognitive Assessment

(MoCa) and multisensory response-time (RT). Game user experience was captured through perceived-levels of cybersickness,

enjoyment, and exertion after each session. Data was used as references for discrete binary and ternary classification patterns.

Combinations of kinematic features were used to train different classifiers: K-nearest-neighbors (KNN), linear discriminant

analysis (LDA), support vector machines (SVM), and decision trees. Maximum classification accuracy of 70% was found for

MoCa, 68% for perceived exertion, 60% for cybersickness, 59% for multisensory RT, and 53% for perceived enjoyment. Results

suggest unobtrusive recording of head kinematics from VR headsets combined with machine learning classifiers could be used

to predict cognition, exertion, and game user experience among older adults.
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Abstract—Virtual reality (VR) is increasingly being used to
promote exercise among older adults. The data captured through
VR may be useful indicator of the game user’s experience as
well as providing insight into functional ability of older adults.
This paper presents classifiers to predict game user experience
variables using VR data from community-dwelling older adults.
Head-kinematic data of the VR headset was collected from
13 participants over a six-week period with three 20-minutes
exergame sessions per week (e.g., 360 minutes per participant).
Cognitive function was assessed using the Montreal Cogni-
tive Assessment (MoCa) and multisensory response-time (RT).
Game user experience was captured through perceived-levels
of cybersickness, enjoyment, and exertion after each session.
Data was used as references for discrete binary and ternary
classification patterns. Combinations of kinematic features were
used to train different classifiers: K-nearest-neighbors (KNN),
linear discriminant analysis (LDA), support vector machines
(SVM), and decision trees. Maximum classification accuracy
of 70% was found for MoCa, 68% for perceived exertion,
60% for cybersickness, 59% for multisensory RT, and 53%
for perceived enjoyment. Results suggest unobtrusive recording
of head kinematics from VR headsets combined with machine
learning classifiers could be used to predict cognition, exertion,
and game user experience among older adults.

Index Terms—Virtual reality, older adults, machine learning,
head kinematics, game user experience.

I. INTRODUCTION

RESEARCH in virtual reality (VR) is increasingly being
conducted in a wide variety of situations to promote

healthcare and wellbeing [1]. Leveraging the data generated
within virtual environments to investigate user experience is
one of the most exciting and trending topics in VR user
research. The combination of data science methodologies and
human-computer interaction paradigms in VR promises to cre-
ate sophisticated, digitally connected systems in healthcare [2].
In particular, input modalities have the potential of capturing
multivariate information from the players when interacting
with VR games that can then be used to understand the people
playing them.

Conventional immersive VR uses head-mounted-displays
(HMDs) to provide a sense of physical presence and interactiv-
ity that allows for high levels of engagement and a more nat-
ural interaction. Interactivity is achieved by using movement
sensors in both the HMD and the controllers of the VR systems

[3]. The captured data represents kinematic information that
describes features such as displacement and orientation of
specific body segments or joints. In the case of commercially
available VR systems, this kinematic information is from the
head and hands. The trajectories, velocities and accelerations
recorded during the interaction within virtual environments
contain rich information about player’s behaviors and reactions
to the virtual experience [4]. To date, kinematic information
is used to gain insights about a player’s quality of movement,
especially when involving applications in rehabilitation and
therapy [5].

Kinematic information could be used to predict other im-
portant variables that affect the VR experience such as cyber-
sickness (e.g., visually induced motion sickness [6]), perceived
enjoyment, and physical exhaustion. Many of these variables
can be grouped in an umbrella term called ”game user expe-
rience”, which is a term used to refer to the psychological,
behavioral and thinking process of players when interacting
with games [7]. This field uses cognitive science principles
and the scientific method in the game design and game devel-
opment processes to evaluate the game experience of players
and improve upon findings [7]. The creation of VR systems
capable of leveraging computational models for predicting the
likelihood of occurrence of game user experience factors could
improve the way VR content is created as well as researchers
and developers’ ability to systematically analyse their content.
For instance designers could use the models to better tune
or modify the VR content based on the predicted game user
experience.

In this paper we used data collected from a group of older
adults using a custom-built VR exergame to explore the use of
head kinematic data and ML classification models to determine
the likelihood having a good or a bad user experience as well
as to classify relevant cognitive aspects in aging research such
as cognitive impairment or response time.

II. RELATED WORK

Several studies have explored ML applications to explore
human factors using physiological responses collected during
VR experiences. Cybersickness is one of the most widely
explored factors, which reflects its propensity to shape the
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user experience [8]. Garcia-Agundez et al. developed ML
classifiers for binary (two classes) and ternary (three classes)
classifications of cybersickness in VR environments [9]. In
a controlled study, they collected electrocardiogram (ECG),
electrooculogram (EOG), and kinematic data from the headset
from 66 participants playing a VR game in an aviation task.
Scores collected from each participant’s Simulation Sickness
Questionnaire after playing the VR game were used as ground-
truth data. Using ML classification algorithms such as decision
trees (DTs), support vector machines (SVMs), and K-nearest
neighbours (KNNs) as classifiers, the authors explored classi-
fication of cybersickness using physiological data. For binary
classification, they achieved highest classification accuracy of
82% with the Gaussian SVM classifier and the lowest with
58% for ternary classification using a KNN classifier. Similar
results were achieved in a different study using electroen-
cephalography (EEG) data and deep learning models [10].

Diaz-Romero et al. recruited 21 healthy participants who
had to first view images associated with standardized emo-
tional outcome scores before playing a Whack-a-Mole VR
game while collecting EEG, EOG, accelerometer, and gyro-
scope data during the sessions as well as participants’ self-
reported arousal and valence states [11]. After filtering the
raw data, the researchers explored combinations of mean,
standard deviation, power spectrum, jerk, skewness, and eye
acceleration (a total of 281 features), before selecting the top
30 most important features based on a random forest (RF)
model. Splitting the Valence and Arousal responses into high
and low categories based on sample means, the authors tested
SVM, logistic regression (LR), RF, and ensemble learning
models for classification in a 10-fold cross-validation scheme.
They achieved the best accuracy with the RF model by
attaining 75% and 84% for Valence and Arousal response
variables, respectively.

While the collection of multivariate physiological signals
has been posed to potentially improve the classification ac-
curacy across ML models for specific human factors [12], it
also carries with more obtrusive sensing techniques, which can
affect the user experience itself. To mitigate obtrusive sensing
that could impact user game experience, researchers started
exploring the use of pure kinematic data that is unobtrusively
collected from the VR hardware, thus removing the need
of adding sensors and wires to the data collection process.
Moreover, this approach is more implementable in everyday
applications as it does not require any additions or retrofits to
out-of-the box VR technology.

Mustafa et al. developed a new biometric authentication
modality for VR by training ML models on kinematic data
collected from accelerometer and gyroscope sensors in par-
ticipants’ VR headsets [13]. They collected the data from the
accelerometer and gyroscope sensors from 23 users interacting
with a simple VR game of following the path of a ball. First,
each sensor’s X, Y, Z, and magnitude streams of data were
smoothed through a 10th order Butterworth filter with a 5 Hz
cut-off frequency, before being split into 12-second windows
with 50% overlap. The authors extracted a variety of time
and frequency domain features from each of the four streams,
resulting in a total of 178 features across both sensors. Princi-

pal component analysis (PCA) was applied and only principal
components accounting for 95% of the explained variance
were kept. The resulting features were used to authenticate the
participants via training LR and SVM models to perform user
classification. The LR model achieved the lowest classification
error of about 7%. Head gesture recognition has been also
explored using ML models that used kinematic variables (both
linear and angular) using PCA-generated features, random
forest, and neural networks as classifiers. The experiment also
used kinematic data only collected from a single inertial mea-
surement unit (IMU) located in a VR headset [14], showing
the potential of this data to model and classify head gestures.

Zhao et al. also tested various machine learning models
with kinematic features extracted from IMU sensors placed on
the heads of children with autism spectrum disorder (ASD)
[15]. The authors computed the rotation range and amount
of rotation per minute in the pitch, raw, and roll directions.
They then used linear mixed effects modelling to decide
which features out of the six were statistically significant
in delineating ASD children from those without ASD. Their
experiments revealed the decision tree classifier using the
rotation range in the roll direction, and amount of rotation
in the raw direction, as most successful with an accuracy of
92%.

While previous work has explored the use of ML techniques
for classifying human factors associated with healthcare, bio-
metrics, and user experience among different populations, little
is known in regards to the effects of head kinematics on user
game experience metrics in older adults. The development
of ML classifiers that enable predication of aspects such
as motion sickness or perceived fatigue could significantly
improve the creation of content that is more tailored to older
adults’ needs and preferences, potentially avoiding discomfort
and improving the overall user experience. Moreover, similar
ML algorithms could use unobtrusively and automatically
collect kinematic data to flag possible cognitive decline for
older adults using VR exergames. To achieve this goal, it is
first necessary to determine which kinematic features could
be relevant to key aspects such as cybersickness and cognitive
performance.

The goal of this study is to investigate what classification
algorithm and combination of head kinematic variables from
VR headsets would best predict:

• Game user experience variables (e.g., perceived cyber
sickness, perceived levels of enjoyment and perceived
levels of exertion)

• Cognitive assessment variables (e.g., cognitive screening
via MoCa and audiovisual response time)

III. METHODOLOGY

In order to develop classifiers that are able to determine
factors associated with older adult’s cognitive functions and
game user experience, we first developed a data pipeline that
describes the methodologies used to acquire, clean, and extract
relevant features for the overall processing of the data before
using it as input for the ML classifiers (see 1).
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Fig. 1. Machine learning analysis pipeline.

A. Data Acquisition

Our study used data from our pilot trials of Seas the Day,
a custom-made VR exergame created to promote physical
activity in older adults with and without cognitive impairments
[16]. Seas the Day runs on portable VR-HMD (Oculus Quest
2) to encourage older adults to play a 15-20 minutes game that
is tailored to engage upper-limb and core physical exercises in
a seated position. Seas the Day has three different successive
games: Tai- Chi (stretching, 3-5 minutes), rowing (exercise
conditioning stage, 9 minutes) and fishing (cool-down, 3
minutes) and it was created following a user-centered design
process involving people living with dementia, mild-cognitive
impairment and exercise professionals. Game-play screenshots
of the VR exergame are shown in (see 2). Data was collected
during a remote intervention that happened during COVID-19
lock-downs in Canada during the summer and fall of 2021.
A group of 13 community-dwelling older adults participated
in the intervention, which involved a training program a total
of 18 sessions of exercise using VR at-home playing Seas the
Day (6 weeks with 3 game play sessions per week). The study
received approval of the ethics research board at the University
of Waterloo in Canada (ORE 42908). The game was developed
using a data logging system that allows recording of kinematic
data from the VR headset at 60 samples per second (60 Hz).
Kinematic data from the inertial measurement unit embedded
in the VR headset consisted of recorded accelerations in the
X, Y and Z axis. After completing the session, kinematic data
were automatically stored in the internal memory of the VR
headset in structured in time series using comma separated
values (CSV) files of about 15 MB per session. Raw data
were extracted upon the completion of the training program
and further processed to extract the kinematic features.

B. Target variables for classification: responses

Two categories of target variables were collected for the
analysis by the ML classifiers: game experience and cognitive
function. Regarding game experience, we explored three
different aspects:

1) Perceived cybersickness (CS): A simplified self-reported
tool was used to investigate commonly experienced mo-
tion sickness or nausea feelings during the intervention.
A custom-made scale was used to collect levels of
cybersickness. Half way through the trials, participants
were asked to report their perceived levels of CS using
a 0 (no nausea) to 10 (extreme nausea) Likert scale.
Participants were asked to weight their overall feelings
considering the previous sessions they have completed
(around 9). Responses were collected via video calls
with the participants. The CS variable was categorized
into no CS (0 in the CS scale), for 5 participants, and
mild CS (1-4 in the scale), for 7 participants, based their
self-reported states, with one participant’s data being
unusable due to errors in data collection. No participant
who completed the study reported greater than 4; two
participants who are not included in this paper’s analysis
dropped out early into the study and cited cybersickness
as the primary cause.

2) Perceived levels of enjoyment: Along with the VR head-
set, participants were provided with printed materials
to complete after each session, which included a picto-
rial scale with five different faces expressing emotions
(not enjoyable at all, slightly enjoyable, neutral, very
enjoyable, extremely enjoyable) asking participants to
rate how much they enjoyed the Seas the Day exergam-
ing session. The perceived enjoyment responses were
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Fig. 2. Seas the Day VR exergame. Left: Fishing stage, Top center: Tai-Chi stage, Bottom center: Rowing stage, Right: Participants playing the game while
seated.

categorized into three groups: scores < 3 were labelled
as low, those equal to 3 were medium, and scores > 3
were denoted high.

3) Rating of perceived exertion (RPE): A pictorial self-
reported scale for perceived levels of physical exhaustion
was used to collect the RPE after the VR exergame
session. This pictorial scale used drawings that were
used in previous work (e.g., [17]) to illustrate different
stages of physical exhaustiveness on a 1-10 scale (e.g.,
0=extremely easy, easy, somewhat easy, somewhat hard,
hard, 10=extremely hard). RPE was similarly catego-
rized into two levels of low for RPE scores < 3 and
moderate for scores > 3 but < 6. There were no reported
RPE scores greater than 6, which are considered to be
intense.

Regarding cognitive assessment variables, data from two
categories were collected:

1) Cognitive assessment using Montreal Cognitive assess-
ment (MoCa): A remote version of the MoCa test was
administered virtually as screening tool assess each
participant’s baseline cognition. MoCa is widely used
to screen older adults with cognitive impairments. The
test was administered remotely during a video call and
it lasted around 10-15 minutes per participant. The
total possible score is 30 points, assessing different
cognitive domains such as attention, concentration, exec-
utive functions, memory, language, conceptual thinking,
calculations, and orientation [18]. For the purpose of this
study, MoCA scores were divided into two groups using
a cut-off score of 26 points, resulting in 9 participants
with a high MoCA score (e.g., healthy), and 4 with a
MoCA score suggesting mild cognitive impairment.

2) Multisensory response time (RT): RT is a task used to
evaluate multisensory integration via pressing buttons
based on audiovisual stimuli presented on a computer

screen. The computerized tasks are used to measure the
time participants take to press the response button (e.g.,
space bar) as soon as they detect target stimuli. Specifi-
cally, the area under the curve was used to compute the
degree to which participants are more or less likely to
integrate multisensory information in order to generate
faster response times (see [19], for recent application of
this technique). Results from this task were categorized
into two as 7 integrators with positive scores and 6 non-
integrators for negative scores.

C. Kinematic Data Preparation

After compiling a unified database with data from the 13
participants and 18 sessions, we used MATLAB to pre-process
the data and run the ML classifiers.

Raw data was first filtered using low-pass filtering. Via
visual examination of the data, the frequency content of the
head kinematic data was identified to be at the 1 Hz or
lower range. As such, four different filters were tested on
the data: 1) 10th order Butterworth with 1 Hz cut-off, 2)
2nd order Butterworth with 1 Hz cut-off, 3) 2nd order 1D
median filter, and 4) 10th order 1D median filter. MATLAB’s
filtfilt command was used to adjust for the noticeable time-
delay introduced by applying the Butterworth filters. By visual
inspection, it was quickly apparent that the median filters were
ineffective compared to the Butterworth filters. Additionally,
the 10th order Butterworth filter was able to capture the peaks
and troughs of the signal better, thus it was selected as best
filter for our data.

After filtering the signal, we created partitions or windows
of the data to further extract the relevant features. The data
of each axis was partitioned or windowed into 5-second non-
overlapping windows, which is similar to what has been done
previously for head gesture recognition using motion sensors
[27].
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TABLE I
EXTRACTED TIME AND FREQUENCY DOMAIN FEATURES.

Domain Feature Explainability Citations Included in models?

Time Root Mean Square Expresses average magnitude of
measures in each axis stream [20] No

Magnitude (Euclidean Norm) Expresses the total amount of movement during a game session [20], [21] Yes
Standard Deviation Expresses the variation in movements for a given axis/plane [20], [22] Yes

Skew Expresses comparability of outliers in movement
to the mean movement value in each axis/plane [20], [22] No

Kurtosis Expresses amount of outliers in movement along an axis/plane [20], [22] No
Dimensionless Jerk Expresses smoothness in movement [22], [23] No

SPARC Expresses smoothness in movement (with less sensitivity
to measurement noise) [24] Yes

Frequency Mean Power Expresses axis containing highest frequency content of movement [20], [22], [25] No
Most Active Frequency Bin Expresses range of frequencies characterizing most movement [21], [26] No

D. Feature Extraction

A feature extraction stage followed the data preparation
process. In this stage, we explored some of the most widely
used and reported head kinematic features in the literature
[20]–[26]. Several time and frequency domain features were
extracted from the data, as tabulated in Table 1. Time domain
features include the root mean square (RMS), standard devi-
ation (STD), skew, kurtosis, magnitude, dimensionless jerk,
and SPARC. Dimensionless jerk and SPARC metrics were
calculated using the original formulas provided in [22] and
[24], respectively. Frequency domain features were computed
from Welch’s Power Spectral Density (PSD) estimate and
included the mean spectral power and the frequency bin of
width 0.5 Hz with the most frequency content. Each of these
features offered some level of potential characterization of the
user’s kinematic movement during game-play, as detailed in
the ’Explainability’ column of Table 1. All features, apart from
magnitude, which was computed as the Euclidean norm, were
first calculated for the X, Y, and Z, axes independently. The
features were then averaged across these three axes to obtain
a scalar value for each. Table 1 presents a summary of both
the time and frequency domain kinematic features used for
the classification as well as the explanation of each metric.
A column that verifies whether or not the features have been
used for ML classifiers in the past was also added to the table.

E. Feature Selection

Three feature sets were constructed out of the pool of fea-
tures extracted from the raw kinematic data. The first feature
set included all 8 features that have been widely used in the
literature, except for frequency bin containing most frequency
content. The frequency bin feature was dropped because the
computed values did not show measurable changes across
sessions or participants. The second feature set was grouped
the STD, magnitude, and SPARC features. The shortlisting
of these three features was based on a principal component
analysis (PCA) for feature selection (similar to what has been
done in [28]). We used a vector plotting approach that allows
the identification of redundant variables that could be removed.
The analysis revealed that the first two principal components
accounted for approximately 75% of variation in the data.
In particular, the STD and magnitude features were both

among the top two most important features influencing the first
principal component were also used often in previous works
pertaining to kinematic data feature extraction [20]–[22]. The
SPARC metric was chosen since it was a top contributor to the
second principal component and also a more refined kinematic
jerk measurement as compared to dimensionless jerk, due to
its lower susceptibility to accelerometry-based noise artifacts
[24]. The third feature set was comprised of the first three
principal components as these accounted for 95% of explained
variance.

F. Classification

We used the MATLAB’s Classification Learner tool for
rapid experimentation with standard ML models once the
three feature sets had been made. The four ML models tested
during classification experiments were: boosted Decision Tree
(DT), K-nearest neighbors (KNN), support vector machines
(SVM), and linear discriminant analysis (LDA). We define
classifier accuracy as the correct classification rate. In terms
of parametrization, DT models had 100 maximum splits using
the Gini’s diversity index as split criterion, KNN models used
a Euclidean distance metric with K=1, and SVM models had
a linear kernel (all of which were parameters values initially
set by the Classification Learner tool). Each experiment used a
holdout validation methodology with 80% of data partitioned
for training and the remaining 20% used for validation.

IV. RESULTS

Results are summarized in Table 2. The model names are
suffixed with the feature set (FS) they were trained on. Only
one of the ML classifiers (perceived enjoyment) used ternary
classifications; the rest of the response variables used binary
classifiers. Overall, the DT models consistently performed best
across domains when used with the first set of features (i.e., all
the features) as can be seen in the bold values in Table 2. For
game user experience, the classification of the RPE exhibited
the best accuracy (67.9%) compared to 59.6% achieved for
cybersickness and 53.4% for perceived enjoyment. Similar
classification accuracy values were achieved when the second
set of features (STD, Magnitude, SPARC) were used with
the same DT classifier model. The classification of the MoCa
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TABLE II
CLASSIFICATION ACCURACY ON GAME EXPERIENCE AND COGNITIVE ASSESSMENT RESPONSES.

Game Experience Response Accuracy (%) Cognitive Assessment Response Accuracy (%)

Model CS RPE Perceived Enjoyment MoCA Multisensory RT

KNN-FS1 54 58.3 42.5 60.9 55.2
KNN-FS2 53.9 57.6 42.7 59 53.7
KNN-FS3 51 56 40 57.8 51
LDA-FS1 53 66.7 51.6 68.9 53.6
LDA-FS2 52.8 66.6 51.6 68.9 54.4
LDA-FS3 53.1 66.7 51.6 68.9 53.6
SVM-FS1 53.1 66.7 51.7 68.9 53.6
SVM-FS2 50.1 56.7 51.6 68.8 53.6
SVM-FS3 51.4 34.9 51.6 68 46.4
DT-FS1 59.6 67.9 53.4 69.9 59.2
DT-FS2 55 67.6 52.7 69.6 59.2
DT-FS3 58.1 67.3 51.6 68.9 54.9

scores using head kinematic variables achieved 69.9% accu-
racy using the first set of features, whereas the maximum value
of classification accuracy for the multisensory RT achieved
59.2% using both the first and second set of features.

V. DISCUSSION

As the application of ML to kinematic data from VR
exergames for older adults is an emerging field, the approaches
explored in this paper are preliminary ones. Our approach
aims to simplify data collection by using existing, embed-
ded kinematic sensors in the HMD (as opposed to external
physiological sensors, such as in [9]).

A. ML for cognitive assessment

ML analysis of head-based kinematic data from custom-
made VR showed some potential for predicting cognitive
function. Similar approaches have been previously used to
develop ’ digital biomarkers’ for the early detection of mild
cognitive impairment in combination with clinical and neu-
ropsychological data [29]. While the use of ML on HMD
kinematic data requires greater research and refinement, the
ML methods we explored shows reasonable potential in our
exploratory analysis for use to predict cognitive function where
cognitive status based on the MoCA was predicted with almost
70% accuracy. Adaptive VR games that leverage ML models
to assess cognitive function and create real-time adaptations
Would improve the value of VR in digital health applications
because it would enable a more profound understanding and
support of the people who are using it.

B. ML for game user experience

While previous work has explored the use of ML techniques
for classifying human factors associated with cybersickness,
little is known with respect to the effects of head kinematics
on cybersickness combined with other user game experience
metrics such as perceived level of enjoyment and perceived
level of exertion in older adults. Our results show that the
classification for rating of perceived exertion exhibited the
best accuracy (67.9%) compared to 59.6% for cybersickness
and 53.4% for perceived enjoyment. Other factors such as

the sense of presence should be examined in future work
as it has been shown that the sense of presence in virtual
reality is negatively related to cybersickness( [30]). Further, it
has been shown that an enriched narrative integrated into the
gaming experience can also reduce cybersickness, particularly
in populations with less gaming experience ( [31]). As Seas the
Day was specifically designed to increase a sense of presence,
minimize cybersickness, and provide an enriched narrative (
[16], it is possible that cybersickness could be better predicted
from head kinematics for content that is known to cause
cybersickness (i.e., compare interventions that cause different
levels of cybersickness with the same group of participants).

C. Limitations

The results presented in this work are a starting point. Our
data was from a small number of older adults who were
playing the same game on the same VR system. Though we
used a well-structured experimental trial design, the game
play was at home. This has the advantage of being closer
to a ’real world’ setting but likely includes uncontrolled for
distractions and changes in the environment that may have
influenced the data. Additionally, kinematic data from the hand
controllers could not be recorded because of hardware and
data logging limitations in our setup, therefore we could not
explore its impact on predicting game experience or cognitive
function. A larger, more diverse sample (including people who
are prone to cybersickness) playing a variety of games on
different VR technologies and resulting data sets is needed
to better understand which methods align well with different
use-cases.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this research was to investigate ML classifi-
cation algorithms to predict game experience and cognitive
function among older adults using head kinematics collected
during play of a VR-based exergame. Our results comple-
ment insights from others; specifically, our work contributes
to feature engineering stage when using head kinematics.
We demonstrated a relatively computationally-inexpensive and
unobtrusive sensing technique has potential to be used in
predicting cognitive function and perceived exertion among
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older adults, both of which were just shy of 70% accuracy,
even in our small sample size. We are confident these results
could be improved by adding more sensors to record kinematic
information from the hands or trunk (some of which could be
extracted from hand-held controllers), as well as adding more
data regarding partcipants’ status (e.g., recording cybersick-
ness levels after each game level during each session).

In future studies, we aim to collect data from more partic-
ipants, adding kinematic variables from other VR hardware
(e.g., controllers, trackers) as well as exploring other types
of ML algorithms. While our results are not definitive, they
suggest that unobtrusive recording of head kinematic data from
VR headsets combined with machine learning classifiers is a
promising method to determine levels of cognition and user’s
game experience for older adult gamers. Greater research
into this area is required to verify these hypotheses and to
improve binary and ternary classification accuracies for real-
time classification scenarios.
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[16] J. Muñoz, S. Mehrabi, Y. Li, A. Basharat, L. E. Middleton, S. Cao,
M. Barnett-Cowan, J. Boger et al., “Immersive virtual reality exergames
for persons living with dementia: User-centered design study as a
multistakeholder team during the covid-19 pandemic,” JMIR Serious
Games, vol. 10, no. 1, p. e29987, 2022.

[17] R. F. Gearhart Jr, K. M. Lagally, S. E. Riechman, R. D. Andrews, and
R. J. Robertson, “Strength tracking using the omni resistance exercise
scale in older men and women,” The journal of strength & conditioning
research, vol. 23, no. 3, pp. 1011–1015, 2009.

[18] Z. S. Nasreddine, N. A. Phillips, V. Bédirian, S. Charbonneau, V. White-
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