
P
os
te
d
on

27
M
ar

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
12
63
01
3.
v
3
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
09
/A

C
C
E
S
S
.2
02
3.
33
1
25
79

FeLebrities: a user-centric assessment of Federated Learning

frameworks

Walter Riviera 1, Gloria Menegaz 1, and Ilaria Boscolo Galazzo 1

1Affiliation not available

October 31, 2023

Abstract

Federated Learning (FL) is a new paradigm that aims at solving the data access problem. It is gaining an increasing interest in a

variety of research fields, including the Biomedical and Financial environments, where lots of valuable data sources are available

but not often directly accessible due to the regulations that protect sensitive information. FL provides a wayout enabling the

processing and sharing of data modeling solutions moving the focus from data to models. The FL paradigm involves different

entities (institutions) holding proprietary datasets, contributing with each other to locally train a copy of a shared Artificial

Intelligence (AI) model. Although there are different studies in the literature that suggest how to conceptually implement and

orchestrate a federation, fewer efforts have been made on practical implications. With the ambition of helping accelerating the

exploitation of FL frameworks, this paper proposes a survey of public tools that are currently available, an objective ranking

based on current state of user preferences and the assessment of the growth trend of the tool popularity over a six months time

window. Finally, a ranking of the tools maturity is derived based on key aspects to consider when building a FL pipeline.
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FeLebrities: a user-centric assessment of
Federated Learning frameworks

Walter Riviera, Ilaria Boscolo Galazzo, Member, IEEE, Gloria Menegaz, Senior Member, IEEE

Abstract—Federated Learning (FL) is a new paradigm aiming to solve the data access problem. It is gaining an increasing interest in a
variety of research fields, including the Biomedical and Financial environments, where lots of valuable data sources are available but
not often directly accessible due to the regulations that protect sensitive information. FL provides a solution by moving the focus from
sharing data to sharing models. The FL paradigm involves different entities (institutions) holding proprietary datasets, contributing with
each other to train a global Artificial Intelligence (AI) model using their own locally available data. Although several studies propose
ways to distribute the computation or aggregate results, fewer efforts have been made on how to implement it. With the ambition of
helping accelerate the exploitation of FL frameworks, this paper proposes a survey of public tools that are currently available for
building FL pipelines, an objective ranking based on the current state of user preferences, and the assessment of the growing trend of
the tool’s popularity over a six months time window. Finally, a ranking of the maturity of the tools is derived based on keyaspects to
consider when building an FL pipeline.

Index Terms—Federated Learning tools, Distributed systems, AI at scale.

✦

1 INTRODUCTION

F EDERATED LEARNING FL is the paradigm that aims
at solving the data access problem. In the Artificial

Intelligence (AI) domain, data represent the starting point
for many research and development activities. With rising
attention given to the field, data have also grown in de-
mand and appreciation, redefining the list of priorities in
designing and building solutions for real-world applica-
tions. A clear demonstration of this growing importance
is represented by the creation of dedicated laws - such as
General Data Privacy Regulations (GDPR) [1] in place in
the European Union, the Protection of Personal Information
Act (POPIA)footnotehttps://popia.co.za/, and the Health
Insurance Portability and Accountability Act (HIPAA)1 in
the USA, which is specific for accessing clinical data and
medical records. From the AI perspective, this reflects the
need to access data for advancing the State of the Art
(SOA) in a given environment while fully complying with
the regulations. FL is an effective way to satisfy all those
requirements. In a federation of collaborating institutions,
what is shared is a common global model, partially trained
by every single collaborator using local data. Historically,
the approach of training AI models would assume that data
would be collected and centralized in a unique infrastruc-
ture appropriately equipped with dedicated hardware and
software to sustain the computation: High-Performance-
Computing (HPC2) centers are great examples of this ap-
proach, as illustrated in Figure 1. Contrarily, in an FL setting,

• W. Riviera, I. Boscolo Galazzo and G. Menegaz are with the Department
of Computer Science, University of Verona, Verona, Italy.

E-mail: walter.riviera, gloria.menegaz, ilaria.boscologalazzo@univr.it
• W. Riviera is with Intel Corporation.
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1. https://www.cdc.gov/phlp/publications/topic/hipaa.html
2. https://www.top500.org/
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Fig. 1. Data-to-model: example of legacy approach where data would
move to a centralized training facility. Here the AI model is represented
as a graph or neural network.

data are expected to stay in the exact location where they
were collected, while a copy of the AI global model is
shared across all the institutions taking part in a federation.
A generic example is provided in Figure 2.

The research community has already started investi-
gating this emerging topic either for its privacy-compliant
aspects [2] [3] as well as a viable tool for addressing AI
challenges in critical domains such as the biomedical context
[4] [5] [6]. Despite the domain being still relatively new,
the literature can already provide helpful surveys on how
the concept works and complies with privacy aspects [2],
how it can be transferred in the Internet-of-things (IoT) world
[7] and what are the steps to implement it from a protocol,
software and hardware standpoint [7]. The rising interest in
the research community and industries R&D departments
has enriched the literature, which has, in turn, influenced
the development and evolution of many new tools for
implementing FL pipelines. If, from one perspective, this
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Fig. 2. Model-to-data: example of a federated approach. A central unit
called aggregator would clone and distribute copies of the same model
to each collaborating institution. Each of them would then train its copy of
the model using local datasets before sharing it back to the aggregator.
As the name suggests, the aggregator would ultimately merge the
models coming from different institutions and restart the whole process
by sending out the latest aggregated version.

aspect is encouraging, on the other, it reflects the need to get
clear indications about what tools are currently available,
which are the most popular, and what is their level of
maturity (in terms of features).

This paper aims at providing four main contributions:

1) Provide an updated list of tools publicly available
for implementing FL pipelines;

2) Share the current state of adoption of each tool,
including growth trends;

3) Identify and describe the key aspects required by
the research community and map them into a list of
features that tools should include;

4) Propose a ranking based on objective metrics, in-
cluding common indicators and the ability to match
needs highlighted in the previous point.

We genuinely believe that by providing a quantitative
and qualitative survey of the FL tools, the research com-
munity will be able to: accelerate its activities, promote
fairness by proposing an inclusive method to collect com-
parable studies and help the tool providers identify ways
to improve their products. The availability of a ranking of
the FL tools will also boost their exploitation for production
environment, where such tools are still largely unexplored.

1.1 Paper organization

This paper is composed of six Sections. In section II, we dis-
cuss the SOA for FL implementations. Section III focuses on
the list of tools currently available to the community, shar-
ing a high-level overview of their popularity and level of
adoption. Section IV will augment the retrieved list of tools
with the current state of adoption, including the growth
trend observed over six months, and Section V discusses
the key aspects that would need to be considered when im-
plementing federated environments for research purposes.
These factors are then translated into requirements that FL
tools need to satisfy for successful exploitation and lead to
a ranking presented as a table. Ultimately, we draw some
conclusions and share future directions in Section VI.

2 RELATED WORKS

FL is a distributed machine learning (ML) approach that
enables organizations to collaborate on projects without
sharing sensitive data [8], such as patient records [9], [10]
or financial data [11], or not easily accessible data, like the
ones stored in remote locations as satellites or space stations
from high-resolution sensors [12]. The basic premise behind
FL [2] [13] is that the model moves to meet the data rather
than the data moving to meet the model. Therefore, the
minimum data movement needed across the federation is
solely the model parameters and their updates.

2.1 FL settings
The essential components of an FL pipeline are mainly two:
one or multiple institutions owing data and a mechanism to
orchestrate the process. Each institution must have its local
data and be accountable for hosting the training process on
those proprietary data. The orchestration mechanism may
vary, but it would be mainly of two types: Synchronous or
Asynchronous.

In the synchronous scenario, the idea is to have a central
unit, often identified as aggregator [8] [?] [9], acting as a
central pivot and determining when to start a new iteration.
The aggregator would be responsible for cloning the initial
model to each collaborating institution, waiting to receive
the locally trained copies coming back, and finally merging
them, as the name suggests. This type of FL pipeline is
usually implemented among big data centers (cross-silo),
like the ones involved in medical environments [14] [15].
Data centers can store vast amounts of data and provide the
required computational power to process them. On top of
this, big computing infrastructures like HPC centers can rely
on fast and stable connections to the network, simplifying
the creation of a more reliable communication channel to
interact with a hypothetical aggregator unit.

However, as soon as we move away from the data
centers towards the edge devices, new challenges arise due
to the high variance in products and manufacturers. Devices
with different latency, working frequency, and hardware
features can lead to different computation times [16] [17].
These are some reasons motivating the need to have an
asynchronous FL pipeline. In this scenario, each collaborat-
ing institution can share its update at any time either to a
unique aggregator [18], [16], [19] or to the other participants
in an ”all-to-all” setup [20], [21].

Another critical point to address is the difference be-
tween Horizontal (HFL) and Vertical (VFL) federated learn-
ing. To understand this difference, we need to consider the
features’ space and the model type. In the examples shared
so far, we were implicitly referring to the Horizontal FL,
where the different collaborators have different data but
contribute to the federation by sharing the feature space and
training the same model. This is the case of institutions with
offices distributed across different locations that would like
to train a common model leveraging the local data stored
in each facility in a privacy-compliant way. In the Vertical
FL, each collaborator is expected to contribute by providing
different bits of information of the same samples. This leads
to a scenario where the feature space accessed by every
collaborator might be different from the others. Because of
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this, each collaborator might be training a different model
in the Vertical configuration. The aggregation, in this case,
is represented by the interoperability between collaborators,
where to update a model, information coming from the
model of another collaborator might be required [22], [23].
To give an example, in a typical VHL setting, we could
see a life-insurance agency collaborating with hospitals to
build a decision model to get more precise estimations for
their affiliates. In this case, the expectation would be that
the entities involved in the federation can provide different
information about the same user. These two ways of artic-
ulating the data for a federation, impact the choice of the
model and how the federation gets orchestrated. While in
the HFL, there is only one model, and all the collaborators
are responsible for ensuring that data gets normalized to
feed it, the VFL brings some more complexity. In this case,
to handle different data types from several institutions, each
collaborator should have a local model that can accept the
data from that specific institution as input. On top of this,
there must be a federated model, which takes all the outputs
of the various local models as input. As illustrated by Chen
et al. [23], the procedure for training DL models based on
back-propagation [24], [25], needs to deal with the two-level
training procedure represented by the different models that
need to be managed: one at the collaborator level, the other
at the aggregation point. This complexity is also reflected
in the challenges that might arise in finding a satisfying
converging point for the adopted DL model.

2.2 FL challenges

Regardless of what FL setting (Synchronous or Asyn-
chronous) or configuration (Horizontal or Vertical) is
adopted by a given federation, three main areas are being
currently addressed by the research community:

1) Aggregation functions and model convergence
starting from different data distributions;

2) Privacy aspects and ways to build a secure FL
pipeline for protecting IP during the experiments;

3) Communication efficiency and protocols to improve
the FL base infrastructure.

Protecting dataset ownership implies that, in most cases,
the assumption of dealing with independent and identically
distributed (i.i.d) samples across local nodes does not hold
for FL setups [26] [27]. Data distribution can severely impact
the training performance by affecting the total accuracy [28],
the convergence capability, the authentication processes (es-
pecially in the case of different devices), and the speed of
the process intended as total time-to-train [29]. In a nutshell,
under this setting, the performance of the training process
may vary significantly according to the unbalance of local
data samples and the particular statistical distribution of
the training examples (i.e., features and labels) stored at the
local nodes [13].

In the past few years, institutions have introduced FL
deployments to answer the need for training AI models.
Sectors like healthcare and finance would benefit from hav-
ing a setting with greater access to more extensive and more
diverse datasets without violating privacy laws [30] [31],

such as HIPAA, GDPR [1] and POPIA3. While on one side,
FL has been designed with security in mind [28], the set-
up is just the beginning. Securing execution environments
brings a lot of open challenges for the research field [32].
Key questions include finding a consolidated method to
guarantee secure execution (encryption, key exchange, hard-
ware features) and validating the reliability of intermediate
results and collaborators within the federation.

Massive amounts of data are usually stored in “Data-
Lake” infrastructures. The more machines/institutions par-
ticipate in a federation, the more critical the ability to scale.
As mentioned in the previous Section, to the best of our
knowledge, a consolidated way for detecting “poor” train-
ing contributions (coming from institutions with corrupted
or redundant data) is still missing. Aggregation functions
are also currently being evaluated by the research com-
munity [26] [31] [33]. Another implication when talking
about big scales is represented by the infrastructure and the
connectivity chosen by the institutions for communication
[13].

2.3 Study relevance

Several works have proposed surveys to illustrate the ad-
vancement in the field [2] [7], however, to the best of our
knowledge, no one is providing a ranked list based on ad-
hoc quality assessment criteria of all the (possible) tools
available to the community to implement FL experiments. In
[34], a comparison of five tools is provided, some of which
are accessible through a licensed service, without clarifica-
tions on why or how those tools were precisely selected.
Another work [35] provides an attractive comparison table.
Still, the main focus of that work is to promote an alternative
tool specifically for FL benchmarks instead of giving a com-
plete list of the available options to boost the exploitation
of FL across the community. Even in this related work, it
was unclear why and how the discussed tools were selected.
On the same line, [36] proposes a complete benchmarking
suite with a helpful decision tree to help users choose a
tool based on their needs. Their recommended ranking also
includes some of the evaluation metrics proposed in this
work with an even deeper level of detail. However, while
we believe in the value of such an approach, the breadth
of the offer in terms of tools that can be chosen might
represent a constraint for the end users. In-fact [36] centers
its evaluation around nine tools, but the criteria for which
those tools were identified and selected are not clear. As we
discovered in this work, the list of open-source FL tools can
go beyond 30, and it is interesting to note how the most
popular tool to date was not considered in their decision
tree.

3 FEDERATED LEARNING TOOLS

3.1 Methods and premises

This article aims at provide an inclusive and informative list
of the current FL tools available to the community for im-
plementing research pipelines in any environment where ac-
cessing distributed data is a challenge. To better understand

3. https://popia.co.za/
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the present scenario, we performed two literature searches:
one carried out on March 28th and another on September
28th. The activity was inspired by the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines. More specifically, we decided to follow the Pre-
ferred reporting items for systematic review and meta-analysis
of diagnostic test accuracy studies (PRISMA-DTA): explanation,
elaboration, and checklist [37]. In particular, the guidelines
we followed are a selection of the ones described in the
PRISMA 2020 checklist, accessible on the official PRISMA
website: http://www.prisma-statement.org/. Below is a de-
tailed description of the items extracted from the PRISMA
guidelines we identified as applicable to this collection. The
number reported below is a direct reference to the PRISMA
document.

• 5): Specify the inclusion and exclusion criteria for the
review and how studies were grouped for the syntheses.

• 6): Specify all databases, registers, websites, organisations,
reference lists and other sources searched or consulted to
identify studies. Specify the date when each source was
last searched or consulted.

• 7): Present the full search strategies for all databases,
registers and websites, including any filters and limits
used.

• 8): Specify the methods used to decide whether a study met
the inclusion criteria of the review, including how many
reviewers screened each record and each report retrieved,
whether they worked independently, and if applicable,
details of automation tools used in the process.

• 13.b): Describe any methods required to prepare the data
for presentation or synthesis, such as handling of missing
summary statistics, or data conversions.

• 13.d): Describe any methods used to synthesize results
and provide a rationale for the choice(s). If meta-analysis
was performed, describe the model(s), method(s) to identify
the presence and extent of statistical heterogeneity, and
software package(s) used.

• 16.a): Describe the results of the search and selection
process, from the number of records identified in the search
to the number of studies included in the review, ideally
using a flow diagram.

• 16.b): Cite studies that might appear to meet the inclusion
criteria, but which were excluded, and explain why they
were excluded.

• 23c): Discuss any limitations of the review processes used.

Each of these items was considered to frame this work.
The following map illustrates how the single guideline
contributed to shaping what section:

• Items 5, 6, 7 and 8 have been considered for building
this Section;

• Items 13a and 13d, have been followed to build the
comparison table in Section IV;

• Items 16a, 16b and 23c, have been finally used to
structure the results discussion provided in Section
V.

3.2 Exploring tools
To objectively build the list of tools, we performed two
reviews (harvests), with roughly six months (184 days) as

a time gap. Capturing the tool lists in one survey would
have been enough to draw a general overview of the current
environment at that time, but having two observational
points for each of the tools was helpful to understand better
the level of commitment from the engineering team and the
maturity and popularity growth rate beyond each tool. The
collection methods were the same and are described below.
We relied on three different search engines: Google Scholar4,
Semantic Scholar5 and standard Google website6.

For the first two, we developed a script to automatically
query the search engines with a collection of keywords on
the topic. We built such a collection by combining each
item p of a list of prefixes P with each element s in a list
of suffixes S. The set of prefixes was populated with the
”federated learning” keyword, and other synonyms or more
related terms used in the literature to express similar con-
cepts: P=’federated learning’, ’privacy-preserving machine
learning’, ’collaborative learning’, ’collaborative machine
learning’.

The set of suffixes was built around adjectives and
secondary aspects, like ’tools, library’ and ’open-source’:
S=’framework’, ’tool and framework open source’, ’tool and
framework open-source’, ’open source framework’, ’open
source tool’, ’open source library’.

This led to a prosperous and inclusive search of all the
relevant articles and works in the domain.

Google Scholar helped capture all the related works
where a given keyword (or part of it) was mentioned in
the paper and not only in the title. We could identify a
cumulative list of 420 related articles, of which 217 were
unique. Despite the encouraging numbers, we soon en-
countered a bottleneck represented by the API service. For
each keyword, the system would only return maximum 20
results. Furthermore, after an indefinite but limited amount
of searches, a CAPTCHA request would rise, blocking any
automatic API interrogation. The service provider wants
to avoid free unlimited searches performed by automated
systems to ensure enough resources for manual searches
performed by real users. For this reason, the referred num-
bers belong to the article harvest completed in March only.
We could not run any new queries during the September
harvest using this engine.

To build a more robust and consistent set of related
works, we leveraged the Semantic Scholar service [38].
As defined on their website, ”Semantic Scholar is a free,
AI-powered research tool for scientific literature, based at the
Allen Institute for AI.” Using this tool, we were able to
increase the number of results obtained for each keyword
search to 100 and access more accurate content given the
semantic nature of the search engine. The website (and its
API) allows users to perform queries and sort the outcome
according to four metrics: ”Relevance”, ”Citations-count”,
”Most Influential Paper” and by ”Recency”. Among these
options, a user could also select articles based on where they
were published (e.g., conferences, journals, books) and the
field of studies and applications (e.g., Medicine, Geology,

4. https://scholar.google.com/
5. https://www.semanticscholar.org/
6. https://www.google.com
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Fig. 3. Collection pipeline implemented for the harvests. On each arrow
is outlined the number of articles retrieved and filtered. Numbers be-
tween squared brackets refer to the outcome of the September harvest.
The output numbers of the second review are obtained by summing the
numbers of a given category from the first review with the respective
class of the second review. Please note that despite the September
harvest returning 1292 articles, only 270 were new findings.

Economics). For our collection, we did not leverage any of
these options as we wanted to be as inclusive as possible.

By repeating the research of all the keywords for all
the four sorting types mentioned above, we obtained a
cumulative list of 8320 articles, of which 1121 were unique
during the March harvest, and a cumulative list of 8284
articles, of which 1292 were unique, during the September
harvest. The number of new articles retrieved in September
that were unavailable in March is 270.

The fact that among the Google Scholar search results,
we obtained 51% of unique contributions versus the 14% of
the ones identified through Semantic Scholar is an indicator
of the goodness of the research. Through Semantic Scholar,
we found more related and consistent articles, which we
interpreted as a reliable capability of the tool to capture the
semantic aspects of the research.

To ensure we would capture all the relevant FL tools
not yet described in a published paper, we also decided to
perform a manual search on the standard Google search en-
gine. To do so, we evaluated the first ten results obtained by
querying the search engine with the same list of keywords
used previously. This step allowed us to enrich the list with
additional FL frameworks, such as Nvidia Flare (Clara) 7,
Tensorflow Federated 8 and IBM Federated 9.

Once we obtained the three lists of unique titles de-
scribed above, we finally merged them, resulting in a total
of 1195 unique articles discovered in March and a list
of 1292 retrieved in September. We then started pruning
results by manually reviewing and labeling the list in three
different buckets: ”relevant”(R), ”non-relevant” (NR), and
”uncertain” (TBD).

Articles utterly unrelated to the topic (e.g., work men-
tioning ML methods or collaborative learning platforms for
schools) were discarded from the whole collection. After the
first labeling cycle, we had 65 R, 980 NR, and 150 TBD for

7. https://blogs.nvidia.com/blog/2021/11/29/federated-learning-ai-nvidia-flare/
8. https://www.tensorflow.org/federated
9. https://ibmfl.mybluemix.net/

• fl_pytorch: optimization research simulator for federated learning 

• fedlab: a flexible federated learning framework 

• sunday-fl – developing open source platform for federated learning 

• gfl: a decentralized federated learning framework based on blockchain 

• pyvertical: a vertical federated learning framework for multi-headed splitnn 

• fedpd: a federated learning framework with optimal rates and adaptivity to non-iid data 

• fed-biomed: a general open-source frontend framework for federated learning in healthcare 

• hyfed: a hybrid federated framework for privacy-preserving machine learning 

• graphfl: a federated learning framework for semi-supervised node classification on graphs 

• openfed: a comprehensive and versatile open-source federated learning framework 

• openfl: an open-source framework for federated learning 

• stfl: a temporal-spatial federated learning framework for graph neural networks 

• flower: a friendly federated learning framework 

• dp-fl: a novel differentially private federated learning framework for the unbalanced data 

• substra: a framework for privacy-preserving, traceable and collaborative machine learning 

• fedmed: a federated learning framework for language modeling 

• fedmax: enabling a highly-efficient federated learning framework 

• fate: an industrial grade platform for collaborative learning with data protection 

• ipls: a framework for decentralized federated learning 
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• securefl: privacy preserving federated learning with sgx and trustzone 

• secureml: a system for scalable privacy-preserving machine learning 

• fedgraphnn: a federated learning system 

• wireless communications for collaborative federated learning in the internet of things 

• flaas: federated learning as a service 

• an efficient 3-party framework for privacy-preserving neural network inference 

• efficient and private federated learning using tee 

• a crowdsourcing framework for on-device federated learning 

• private machine learning in tensorflow using secure computation 

• the genomics research and innovation network: creating an interoperable, federated, 

genomics learning system 

• privacy-preserving machine learning for speech processing 

• fl-ntk: a neural tangent kernel-based framework for federated learning analysis 
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• effects of mobile gaming patterns on learning outcomes: a literature review 
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adaptive domain‐specific support strategy 

• free- and open-source software for a course on network management: authoring and enactment 

of scripts based on collaborative learning strategies 

• sagittarius: a tool to enhance the collaboratibe work in virtual learning environments 

• predicting machine learning pipeline runtimes in the context of automated machine learning 

• model-sharing games: analyzing federated learning under voluntary participation 

• tensorflow lite micro: embedded machine learning on tinyml systems 

• collaborative creation and training of social bots in learning communities 

• strategic trials of educ@tion, the telecom italia solution for cooperative digital 

learning 

• user experience evaluation on computer- supported concept map authoring tool of kit-build 

concept map framework 

• horizon: facebook's open source applied reinforcement learning platform 

• providing collaborative learning support with social media in an integrated environment 

• toward a framework for cscl research 

• open source software for simulating collaborative networks of autonomous adaptive sensors 

Fig. 4. A subset of examples of selected articles for each category:
”relevant” green, ”uncertain” blue and ”non-relevant” red.

the March harvest, and 9 R, 227 NR, and 34 TBD for the
September harvest.

An example of articles being captured by the three
categories is available in figure 4.

The ”uncertain” category required us to conduct a
deeper review of the work. All the articles in this list went
through a second round of labeling. The objective was to
review the 150 papers belonging to the TBD list to allocate
them either to the R or NR. As resulting cardinalities, we
obtained: 83 R and 1112 NR for the March harvest and 12
R and 258 NR for the September harvest.

A summary of the research pipeline adopted and the
results collected during each Harvest is shown in Figure 3.

Ultimately, a deeper understanding of the relevant pa-
pers was performed to draw the final list of FL tools.
In general, for both the harvests, Many articles used the
word ”framework” to suggest methods and approaches to
addressing specific FL tasks but were not proposing toolkits
or open-source products that the community could leverage
to implement FL pipelines. This final review allowed us
to identify 36 suitable tools during the March harvest and
additional two tools during the September harvest. The
complete list of tools retrieved in March with the indicators
from the Github and Gitlab repositories is reported in Table
1.
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TOOL Watch Fork Star ETA (days) SCORES

1 PySyft [39] 211 1800 8000 1714 1.95

2 FATE https://fate.fedai.org/ 134 1200 4100 956 1.89

3 FedML [40] 37 331 1100 614 0.80

4 Tensorflow Federated https://www.tensorflow.org/federated 66 447 1800 1301 0.59

5 Flower [41] 20 15 825 770 0.37

6 OpenFL [42] 10 76 286 437 0.28

7 IBM-Federated [43] 20 85 292 647 0.20

8 FedLab [44] 6 30 180 383 0.19

9 LEAF [45] 18 187 470 1249 0.18

10 FedGraphNN [46] 9 33 147 383 0.16

11 Fedlearn-algo [47] 8 34 80 255 0.16

12 FedJAX [48] 11 28 172 461 0.15

13 PyVertical [49] [50] 12 35 101 661 0.07

14 PriMIA [51] 8 18 102 707 0.06

15 Substra [52] 8 24 143 1252 0.05

16 Fedn [53] 7 20 59 622 0.05

17 FedBioMed (GitLab) [54] NA 23 3 332 0.04

18 OpenFED [35] 2 1 17 300 0.02

19 APPFL [55] 2 1 7 172 0.02

20 HyFed [56] 4 3 9 361 0.01

21 PyFed [57] 3 2 5 544 0.01

22 dsMTL [58] 2 2 0 266 0.01

23 Sunday FL [59] 1 4 2 524 0.00

24 DecFL [60] 2 2 3 717 0.00

25 MTC-ETH [61] 1 1 2 881 0.00

26 Vantage6 [62] 5 2 0 1835 0.00

27 Sherpa ai [63] 3 0 0 0 -

28 FL-Pytorch (Pytorch Federated) [64] NA NA NA NA NA

29 Chiron [65] NA NA NA NA NA

30 FedHealth [66] NA NA NA NA NA

31 FAE [67] NA NA NA NA NA

32 GENO [68] NA NA NA NA NA

33 FedTGan [69] NA NA NA NA NA

34 FL-Bench [70] NA NA NA NA NA

35 IPLS [71] NA NA NA NA NA

36 Nvidia-Clara https://docs.nvidia.com/clara/ NA NA NA NA NA

TABLE 1
Tool popularity table, March harvest. Legend: This table shows the list of 36 tools retrieved in March with their respective Git indicators and the

cumulative scores. The results are sorted from the most popular tools on the top to the less popular tools on the bottom. Indicated with NA are the
tools for which the Git repository was unavailable or not publicly accessible. If not specified otherwise, all the repositories are Github projects.

4 TOOLS POPULARITY AND LEVEL OF ADOPTION

After retrieving the list of tools, our goal was to under-
stand each item’s popularity and level of adoption from
the community perspective. Each Git repository has public
indicators like the number of Watch (W), Fork (F), and
Stars(S). The Watch indicator can capture the number of
users actively watching the repository. These users will
receive updates when new actions are taken on the repos-
itory. The number of Fork indicates the number of times a
repository has been forked. It can tell how many interested

users might develop code to extend the tool. Finally, the
number of Stars indicates the number of likes the repository
has received. This final indicator might need to be more ac-
curate in capturing actual users, but it can give a reasonable
estimation of the reach in terms of how many people have
seen the tool at least once. For practicality, we wanted to
combine these three aspects into one consolidated score that
we could use for providing a popularity driven ranking of
the tools. Since the popularity would also depend on the
time a given repository was made available to the commu-
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Fig. 5. Popularity growth rate: this graph illustrates which tools have
been gaining more popularity in the community over an observation
window of 184 days (roughly six months). Tools that did not have a
repository available in March were excluded from this chart.

nity, we wanted to normalize all the values with a timing
factor. This step would ensure that newer repositories with
less exposure to the community would not be affected by
a low score. To achieve this goal, we combined these three
factors into a consolidated score calculated as follows:

Scoret =
1
3 (Wt + Ft + St)

ETAfr

(1)

Where ETAfr is the time elapsed between the day of
the tool’s first release and the harvest date. We used the
date of the first commit if the date of the first release was
unavailable. Table 1 shows the scores associated with the
tools retrieved in the March harvest.

An initial understanding of which tools were accessible
to the community was helpful but could provide a limited
view of the bigger picture. Indeed, while the Git indicators
can share important insights about user preferences in a
given time frame, they do not necessarily capture the com-
munity trends from a popularity growth rate perspective.

To access this information, we observed the list of tools
over a time window to check which tools were being
considered by the community at a higher pace. Thanks to
the second harvest (September 28th), we discovered new
tools to add to the list and updated the values of W, F,
and S for each of the tools found in March. Knowing the
differences between the indicator’s value in March and in
September, we computed the growth rate for each of the
tools as follows:

grt =
1
3 ((Wt + Ft + St)

September − (Wt + Ft + St)
March)

ETA
(2)

Where ETA, in this case, corresponds to 184 days. The
outcome of this computation can be appreciated in Figure 5.

Interestingly, the order of the tools based on the popu-
larity level observed in March and captured by Table 1 does
not match the growth rate highlighted in Figure 5.

5 PRIORITIES IN FL TOOLS FOR RESEARCH

Previous Sections illustrated how we could retrieve a list
of relevant tools for building FL pipelines and which ones

are preferred by the community. In this Section, our goal is
to provide a new ranking of the tools to identify the most
mature ones. We will focus on the specific features of each
tool, regardless of any popularity aspects as outlined in the
previous Sections.

The task consists in retrieving and evaluating the FL
tools that could be adopted to boost exploitability. To per-
form this classification, we defined a set of measures based
on the different needs and expectations a tool should satisfy
according to the application field and final objectives.

As described in the SOA Section, there are several ways
of implementing FL. From bridging different data-center in-
stitutions together at the production level to leveraging the
agile nature of IoT devices, FL pipelines have to be shaped
according to the needs, goals, and constraints to consider.
However, coherent with our purpose of identifying the most
mature FL tools for research activities, there is no need to
filter results based on data centers or edge devices as long
as the tools will provide the possibility to simulate multiple
decentralized abstracted computing hubs.

On the other side, other considerations should be drawn
around what has been highlighted in the FL challenges
regarding data distribution, confidential computing, and
communication efficiency.

Indeed, those aspects are essential because they can
directly reflect requirements that FL tools need to fulfill
to be considered. For example, they all highlight the need
for a flexible and modular architecture to allow maximum
research customization for aggregation functions, commu-
nication protocols, or privacy-preserving and security fea-
tures. Another practical insight derived from items 2 and
3 concerns the ability of a tool to scale out on multiple
computing machines. As demonstrated in [12], the appli-
cability of FL is not only related to the need to access data
complying with regulations. It can also refer to data that is
not readily retrievable, like the ones on a satellite or space
station. Furthermore, the Medical [14] or Geo-spatial [12]
environments are usually sources of high-resolution data
acquired by machines manufactured by different compa-
nies, which could map in need of having dedicated pre-
processing routines to be used to feed an AI model. FL
approaches can be tested on multiple machines hosting
different datasets (generated by different equipment) or by
simulating multiple parallel instances running on the same
computing node. The first setting is preferred as it enhances
the reliability of the conclusions when investigating privacy
and communication efficiency aspects.

In addition to what has been outlined so far, other
practical considerations related to the research environment
might apply. The easier the path to results in a research en-
vironment is, the fastest could be the path to deploying this
technology in real institutions. For example, being able to set
up a federated environment quickly by leveraging friendly
API, re-using common and well-established language (like
Python) and AI platforms (like PyTorch or Tensorflow to
mention two) having access to direct support channels or
useful documentation can represent critical aspects for sim-
plifying research activities in different domains.
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5.1 Evaluation metrics
Based on these observations, we consolidated a list of eval-
uation parameters and guidelines organized as follows:

1) Usability

• Documentation (Docs.)
• Developer Experience (DX)
• Language (Lang.): Python, R, C++, etc.
• Supported AI frameworks: PyTorch, Tensor-

flow (TF), etc.
• Type of AI: Machine Learning (ML), Deep

Learning (DL)

2) Portability

• Templates/Examples availability (T/E)
• Distribution channels: Anaconda, Pipy, etc.
• Multi-node mode
• Open-source

3) Flexibility

• Containers/Virtualization (C/V)
• Modular architecture
• Horizontal or Vertical (H/V) FL
• Privacy and Security independent module?

(PVC/SEC)
• Easy integration with other tools

We used these parameters to build an ”Evaluation Table”
[2] for the tools identified in the previous Section. The
table has been populated with information retrieved from
publicly available resources for each tool. As one can easily
see, there is a mismatch between the tools listed in Table
1 and those reported in Table 2. This is mainly due to the
following four reasons:

1) Tools not open-source, like Sherpa-ai [63]
2) Missing repositories: is the case of tools that have

not yet released their codes after the paper publica-
tion: Chiron [65], FedHealth [66], FAE [67], GENO
[68], FedTGan [69] and IPLS [71].

3) Coherent but not suitable: is the case of LEAF [45],
FL-Bench [70], and PyFed [57], which are posi-
tioned for benchmarking purposes and, therefore,
might lack essential features for conducting more
extensive research activities. FedGraphNN [46] is a
sub-project of the more significant initiative called
FedML [40] already included in this survey.

4) New tools or new openings: is the case
of Nvidia-Flare (a sub-project of Nvidia-Clara
https://docs.nvidia.com/clara/) and FL-Pytorch
[64] which opened their repositories at some point
after March harvest, as well as FLUTE [72], and
PLATO [73] which have been retrieved (and added)
during the September harvest.

After pruning the 12 tools that did not qualify, adding
the 2 (despite the substitution with Nvidia-Flare, Nvidia-
Clara was already captured by Table 1) from the September
harvest, we ended up with a list of 27 total tools.

In a second instance, a score would be associated with
each cell based on a quantitative assessment. Aiming at an
objective classification of the tools, we captured qualitative

aspects in a very inclusive way, rewarding tools that demon-
strated additional development effort for the community
through the available material without penalizing newer
promising tools that might still be under development. More
in detail, we adopted a simple approach to assign a score to
each cell and designed the ”Score Table” 3:

• Documentation: we considered having a Paper P
and-or a public repository of the tool Gh (Github) or
Gl (Gitlab) to be a minimum requirement. Therefore,
we assigned zero to all the tools that did not match
this expectation; rewarded with 1 point the tools with
at least one additional source of information (like a
dedicated web page or richer documentation that
would go beyond Readme files on repositories or
slack support). Finally, 1.5 points were given to all
those that provided two or more sources.

• User Interface (UI): we assigned 0 points to all the
tools that did not seem to mention nor provide a user
interface of some sort (e.g., jupyter notebook 10 or
google collab 11 to mention two). We gave 1 point
to all the tools with at least 1 form of user interface
abstracting from programming on the command line.
Finally, 1.5 points were given to all the tools with two
or more user interfaces.

• Language: We assigned 0 points where the informa-
tion about the supported version was not clearly
outlined in the documentation. 1 point was given
to the tools supporting at least one language (or
one version), and 1.5 points were given to all the
tools supporting two languages (or two versions of a
language). Finally, 2 points were given to all the tools
where the engineering team made the extra effort to
support more than two languages (or more than two
versions of the same language).

• Supported AI frameworks: We assigned 0 points
where the information about the supported AI
frameworks was not clearly outlined in the docu-
mentation; 1 point was given to each framework
supported. When the number of different supported
frameworks exceeds 2, we assign the maximum score
of 2.5 points.

• Type of AI: 0 points if not mentioned in the docu-
mentation, 1 for each type of AI supported (ML or
DL).

• Templates/Examples availability
• Distribution channels: we set the minimum require-

ment for the ability to download a repository and
install the tool from there. Therefore we assigned
0 points to all the tools respecting this minimum
requirement, 1 point to all the tools that had at least
1 additional way to access the software package (e.g.,
Pipy or Anaconda), finally, 1.5 points were given to
all the tools that could be installed in two or more
ways.

• Multi-node mode: zero when only the simulated
environment on a single computing machine was
mentioned. 1 point to all the tools that allow imple-

10. https://jupyter.org/
11. https://colab.research.google.com/
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TOOL Docs. DX Lang. AI frame-
works AI type Examples Dist.

channels Multinode? C/V H/V PVC/SEC Tools
integration

APPFL P, Gh, Pipy,
W N.M. Python =

3.6 Pythorc DL Yes Gh, Pipy Yes Docker H N.M. MPI or-
chestration

DecFL P, Gh N.M. N.M. TF DL Yes Gh Yes Required H Yes N.M.

dsMTL P, Gh, N.M. R only R-based ML Yes Gh Yes N.M. H Yes N.M.

FATE P, Gh, W N.M. 3.8, 3.9 N.M. ML, DL Yes Gh Yes Docker H,V Yes KubeFATE,
flake, Spark

FedBioMed (Gl) P, Gh Jupyter python Pythorc, TF DL Yes Gh Yes Required H Yes Flake,
Sklearn

FedJAX P, Gh, W G. Colab,
Jupyter Python Pythorc, TF DL Yes Gh, Pipy Simulated N.M. H N.M. N.M.

FedLab P, Gh, W N.M. python =
3.6 Pytorch DL Yes Gh, Pipy Yes Docker H Yes N.M.

Fedlearn-algo P, Gh N.M. Python 3.6,
3.7 Pythorc, TF ML, DL Yes Gh Yes Docker H,V Yes

Hugging
Face,

Sklearn

FedML
P, Gh, W,
dedicated

links, Slack
N.M. Python Pytorch, TF,

JAX, mxnet ML, DL Yes Gh, Pipy Yes Docker H N.M.

MPI,
NCCL,
MQTT,
gRPC,

Pytorch
RPC

Fedn
P, Gh,

dedicated
docs

Yes Python 3.8 Pytorch, TF DL Yes Gh Yes Required H,V Yes C++,
scikit-learn

FLOM Missing
repo

Flower P, Jupyter,
colab

Python =
3.6

Pytorch, TF,
MxNet, Jax ML, DL Yes Gh, Pipy Yes Yes H Yes

Android,
flake,

hugging
Face

FLUTE P, Gh N.M. 3.8 Pytorch DL Yes Gh Azure
Cloud N.M. H N.M. HuggingFace

HyFed P, Gh WebAPP N.M. N.M. N.M. Yes Gh Yes N.M. H Yes N.M.

IBM-Federated
P, Gh, W,

video
tutorials

Jupyter Python 3.6 Pytorch, TF ML, DL Yes Gh, wheel Yes Docker H Yes Ray,
Openshift

IPLS

MTC-ETH P, Gh N.M. N.M. N.M. N.M. N.M. Gh
Yes, but

low
number

Required H Yes N.M.

Nvidia Flare Gh, Website N.M. 3.8 Pytorch, TF DL, ML Yes Gh, pip Yes Docker H Yes MONAI

OpenFED P, Gh, W Jupyter Python 3.6 Pytorch DL Yes Gh, Pipy Simulated N.M. H Yes N.M.

OpenFL P, Gh, slack,
W, videos

Jupyter,
Colab

Python 3.6,
3.7, 3.8 Pytorch, TF DL Yes Gh, Pipy Yes Docker H Yes

MonAI,
Hugging

Face

PLATO P, Gh,
Website N.M. 3.9 Pytorch, TF,

Mindspore DL Yes Gh, pip Yes Docker H N.M. Catalyst,
Mindspore

PriMIA P, Gh, W N.M. N.M. Pytorch DL Yes Gh Simulated N.M. H Yes PySyft, K8s

PySyft P, Gh,
Slack, Jupyter 3.8 Pythorc, TF DL Yes Gh, Pipy Yes Docker,

VMs. + H Yes PySyft, k8s

FL-Pytorch
P, Gh, W,

slack,
videos

Custom
GUI 3.9 Pytorch DL Yes Gh, pipy Simulated N.M. H N.M. N.M.

PyVertical P, Gh Jupyter 3.6,3.7,3.8 N.M. DL Yes Gh Yes Docker V Yes Syft

Substra P, Gh, W,
Slack N.M. N.M. N.M. N.M. Yes Gh, Pipy yes docker H N.M. N.M.

Sunday FL P, Gh,
youtube N.M. Python,

java N.M. N.M. Yes Gh Yes Docker H N.M. Azure

Tensorflow Federated P, Gh, W Colab Python 3 TF DL Yes Gh, Pipy Simulated N.M. H N.M. N.M.

Vantage6 P, Gh, W,
youtube N.M. Python 3.7 N.M. N.M. N.M. Gh, Pipy Yes Docker H N.M. N.M.

TABLE 2
Tool evaluation table. Legend: in documentation (”Docs.”) and distribution channels (”Dist. channel”) columns, P = Paper, Gh = Github, Gl =
GitLab, W = Website. In the ”Supported AI Type” column, DL = Deep Learning and ML = Machine Learning. The NM label refers to ”Not

Mentioned”, meaning that the information did not appear as mentioned in the available documentation.

menting real federation on multiple nodes and 0.5 if
this capability has limitations or constraints.

• Open-source: all the tools presented in the table are
open-source. This column was not included in the
table.

• Containers/Virtualization: zero was given where the
documentation did not provide any of the two op-
tions. 1 point was given where either a containerized
or virtualized environment was supplied. 1.5 points

when two or more options were listed and 0.5 when
containers were available but also presented as the
only way to access the tool.

• Modular architecture: based on the analysis of the
tools’ repositories, we trust that all of them respect
this parameter. More in details, all of them have
proven to have spearate entities (like client-server
and orchestration process) that can be launched in-
dependently.
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# TOOL Docs. DX Lang. AI frameworks AI type Examples Dist. channels Multinode? C/V H/V PVC/SEC Tools integration TOTAL
1 Flower 1 1.5 2 2.5 2 1 1 1 1 0 1 1.5 15.5
2 OpenFL 1.5 1.5 2 2 1 1 1 1 1 0 1 1.5 14.5
3 IBM-Federated 1.5 1 1 2 2 1 1 1 1 0 1 1.5 14
4 PySyft 1 1 1 2 1 1 1 1 1.5 0 1 1.5 13
5 FedML 1.5 0 1 2.5 2 1 1 1 1 0 0 1.5 12.5
6 Fedn 1 1 1 2 1 1 0 1 0.5 1 1 1.5 12
7 Fedlearn-algo 0 0 1.5 2 2 1 0 1 1 1 1 1.5 12
8 PLATO 1 0 1 2.5 1 1 1 1 1 0 0 1.5 11
9 Nvidia Flare 0 0 1 2 2 1 1 1 1 0 1 1 11
10 FATE 1 0 1.5 0 2 1 0 1 1 1 1 1.5 11
11 APPFL 1 0 2 1 1 1 1 1 1 0 0 1 10
12 FedLab 1 0 2 1 1 1 1 1 1 0 1 0 10
13 FedBioMed (GitLab) 0 1 1 2 1 1 0 1 0.5 0 1 1.5 10
14 OpenFED 1 1 2 1 1 1 1 0.5 0 0 1 0 9.5
15 FedJAX 1 1.5 1 2 1 1 1 0.5 0 0 0 0 9
16 PyVertical 0 1 2 0 1 1 0 1 1 0 1 1 9
17 Tensorflow Federated 1 1 2 1 1 1 1 0.5 0 0 0 0 8.5
18 FL-Pytorch 1.5 1 1 1 1 1 1 0.5 0 0 0 0 8
19 PriMIA 1 0 0 1 1 1 0 0.5 0 0 1 1.5 7
20 Sunday FL 1 0 1.5 0 0 1 0 1 1 0 0 1 6.5
21 dsMTL 0.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 6
22 FLUTE 0 0 1 1 1 1 0 0.5 0 0 0 1 5.5
23 DecFL 0 0 0 1 1 1 0 1 0.5 0 1 0 5.5
24 Vantage6 1.5 0 1 0 0 0 1 1 1 0 0 0 5.5
25 Substra 1 0 0 0 0 1 1 1 1 0 0 0 5
26 HyFed 0 1 0 0 0 1 0 1 0 0 1 0 4
27 MTC-ETH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0 1.0 0.0 2.5

TABLE 3
Tool scoring table

• Horizontal or Vertical: a tool must implement at least
one of the two. Therefore we rewarded 1 point only
to the tools that would allow executions in both
settings.

• Privacy and Security independent module: zero
point to the tools that focused on the ability to im-
plement an FL pipeline but did not seem to mention
nor highlight the possibility of tweaking or inject-
ing any privacy or security module (i.e., Homomor-
phic encryption, secured communication protocols,
blockchain, etc.). 1 point to all the tools that included
at least one of the two.

• Easy integration with other tools: same process ap-
plied for evaluating the containers and virtualization
mechanism.

6 RESULTS DISCUSSION AND FUTURE DIREC-
TIONS

6.1 Discussion

We first performed extensive and inclusive semi-automated
research to identify suitable tools for implementing FL
pipelines. Then we built a popularity ranking based on a
Score that we calculated by combining the Stars, Forks, and
Watch indicators from each Git repository. Following the
same Scoring function, we could also draw the growth rate
for each tool over a six months time window.

We ultimately defined a scoring matrix and evaluated
each tool to calculate a ”maturity table” as in Table 3. Based
on the resulting ranking, the most mature tools are Flower
[41], OpenFL [42], and IBM-Federated [43]. While the last
two are fairly close to each other, the table leader does not
appear to have a solid distance. PySyft [39] is following
alone despite FedML [40], and Fedn [53] being very close
behind.

This is just an initial observation, but things change
when we integrate into the equation the popularity results
highlighted in Table 1 and the growth rate outlined in Figure
5. In Table 1, PySyft [39] and FATE https://fate.fedai.org/

are the two most popular tools according to the devel-
oper’s community, while Flower [41], OpenFL [42] and
IBM-federated [43], cover the 5th, 6th, and 7th placement,
respectively, with a considerable distance from the first two.
An interesting aspect is that there is a clear gap between
what the community awarded as the most popular tools
and what this work outlined as the most mature ones. On
the same line, another essential element is the results high-
lighted by the growth rates reported in Figure 5. Leading
that ranking is Flower [41], followed by FedML [40], FATE
https://fate.fedai.org/ and PySyft [39]. OpenFL [42] is in
the 8th placement, with a growth rate of 0.26, which is
approximately 10 times smaller than the Table leader, which
has a value of 2.

One interesting aspect is that regardless of which scoring
we decide to consider, the top 5 placements seem to be occu-
pied by the same names, re-shuffled a bit. In fact, out of 15
possible different names, we can only count up to 8 different
tools. Out of those eight different names, four are the more
dominant as they appear in at least two rankings: Flower
[41], FedML [40], FATE https://fate.fedai.org/, and PySyft
[39]. The remaining 4 are LEAF [45], Tensorflow-Federated
(tff) https://www.tensorflow.org/federated, OpenFL [42]
and IBM-federated [43].

Despite our best efforts to adopt objective scoring when
building Table 3, we are aware that other valid alterna-
tives might exist. For example, a more in-depth analysis
of all the functional features provided by each tool (such
as communication protocols) and a more granular differen-
tiation of external tools that can be integrated into the FL
pipeline could lead to different results. However, although
we appreciate that such a finer approach might eventually
change the distances of the current points between elements
in the lists, we would not expect significant shifts in the
main order. This consideration arises when looking at what
defines the current ranking. The success of the top two
tools is mainly justified by the high score obtained in the
”Usability” and ”Portability” factors outlined in Section V.
This might suggest that when tools have similar features
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with an equivalent level of maturity, the preference goes
to the one with a lower entry barrier for users. Providing
different documentation sources, tutorials, and access to
multiple standard languages and tools could be critical for
the community. As confirmed when looking at the lower
part of Table 3, low scoring for the worse-ranked tools might
not necessarily be related to a lack of critical features but
more to insufficient documentation that might have com-
promised the exploitation. On the other side, we noticed a
discrepancy in Table 1 that led us to the following question:
Why are tools with features comparable to the most popular
ones but with better documentation and more accessible
entry points not currently being considered at the same (or
higher) level by the community?

Among the possible causes, we have identified three
main ones: Participation in more significant international
projects involving multiple institutions Tool adoption in
various application fields More dissemination and mar-
keting activities by the respective engineering teams The
suggestion is to revise the proposed criteria to account for
these arguments and potentially other factors to get closer to
a comprehensive measure harmonizing the overall results.

6.2 Conclusions

Several tools for implementing FL pipelines could accelerate
the community’s research activities in this field. In this pa-
per, we provided a survey of all open-source solutions and
a ranking based on tool popularity and readiness with the
ambition to guide users (including non-experts) in adopting
FL solutions, boosting their exploitation, and accelerating
their research and development. Through this work, we
learned that tools primarily adopted by the community are
not necessarily the most mature tool. Although summariz-
ing the results of the three tables might be difficult, we can
say that if somebody does not know where to start with
FL, tools like Flower [41] or PySyft [39] represent a good
compromise between maturity and popularity. At the same
time, we recognize that more in-depth benchmarking with
dedicated tools like [36], LEAF [45], or FL-bench [70] might
be needed to correctly asses the different peculiarities of
each tool.
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