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Abstract

In distributed optimization schemes consisting of a group of agents connected to a central coordinator, the optimization

algorithm often involves the agents solving private local proximal minimization sub-problems and exchanging data frequently

with the coordinator to solve the global distributed problem. Such schemes usually cause excessive communication costs to

the system, leading to the need for communication reduction for scenarios where communication is costly. The integration

of Gaussian Processes (GPs) as a learning component to the Alternating Direction Method of Multipliers (ADMM hase been

proven successful in learning each agent’s local proximal operators. Consequently, such a learning technique is effective to reduce

the communication between the agents and the coordinator. A key element for the integration of GP in the ADMM algorithm

is the mechanism upon which the coordinator decides when communication with an agent is required. The decision strategy

used in this setting strongly affects the overall communication expenditure reduction and the ADMM’s algorithm performance.

For that reason, we construct a general framework presenting a systematic querying mechanism as an optimization problem

that balances the ideas ofmaximizinge the communication cost reduction while minimizing the prediction error. Motivated by

such a framework, we propose different query strategies using the uncertainty measurement given by GP, to determine if the

prediction is reliable enough to skip a communication round. We propose a joint query strategy following a simplification of

the general framework that minimizesana L1 norm communication cost constraint by the trace of the joint uncertainty of the

ADMM variables which is calculated using all agents’ prediction uncertainty. Additionally, we derive three different decision

mechanisms (motivated by a confidence interval analysis) that make their decision by analyzing an uncertainty measurement

for each agent individually. We integrate multiple measures to quantify the trade-off between the communication cost reduction

and the optimization solution’s accuracy/optimality. The proposed methods can achieve significant communication reduction

and good optimization solution accuracy for distributed optimization, as demonstrated by extensive simulations of a distributed

sharing problem with quadratic cost functions for the agents.
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Abstract—In distributed optimization schemes consisting of
a group of agents connected to a central coordinator, the opti-
mization algorithm often involves the agents solving private local
sub-problems and exchanging data frequently with the coordinator
to solve the global distributed problem. In those cases, the query-
response mechanism usually causes excessive communication costs
to the system, leading to the need for communication reduction
for scenarios where communication is costly. The integration
of Gaussian Processes (GPs) as a learning component to the
Alternating Direction Method of Multipliers (ADMM) has been
proven successful in learning each agent’s local proximal operators,
effectively reducing the required communication exchange. A
key element for the integration of GP in the ADMM algorithm
is the mechanism upon which the coordinator decides when
communication with an agent is required. In this paper, we
construct a general framework presenting a systematic querying
mechanism as an optimization problem that balances reducing the
communication cost and minimizing the prediction error. Under
this framework, we propose a joint query strategy that takes
into account the joint statistics of query and ADMM variables
and total communication cost of all the agents in the presence
of uncertainty caused by GP regression. Additionally, we derive
three different decision mechanisms that simplify the general
framework by making the communication decision for each
agent individually. We integrate multiple measures to quantify
the trade-off between the communication cost reduction and
the optimization solution’s accuracy/optimality. The proposed
methods can achieve significant communication reduction and
good optimization solution accuracy for distributed optimization,
as demonstrated by extensive simulations of a distributed sharing
problem.

Index Terms—distributed optimization, ADMM, proximal
operator, communication reduction, Gaussian Process

I. INTRODUCTION

In a distributed optimization scheme that consists of a group
of agents connected to a central coordinator, the optimization
algorithm often involves the agents solving private local sub-
problems and exchanging data frequently with the coordinator.
In many of such distributed optimization schemes, the local
sub-problems are cast as proximal minimization problems [1],
which are regularized versions of the original sub-problems,
to be solved by the agents in response to queries made by
the coordinator. Proximal minimization keeps an agent’s local
function from being revealed to the coordinator, which is ideal
for networks with privacy constraints. Once the coordinator
receives the local proximal minimization solutions from the
agents, it will use them to calculate new query variables for
the agents that keep on driving the agent’s objectives to reach
the global solution. Applications of distributed optimization

include power systems, sensor networks, smart buildings, and
smart manufacturing as listed in [2].

An algorithm suited for distributed optimization settings is
the Alternating Direction Method of Multipliers (ADMM), first
presented in [3]. This algorithm has found great success in
distributed optimization because of its simplicity to implement
and, due to its decomposing behavior, it is befitting for
parallelization. Consequently, ADMM has broad applications
in statistical and machine learning problems including the
Lasso, sparse logistic regression, basis pursuit, support vector
machines, and many others [4]. Examples of usage of ADMM
to solve distributed optimization problems include [5], [6], [7],
and [8].

The query-response mechanism inherent to distributed
optimization schemes (ADMM included) often requires an
extensive number of iterations before the algorithm converges
to a solution. An extensive number of communications between
the coordinator and agents could make the system non-
viable in cases where the communication is expensive (e.g.
underwater communications for controlling formation of robots
[9].) For that reason, reducing the communication expenditure
is highly desirable, even critical, for the viability of these
distributed optimization schemes in real-life applications. This
communication load can be reduced by limiting the number
of communication rounds between the coordinator and agents.

Communication reduction in distributed optimization settings
has been previously studied. The work in [10] presents a
hierarchical distributed optimization algorithm for the predictive
control of a smart grid where the communication overhead is
reduced by avoiding communication between agents. The works
in [11] and [12] proposed general communication-efficient
distributed-optimization frameworks for large-scale machine
learning applications. In [13], communication-efficient exact
and inexact ADMM-based federated learning algorithms are
proposed where the aggregation of the nodes to the central
coordinator is not performed at each iteration but in defined
intervals. The authors of [14] propose a communication-
efficient ADMM algorithm to solve a convex consensus
optimization problem defined over a decentralized network
by using a communication-censoring strategy to alleviate the
communication cost.

An alternative approach to communication reduction in
distributed optimization via ADMM was proposed in [15] and
further developed in [16]. In this approach, the proximal opera-
tors of the local agents is predicted so the coordinator can skip
some communication rounds. This is achieved using the theory
of the Moreau envelope function (see, e.g., [17, Chapter 1.G])



2

and its connections with the proximal operator. This concept
was further extended in our previous work [18], where the local
proximal operators and their gradients are learned by Gaussian
Processes (GPs) with derivative observations. The prediction
uncertainties given by the GP models are utilized to decide
whether communication between the coordinator and the agents
is required. Further communication reduction was achieved in
our previous work [19], where the work in [18] was extended to
consider Lloyd’s and uniform quantization in communications
from agents to the coordinator to reduce the payload size of the
shared information, thus reducing the overall communication
overhead. We further refined our approach in [20], where
a linear regression method based on GP was developed to
properly account for the impact of the uniform quantization
error in learning and predicting with GP.

The mechanism to decide when a communication round
should be skipped will affect greatly the desired communication
cost reduction and the performance of the ADMM algorithm,
therefore developing a systematic approach is critical. Our work
in [18] proposed a mechanism to decide whether communica-
tion between the coordinator and a particular agent is needed
using a heuristic decision method. Such query strategy uses the
conditional variance (given by the agent’s corresponding GP)
and compares it to a threshold that adapts at each algorithmic
round depending on the performance of the ADMM algorithm.
Though this strategy worked as intended, it was based on an
intuitive idea rather than a well-founded systematic querying
mechanism. It remains unclear if further communication cost
can be reduced by using a more effective querying approach
while meeting the constraint in properly solving the underlying
ADMM problem, which is the primary question we address in
this paper.

Our main contributions are: (1) We propose a systematic
querying framework to balance two criteria: reducing the
communication overhead and keeping the optimization accuracy.
(2) We develop a joint querying method based on the general
framework for making joint communication decisions for all
agents. (3) We develop three simpler approximate querying
strategies, where decisions are made individually to determine
which agents are to query. (4) We validate our methods
through extensive simulations of a distributed system solving a
sharing problem with quadratic cost functions. The results show
significant reductions in the total communication expenditure
in all test cases compared to the vanilla ADMM approach.
Furthermore, all query methods present an acceptable trade-off
between communication expenditure reduction and accuracy.
However, when comparing each of the method’s performance
there are clear differences being the joint querying method the
one achieving the best results.

Paper Organization: This paper begins with the problem
formulation in Section II. The systematic querying framework
is presented in Section III. In Section IV, we present our
proposed joint query mechanism. The mathematical derivations
of our proposed individual query strategies are presented in
Section V. A probabilistic comparison between the proposed
methods which leads to an expected querying behavior is
presented in Section VI. The simulation results are presented
in Section VII, and conclusions are made in Section VIII.

II. PROBLEM FORMULATION

In this manuscript, we solve the sharing problem as consid-
ered in [4], [6] with n agents and a central coordinator:

minimize

n∑
i=1

fi (xi) + h

(
n∑

i=1

xi

)
. (1)

In this problem, each agent has local decision variables xi ∈ Rp

and a convex local cost function fi: Rp 7→ R, which are used
to minimize the system cost consisting of all the local costs
and a convex shared global cost function h: Rp 7→ R. The
cost function fi can only be known to its corresponding agent.
Additionally, the problem in (1) is solved with communication
allowed only between the coordinator and agents, but with no
exchange between agents.

By introducing copies yi of xi, the problem presented in
(1) can be solved with the ADMM as shown in Chapter 7.3
of [4] by the iterations
xk+1
i = argmin

xi∈Rp

{
fi(xi) + (ρ/2)∥xi − xki − ȳk + x̄k + uk∥2

}
ȳk+1 = argmin

ȳ∈Rp

{
h(nȳ) + (nρ/2)∥ȳ − x̄k+1 − uk∥2

}
uk+1 = uk + x̄k+1 − ȳk+1, (2)
where ρ > 0 is a penalty parameter and x̄k = (1/n)

∑n
i=1 x

k
i .

At iteration k, each agent will only provide to the coordinator
the solution to the following local proximal minimization
problem

prox 1
ρ fi

(zki ) = argmin
xi∈Rni

{
fi(xi) +

ρ

2
∥xi − zki ∥2

}
, (3)

where zki is a value given by the coordinator to the agent i. The
x-minimization step consists of the local proximal minimization
problem, for every agent i,

xk+1
i = prox 1

ρ fi
(xki + ȳk − x̄k − uk︸ ︷︷ ︸

zk
i

).

A. STEP-GP Overview

For brevity, we will drop the subscript i and the superscript
k in the subsequent equations. The concept of the Moreau
envelope of f underlies the STEP (STructural Estimation of
Proximal operator) approach in [16] and is defined as

f
1
ρ (z) = min

x∈Rn

{
f(x) +

ρ

2
∥x− z∥2

}
. (4)

When f is a convex function, the Moreau envelope f
1
ρ is

convex and differentiable with Lipschitz continuous gradient
with constant ρ. Moreover, the unique solution to the proximal
minimization x

1
ρ (z) = prox 1

ρ f
(z) is [21, Proposition 5.1.7]

x
1
ρ (z) = z − 1

ρ
∇f

1
ρ (z). (5)

The gradient ∇f
1
ρ (z) is all that is required to reconstruct

the optimizer of (3) following from (5). Our previous work
[18] improved the STEP method in [16] by learning the local
proximal operators with Gaussian Processes (GPs), which are
updated online from past query data and used to predict
the gradient ∇f

1
ρ (z). This approach is named STructural

Estimation of Proximal operator with Gaussian Processes
(STEP-GP).
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ADMM proxGP

Coordinator

yes

Agents

Query 
Needed?

no

Fig. 1: Flow diagram of the query decision and the query
process and response between the coordinator and 4 agents in
the proposed approach.

In STEP-GP [18], the Moreau envelope function f
1
ρ

i : Rni 7→
R of each agent is learned by a GP, whose regression accuracy
is improved with the incorporation of past queries. In particular,
the coordinator will keep a GP model, named proxGP, for every
agent. The GP is then used to predict the Moreau Envelope’s
gradient vector ∇f

1
ρ

i (zki ). The GP prediction of the gradient
of the Moreau Envelope of agent i has a multivariate Gaussian

distribution with conditional mean E
[
∇f

1
ρ

i (zki )

]
= µk

i (z
k
i ),

and conditional covariance matrix Cov

[
∇f

1
ρ

i (zki )

]
= Σk

i (z
k
i ).

The coordinator decides if a query should be sent to agent i
using an uncertainty measurement coming from the conditional
covariance matrix. More details of the STEP-GP method can
be found in [18].

B. Query-Response Dynamics

In Figure 1, we present one round of the proposed algorithm
for a network of 4 agents. The coordinator first calculates
the query variables zki for each agent and uses it as input to
the agent’s corresponding GP regression. The GP regression
block named proxGP refers to the GP prediction of f

1
ρ

i (zki )

and ∇f
1
ρ

i (zki ) as presented in [18]. The coordinator has a GP
regression running for each agent. In Figure 1 all those GPs are
depicted to be in the ProxGP block. Using each of the agent’s
covariance matrices Σk

i (z
k
i ) given by GP, the coordinator

decides which agents require to be queried. In the figure, agents
1 and 2 are set to be queried so the coordinator sends zk1 and zk2
to the agents which solve its proximal minimization problems
as in (4), depicted in block prox 1

ρ fi
. Then, the coordinator

receives the corresponding Moreau Envelopes f
1
ρ

1 (zk1 ), f
1
ρ

2 (zk2 )

and its gradients ∇f
1
ρ

1 (zk1 ), ∇f
1
ρ

2 (zk2 ) as a reply from agents
1 and 2. On the other hand, for agents 3 and 4 that are not
queried the coordinator uses the corresponding predicted values
µk
3(z

k
3 ) and µk

4(z
k
4 ) to perform the ADMM updates.

C. ADMM Updates with GP

Following the query-response mechanism presented in Fig-
ure 1, the ADMM expression in (2) is modified to include the

impact of the GP regression. First, let’s define the communica-
tion decision variable for agent i at iteration k as

γki =

{
1, if agent i is queried
0, otherwise.

(6)

When γki = 1, the query zki is sent to agent i to get the exact

value of ∇f
1
ρ

i (zki ). On the contrary, when γki = 0 we use the
predicted value µk

i (z
k
i ) given by GP. Next, we can define an

expression βk
i as

βk
i = γki ∇f

1
ρ

i (zki ) + (1− γki )µ
k
i (z

k
i ). (7)

Consequently, the ADMM expression in (2) can be re-expressed
to follow the updates performed at the coordinator’s side as:

xk+1
i = zki − (1/ρ)βk

i

ȳk+1 = argmin
ȳ∈Rp

{
h(nȳ) + (nρ/2)∥ȳ − x̄k+1 − uk∥2

}
uk+1 = uk + x̄k+1 − ȳk+1. (8)

The work in this manuscript focuses on how we perform
the query decision-making, represented in the diamond block
in Figure 1.

III. GENERAL QUERYING DECISION FRAMEWORK

The main objective to include GP regression in the ADMM
algorithm when solving a distributed optimization problem is
to reduce the communication overhead. However, we do not
want such a reduction to affect significantly the accuracy of
the solution to the problem we try to solve. A key component
in the ADMM updates when GP is used, as presented in (8),
is the variable βk

i . This variable becomes either the value of
the gradient of the Moreau Envelope ∇fγi (zki ) or its predicted
value. In Equation (8) the set of xk+1, ȳk, and uk+1 can be
considered as a high dimensional vector trajectory to the global
solution. Since GP is being used, the variable βk

i determines
how much we deviate from this trajectory. Furthermore, this
variable depends on the communication decision variable γki
as defined in (6) and (7). Therefore, the mechanism to decide
each agent’s γki will directly impact the ADMM algorithm’s
performance. If the coordinator does not have a sound and
systematic mechanism to determine when to send queries to the
agents, the ADMM algorithm could require excessive iterations
to converge or never achieve convergence. Furthermore, it may
reach an unsatisfactory solution upon reaching convergence.
Thus, the proposed systematic querying method depends on two
opposing criteria: 1) Reduce communication overhead, and 2)
maintain a good accuracy of the GP regression. Consequently,
such query strategy needs to be constrained accordingly to
balance those opposing criteria.

Intuitively, we want to solve a constrained optimization of
the form

minimize comm(γk),

subject to γki ∈ {0, 1}, 1 ≤ i ≤ n

uncer(γk) ≤ ψk,

(9)

where comm(γk) is a communication cost function, uncer(γk)
is an uncertainty cost function, and ψk is a given threshold
varying at each iteration. The uncertainty cost is compared
against this threshold because we want to limit the prediction
error at each step. This decision method depends on how we
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measure those criteria. We can define a communication cost
in several ways, like the number of agents communicating
at each iteration or the number of bits exchanged at each
communication round. On the other hand, the second criterion
could be measured by the uncertainty of the prediction of
each agent (given by GP) to control that the communication
reduction does not introduce an insurmountable amount of error
to the ADMM algorithm. Thus, we can define the query strategy
as reducing the communication cost as much as possible
constraint limited by the amount of uncertainty introduced
by GP.

In general, for given communication and uncertainty cost
functions, the optimization problem in (9) has to be solved
using combinatorial approaches by seeking the optimal com-
bination of the n binary variables {γki , i = 1, · · · , n}. The
computation cost could be prohibitive when the number of
agents is large. For that reason, we will seek approaches solving
the constrained optimization problem in (9) under reasonable
communication and uncertainty cost functions without resorting
to combinatorial techniques.

IV. JOINT QUERY METHOD

In this section, we propose a joint query strategy to solve
the problem in (9) where the uncertainty cost function is the
trace of the joint covariance matrix of the ADMM variables
affected by GP regression. The following subsection presents a
justification for why the trace is a suitable variable to be used
to control the overall prediction error.

A. Justification for Using Trace as a Querying Condition
In this subsection, we derive a norm-based decision strategy

about when a query shall be sent to an agent by the coordinator.
Using a general notation, let’s define the variable F as a

real Gaussian random vector with a predicted mean vector µ
and a predicted covariance matrix Σ, where the lth element
of µ is µl, and the lth element of F is Fl with l ∈ [1, . . . , p].
Our objective is to determine a proper decision criterion where
we want the L2 norm of the discrepancy between the variable
F and its predicted mean to be small with high probability.
This results in the following confidence sphere:

P
[
||F − µ||2 ≤ ||µ||2δ

]
≥ 1− ξ, (10)

where ξ and δ are two small numbers chosen a priori for the
purpose of quality control and ||F−µ||2 =

√∑p
l=1(Fl − µl)2.

The values of δ and ξ must be small because we want the
discrepancy between the actual value and its predicted mean
to be small with high probability, so the control variables will
determine how tight we allow the discrepancy to be and with
how much probability.

We introduce an unitary transformation U , whose column
vectors are normalized eigenvectors of the matrix Σ, i.e. Σ =
UΛU ′, where Λ is the diagonal matrix whose diagonal entries
are eigenvalues of Σ sorted in a descending order λ1 ≥ λ2 ≥
· · · ≥ λp > 0. Given F ∼ N (µ,Σ), we define G = U ′(F −
µ) which follows N (0,Λ). Moreover, ||G||2 = ||F − µ||2.
Consequently,

P
[
||F − µ||2 ≤ ||µ||2δ

]
=

P
[
||G||2 ≤ ||µ||2δ

]
≥ 1− ξ. (11)

Let us define the variable Z = Gl√
λl

which results in Z ∼
N (0, 1). Then, the probability in (11) can be re-expressed in
terms of Z as

P

[
p∑

l=1

λlZ
2
l ≥ ||µ||22δ2

]
≤ ξ, (12)

where instead of requiring a high probability of being inside the
confidence sphere, we require the probability of being outside
of it to be small.

Defining the variables Y =
∑p

l=1 λlZ
2
l , which follows a

weighted chi-square distribution, and X = Y −
∑p

l=1 λl we
redefine (12) as

P

[
X +

p∑
l=1

λl ≥ ||µ||22δ2
]
≤ ξ. (13)

Thus, a sufficient condition to satisfy the condition in (13) is
presented in the following proposition.

Proposition 1: A sufficient condition to satisfy the inequality
in (10) is given by

tr(Σ) ≤ ||µ||22δ2−

2

λ1 ln(1/ξ) +√ln(1/ξ)

√√√√ p∑
l=1

λ2l

 . (14)

Proof: The proof is presented in Appendix B. □
Proposition 1 shows that we can use the presented bound

on the trace of Σ as a decision strategy, which suggests that if
the bound is satisfied then we will not communicate with an
agent. It should be noted that this bound not only depends on
the trace (which is the sum of the eigenvalues) but also on the
sum of the squares of the eigenvalues.

B. Proposed Joint Query Method

Following the querying framework presented in (9), we
propose using the L1 norm of γk = [γk1 . . . γ

k
n] as the

communication cost function, which is a straightforward cost
indicating how many agents communicate in the present
iteration. On the other hand, in addition to the analysis in
the previous subsection, the work in [22] presents a stochastic
inexact ADMM approach where the mean-squared error of the
inexact ADMM variables with respect to their exact counterpart
is bounded. Such bound is presented in their Algorithm 2
where the bounded expectation is the definition of the trace
of the error covariance matrix. Extending both analyses to
our problem, we have that each agent’s uncertainty dynamics
are reflected in the updates of the variables of the ADMM
algorithm in (8), due to the variables βk

i and γki . Thus, we
propose to use the trace of the joint uncertainty of the three
iterative variables that constitute the ADMM algorithm given
by Cov[xk+1; ȳk+1;uk+1] to derive the global uncertainty cost.
The proposed uncertainty cost is tr(Cov[xk+1; ȳk+1;uk+1|γk]),
where tr(.) denotes the trace operator. The convexity of both
functions is key to the validity of our proposed query strategy.

Thus, we can model our proposed query mechanism similarly
to the minimization in (9) as

minimize ∥γk∥1
subject to γki ∈ {0, 1}, 1 ≤ i ≤ n,

tr(Cov[xk+1; ȳk+1;uk+1]|γk]) ≤ ψk,

(15)
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where the threshold ψk varies at each iteration and its specifics
are presented in Subsection IV-D.

The rationale to use the minimization in (15) is to choose the
set of agents that will not be queried such that we minimize the
number of communicating agents while ensuring that the joint
trace does not exceed the threshold ψk, thereby ensuring there
is a high probability the uncertainty is within a desired sphere.
We next present a solution to the problem in (15) efficiently
without resorting to a combinatorial approach by exploiting the
convexity and linearity of the considered cost functions and
constraints. The idea is that the searching of a set of agents
to query starts with the scenario where the communication
cost is maximum, and the uncertainty cost is minimum. Then,
we calculate the contribution to the joint trace of each agent
so the agents that contribute the least to the joint uncertainty
will be the first candidates not to be queried in the current
round. Instead of considering each possible combination, we
analyze the constraint on the joint uncertainty each time the
next candidate is set to skip communication until the constraint
is met. The proposed joint query method has the following
steps at iteration k:

1) Initialize the communication cost to the maximum value
by setting all the elements of γk to 1.

2) For each agent, its contribution to the trace of the joint un-
certainty given by uni = tr(Cov[xk+1; ȳk+1;uk+1|γki =
0, γkj ̸=i = 1]) is calculated.

3) Sort all uni in increasing order.
4) In the order from the smallest to the largest uni, pick

all the agents whose total contribution to the uncertainty
cost does not exceed the threshold ψk and set their γki
to 0, i.e., tr(Cov[xk+1; ȳk+1;uk+1|γk]) < ψk.

The proposed strategy does not consider all possible com-
binations of communicating agents as it would be necessary
to combinatorically solve the problem posed in (15). However,
our strategy is a good trade-off between the general framework
and low computational cost, as evidenced by the numerical
results. The next subsections present the specifics of the joint
trace tr(Cov[xk+1; ȳk+1;uk+1]|γk]) and the threshold ψk.

C. Derivation of the Joint Trace Expression

In this subsection, we first present an equivalent expression
to the ADMM updates presented in (8) that allow us to
see the inherent agent’s coupling. This expression is then
used to find the specifics of the proposed uncertainty cost
tr(Cov[xk+1; ȳk+1;uk+1]|γk]). The following proposition uses
the notations presented in the problem’s definition in Section II.

Proposition 2: The specific form of the ADMM algorithm
presented in (8) has an equivalent expression given by

xk+1
i = zki − (1/ρ)βk

i

uk+1 = (1/ρ)∇hn/ρ
(
vk
)

ȳk+1 = ȳk − 1/(ρn)

n∑
i=1

βk
i − uk+1, (16)

where vk = nȳk−(1/ρ)
∑n

i=1 β
k
i and ∇hn/ρ() is the gradient

of the Moreau Envelope of the function h.
Proof: The proof is presented in Appendix A. □

The expression in (16) presents the ADMM updates in terms
of the gradient of the Moreau Envelope of the functions f
and h, and follows the calculations for the ADMM algorithm
executed at the coordinator side. More importantly, such an
expression also shows that each agent’s βk

i is present in each of
the ADMM updates, especially in the ȳk+1 and uk+1 updates
where we have the sum of those variables. The variable βk

i

(depending on γki as defined in (7)) either comes from the

exact value or the predicted value of ∇f
1
ρ

i (zki ), so the ADMM
updates as presented in (16) can be used to quantify the joint
uncertainty of the variables of ADMM.

Due to the linearity of the trace, the proposed uncer-
tainty cost is simplified to tr(Cov[xk+1; ȳk+1;uk+1|γk]) =
tr(Cov[xk+1|γk])+ tr(Cov[ȳk+1|γk])+ tr(Cov[uk+1|γk]). Fol-
lowing the expression in (16), the definition of βk

i in (7), and
that only the terms including βk

i contribute to the uncertainty,
we get the expression

tr(Cov[xk+1; ȳk+1;uk+1|γk]) =

(1/ρ)2
n∑

i=1

(1− γki )tr
(
Σk

i (z
k
i )
)
+

2(1/ρ)2tr
(
Cov[∇hn/ρ(vk)]

)
+

(1/ρn)2
n∑

i=1

(1− γki )tr
(
Σk

i (z
k
i )
)

, (17)

The expression in (17) depends on the specifics of the function
h.

D. Threshold ψk Mechanism

During the execution of the ADMM algorithm, the GP
prediction tends to reduce its uncertainty when the ADMM
algorithm gets closer to convergence. This is because there is
more training data allowing the prediction to be more accurate.
For that reason, the threshold to be considered should decrease
over the ADMM iterations. We propose a decreasing threshold
mechanism that relies on the iteration count and k0, which is
the iteration where the GP regression is used for the first time.
At iteration k0, the initial threshold is

ψk0 = ιV k0 , (18)
where V k0

i is the uncertainty variable used by the query method
(in this case tr(Cov[xk+1; ȳk+1;uk+1]|γk])), and ι is a value
set manually to set the initial threshold as a percentage of V k0

i .
Given a preselected decay rate α ∈ (0, 1), at a later iteration
k > k0, the threshold is calculated as:

ψk = ψk0αk−k0 , (19)
where the exponent affecting α increases every iteration making
the term αk−k0 smaller every round.

V. INDIVIDUAL QUERY METHODS

In this section, we aim to simplify the query framework
presented in Section III. For that reason, we propose different
individual query methods to determine when a communication
round between the coordinator and agents is necessary. The
notation individual query method is used to describe that
the coordinator determines if communication with a specific
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agent is required by analyzing its uncertainty individually
without considering the other agents’ uncertainty measures.
This strategy reduces considerably the computation complexity
of the general method presented in Section III, but ignores the
impact of an agent’s decision on the overall prediction error
introduced to the system. However, by limiting the uncertainty
of each agent per iteration we control that the prediction error
does not affect the ADMM’s algorithm performance greatly.
Though this approach is not optimal, its simplicity makes it
suitable for applications where the computation cost needs to
be as low as possible.

In an individual query method, the decision is performed
per agent where such decision is reflected in the agent’s corre-
sponding binary decision variable γki . The general principle of
such methods is that for agent i, the controller shall make a
decision in favor of not sending a query to this agent if the
probability of an estimation error of both the Moreau envelope
and its gradients is within an acceptable bound. This estimation
error is quantified in different manners. By doing this, we drop
the minimization problem presented in (9) and we set each γki
by comparing each agent’s estimation error to a threshold. The
proposed individual query strategies were not derived arbitrarily
but following the mathematical intuition given by a confidence
interval analysis to be performed per agent. The specifics of
the proposed individual query strategies are presented in the
subsequent subsections.

A. Maximum Variance Query Method

Similar to the derivation presented in Section IV-A our goal
is to generate a decision rule where the prediction error is
small with high probability. For that reason, using the concept
of the confidence interval a threshold setting can be derived.
When the error of the prediction is below a chosen threshold,
there will be no query sent to an agent. As a consequence, we
want that the probability of the estimation error being bounded
by a small upper bound to be as large as possible.

For the following derivations we employ the general notation
used in Section IV-A, where variables F , Fl, µ, µl, δ, and
ξ were defined, and we add the definition of the vector of
variances of F as s2 = diag(Σ), where the lth element of s2

is s2l . The desired confidence interval is given by
P [−|µ|δ ≤ F − µ ≤ δ|µ|] ≥ 1− ξ. (20)

However, we want to satisfy this condition per dimension of
F . Normalizing the interval in (20) we get that the condition
per dimension is given by

P

[∣∣∣∣Fl − µl

sl

∣∣∣∣ ≤ δ|µl|
sl

, 1 ≤ l ≤ p

]
≥ 1− ξ′, (21)

where 1−ξ′ = (1−ξ)1/p. This variable is introduced to require
that the confidence interval shall be satisfied in each dimension.
Following the region probability defined in [23], we get an
immediate bound of (21) given by:

P

[∣∣∣∣Fl − µl

sl

∣∣∣∣ ≤ δ|µl|
sl

, 1 ≤ l ≤ p

]
≥

p∏
l=1

P

[∣∣∣∣Fl − µl

sl

∣∣∣∣ ≤ δ|µl|
sl

]
. (22)

However, instead of analyzing this condition for each of the
dimensions of F we can simplify the analysis by requiring
that the maximum standard deviation (the maximum element
of vector s) satisfy the condition inside the probability in (21)
when the bound is minimum. This is attained when

P

[
|Fl − µl|

sl
≤ δ|min1≤l≤p(µl)|

max1≤l≤p(sl)
, 1 ≤ l ≤ p

]
≤ 1− ξ′. (23)

The expression in (23) is the same as requiring

max
1≤l≤p

(sl) ≤
|min1≤l≤p(µl)|δ
Q−1(ξ′/2)

= ψ(1), (24)

where Q−1() is the inverse of the Q-function Q(x) =∫∞
x

1√
2π
e−v2/2dv. The right-hand side of the inequality in

(24) can be used as the threshold ψ(1) to compare the
maximum element of the vector of variances s (sl). In case
max1≤l≤p(sl) ≤ ψ(1), then automatically all the elements of
s satisfy the condition.

In the context of the problem defined in Section II, the
GP regression gives us at each iteration, and for agent i the
predicted mean µk

i (z
k
i ) and the conditional covariance matrix

Σk
i (z

k
i ). In this scenario, the vector of variances will be defined

as (ski )
2 = diag(Σk

i (z
k
i )). Furthermore, as mentioned in the

previous section, each agent’s GP prediction uncertainty reduces
over the algorithmic rounds. For that reason, the threshold ψ(1)

should not be static as it is implied in (24) but should decrease
over the ADMM iterations. This requires the control variables
ξ and δ to adapt at each iteration which can be problematic
considering that the two variables need to be adjusted at each
round. Therefore, we do not use the specific threshold ψ(1)

defined in (24), but instead, employ a general threshold ψk
i

per agent which follows the threshold mechanism described
in Section IV-D. Finally, under this querying mechanism, the
variable γki is defined as

γki =

{
0, if max1≤l≤p(s

k
i[l]) ≤ ψk

i

1, otherwise.
(25)

B. Maximum Variance and Mean Ratio Query Method
The subsequent proposed strategy expands from the con-

fidence interval analysis presented in Section V-A to build
its mathematical intuition. Following the confidence interval
defined in (21), to require that each dimension at an agent
have a small relative estimation error, we are interested in
evaluating the bound in (22). Defining a∗ = max1≤l≤p

sl
µl

, it
is then straightforward to show that if

p∏
l=1

P

[∣∣∣∣Fl − µl

sl

∣∣∣∣ ≤ δ|µl|
sl

]
≥
(
P

[∣∣∣∣Fl − µl

sl

∣∣∣∣ ≤ δ

a∗

])p

≥ 1− ξ, (26)

we always satisfy

P

[∣∣∣∣Fl − µl

sl

∣∣∣∣ ≤ δ|µl|
sl

, 1 ≤ l ≤ p

]
≥ 1− ξ. (27)

Note that under the Gaussian process model, each Fl is
Gaussian following N (µl, sl). If Fl−µl

sl
follows N (0, 1), we

then obtain a sufficient condition to meet the confidence region
requirement stated in (27), namely

max
1≤l≤p

s[l]

|µ[l]|
≤ δ

Q−1(1/2− 1/2 ∗ (1− ξ)1/p)
= ψ(2), (28)
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where Q−1() is the inverse of the Q-function Q(x) =∫∞
x

1√
2π
e−v2

dv. The upper-bound expressed in (28) is im-
posed not on the maximum element of s but in the maximum
ratio of sl

|µl| . The right-hand side of the expression in (28)
allows us to define a threshold variable named this time ψ(2).

In the context of our problem defined in Section II, the
threshold ψ(2) should decrease over the ADMM algorithmic
rounds to keep up with the uncertainty reduction of the
GP prediction. Similar to the query method presented in
Section V-A, we do not use the specific threshold ψ(2) defined
in (28), but instead employ a general threshold ψk

i per agent
following the mechanism described in Section IV-D. Using
the notation of our problem, the variable γki under this query
strategy is defined as

γki =

0, if max
1≤l≤p

ski[l]
|µk

i[l]
(zk

i )|
≤ ψk

i

1, otherwise.
(29)

C. Ratio of Maximum Eigenvalue and the Norm of the Mean

In this subsection, we derive a norm-based decision strategy
about when a query shall be sent to an agent by the coordinator
similar to the one derived in Section IV-D. Our objective is to
fulfill the decision criterion presented in (10) given by:

P
[
||F − µ||2 ≤ ||µ||2δ

]
≥ 1− ξ.

Following the same transformation presented in Section IV-D
expressed in (11), we seek for an alternative sufficient condition
to satisfy the confidence sphere condition in (11). We find
an alternative lower bound on this probability by defining
λ1 = max1≤l≤p λl and resorting to the following inequality

p∑
l=1

G2
l

λl
≥ 1

λ1

p∑
i=1

|Gl|2 =
1

λ1
||G||2, (30)

where Gl/
√
λl are i.i.d. standard Gaussian following N (0, 1),

which suggests that
∑p

l=1
G2

l

λl
follows a chi-square distribution

with degree of p, i.e.
∑p

l=1
G2

l

λl
∼ χ2

p. Based on the desired
bound in (10) and the inequality in (11), we have a sufficient
condition to satisfy (10) given by:

P
[
||G||2 ≤ ||µ||2δ

]
≥ P

[
p∑

l=1

G2
l

λl
≤ 1

λ1
||µ||δ2

]
≥ 1− ξ.

(31)
This expression can be satisfied if λ1, the maximum eigenvalue
of the matrix Σ, satisfies the following condition:

λ1
||µ||22

≤ δ2

F−1
χ2 (1− ξ)

= ψ(3), (32)

where F−1
χ2 (.) is the inverse function of the CDF of the chi-

square random variable. Thus, if λ1

||µ||22
≤ ψ(3), we ensure that

the confidence sphere criterion in (11) is met; thus, there is
no need to send a query. It should be noted that different
from the approach following a high dimensional confidence
region whose sufficient condition is based on the maximum
ratio between the standard deviation and its associated absolute
mean, as stated in (28), we need to compare the ratio between
the maximum eigenvalue and the square of the L-2 norm of
the conditional mean to a threshold subject to the chi-square
distribution, under the confidence sphere setting.

In the context of the problem defined in Section II, we define
the transformation Σk

i (z
k
i ) = UkΛk

i (U
k)′, where the column

vectors of Uk are normalized eigenvectors of the matrix Σk
i (z

k
i ),

and Λk
i is the diagonal matrix whose diagonal entries are

eigenvalues of Σk
i (z

k
i ) sorted in a descending order λk1 ≥ λk2 ≥

· · · ≥ λkp > 0. Once again, the specific threshold presented in
this subsection was not used and was replaced by a general
threshold ψk

i per agent following the mechanism described in
Section IV-D. Finally, we define a query strategy where the
variable γki is defined as

γki =

{
0, if λk

1

||µk
i (z

k
i )||22

≤ ψk
i

1, otherwise.
(33)

The query strategies presented in this section are simple
strategies with low impact on the overall computational cost,
but they ignore the inherent uncertainty dependencies between
the agents which will negatively affect the performance of
the ADMM algorithm. The following section presents a
comparative analysis of the mathematical foundation of each of
the proposed methods to have an intuition about what querying
behavior to expect for each method.

VI. METHOD’S PROBABILITY COMPARISON

In this small section, we present a comparative analysis of
the probabilities used as a foundation of the various querying
strategies presented in this work. This analysis allows us to
have an idea of the expected querying behavior for each of
the methods. For the following derivations, we use the same
notation used to derive each of the method’s probabilities first
defined in Section IV-A.

1) Relationship between Maximum Variance and Maximum
Ratio Methods: Comparing the conditions presented in (23)
and (26), while acknowledging the bound presented in (22), we
can observe that the condition in (23) is more likely to occur.
Thus, we have that the relationship between the Maximum
Variance and Maximum Ratio between variance and mean
methods is given by(

P

[
|Fl − µl|

sl
≤ δ

a∗

])p

≤

P

[
|Fl − µl|

sl
≤ δ|min1≤l≤p(µl)|

max1≤l≤p(sl)
, 1 ≤ l ≤ p

]
. (34)

This relationship shows that the condition given by the
maximum ratio method is more stringent than the one for
the maximum variance. For that reason, we anticipate the
former to behave more aggressively in terms of the frequency
of queries.

2) Relationship between L2 Norm based Methods and an
L1 Norm condition: The querying strategies involving the
maximum eigenvalue and the trace, presented in Sections
V-C and IV-A respectively, are derived starting with the same
confidence sphere involving the L2 norm of F − µ. This
confidence region is defined in Equation (10). We want to find
a relationship between this confidence sphere and a condition
involving the L1 norm of F − µ given by

P [||F − µ||1 ≤ δ||µ||2] ≥ 1− ξ. (35)
We know that for any real vector x, the relationship between L1
and L2 norm is given by ||x||1 > ||x||2. This results in that the
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event in (10) is bigger than the event in (35). Furthermore, such
an event contains the one in (35). Therefore, if the condition
in (10) holds true then automatically the condition in (35) is
also true. However, if (35) is true not necessarily (10) is true.
For that reason, the condition in (10) is more likely to occur
which results in the following relationship

P [||F − µ||1 ≤ δ||µ||2] < P [||F − µ||2 ≤ δ||µ||2] . (36)

3) Relationship between Maximum Variance Method and an
L1 Norm condition: The probability in the condition given in
(35) can be expressed as

P

[
p∑

l=1

|Fl − µl| ≤ δ||µ||2

]
. (37)

Since δ||µ||2 is a constant we have that the probability of a
particular dimension is given by

P

[
|Fl − µl| ≤

1

p
δ||µ||2, 1 ≤ l ≤ p

]
. (38)

The event of the probability in (37) is a bigger event than
obtaining the probability given in (38). Therefore, the condition
in (37) is more likely to occur giving the following relationship

P

[
|Fl − µl| ≤

1

p
δ||µ||2, 1 ≤ l ≤ p

]
≤ P [||F − µ||1 ≤ δ||µ||2] . (39)

Now, we want to compare the left-hand side of (39) with
the probability expression for the Maximum Variance method
in (21). Since the variable δ used throughout all the derived
probabilities is a variable that can be tuned, we can define a
variable δ̂ such that 1

p δ̂||µ||2 = δ|min1≤l≤p(µl)|. Dividing
by sl on both sides of the left-hand side of (39), it is
straightforward to see the following relationship

P

[∣∣F[l] − µ[l]

∣∣
sl

≤ δ|min1≤l≤p(µl)|
max1≤l≤p(sl)

, 1 ≤ l ≤ p

]
≤

P

[
|Fl − µl|

sl
≤ 1

p

δ̂||µ||2
sl

, 1 ≤ l ≤ p

]
≤

P
[
||F − µ||1 ≤ δ̂||µ||2

]
. (40)

This results in the condition based on the L1 norm of F − µ
being more likely to occur than the condition used in the query
method based on the maximum variance.

4) Complete Relationship: Combining the inequalities ob-
tained in (34), (36), and (40) with the definition of δ̂ we get
the following relationship(

P

[
|Fl − µl|

sl
≤ δ

a∗

])p

≤

P

[
|Fl − µl|

sl
≤ δ|min1≤l≤p(µl)|

max1≤l≤p(sl)
, 1 ≤ l ≤ p

]
≤

P
[
||F − µ||1 ≤ δ̂||µ||2

]
< P

[
||F − µ||2 ≤ δ̂||µ||2

]
. (41)

The relationship presented in (41) shows how the probabilities
used in our proposed decision strategies compare against each
other. This relationship allows us to anticipate that the querying
dynamics will be more aggressive when using the method based
on the maximum ratio of mean and variance, followed by the
method based on the maximum variance, and finally, the two
methods based on the confidence sphere will present a more

relaxed querying dynamics. The following section presents the
numerical simulations used to test all the methods presented in
this manuscript where we expect to observe a behavior between
methods that is congruent with the analysis presented in this
section.

VII. NUMERICAL SIMULATIONS

In this section, we test the methods proposed in this work
by solving a sharing problem where the agent’s sub-problems
are quadratic. The specifics of the considered sharing problem,
the simulation settings, and the results obtained are presented
next.

A. Quadratic Problem

1) Problem Definition: We test our methods using a sharing
problem motivated by the application presented in [6]. In this
work, we did not employ the dynamic behavior of the variables
as in [6], but we adapted the problem so the variables are fixed
and do not vary at each algorithmic step. The specifics of the
considered sharing problem are

minimize
n∑

i=1

[(1/2)xTi Mixi + wT
i xi + ci]

+ (1/2)

n∑
i=1

yTi Mh

n∑
j=1

yj + wT
h

n∑
i=1

yi + ch

subject to xi − yi = 0,
(42)

where for i = 1, · · · , n, variables xi, yi ∈ Rp, with wi, wh ∈
Rp, Mi,Mh ∈ Rp×p positive definite, and ci, ch ∈ R being
given problem parameters.

2) Calculation of Variables Mi, Mh, wi, wh, ci and ch: The
problem’s variables presented (42) are generated following the
example given in [6]. First, the variables ci and ch will be two
randomly generated numbers that are uniformly distributed on
[-1,1]. For the case of wi, we generate for each agent a variable
w

[0]
i which is a p-dimensional vector with entries randomly

generated and uniformly distributed on [-1,1]. Then, the value of
wi is generated for each agent following wi = w

[0]
i +ηsi, where

η is some small positive number, and si is a p-dimensional
vector for agent i whose entries are randomly generated and
uniformly distributed on [-1,1]. The variable wh is generated
following the same procedure as wi, but it is calculated only
once and not for each agent.

On the other hand, to calculate Mi for each agent we first
generate a symmetric p× p matrix M [0]

i = A ∗A′, where the
entries of A are randomly generated and uniformly distributed
on [-1,1]. Then, we generate M̃i = M

[0]
i + ηSi, where Si =

B ∗ B′ is a symmetric p × p matrix with the entries of B
being randomly generated and uniformly distributed on [-1,1].
Subsequently, Mi is constructed as

Mi =

{
M̃i, if λmin(M̃i) > ϵd

M̃i +
(
ϵd − λmin(M̃i)

)
Ip, otherwise,

(43)
where λmin(M̃i) denotes the smallest eigenvalue of M̃i and
ϵd > 0 is some positive constant. The procedure in (43) is
performed to ensure that Mi is positive definite. The variable
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Fig. 2: Performance trade-off between the Relative Transmission Time Reduction and the Negative Logarithm of the Relative
Error for 10 Agents with variable’s dimension p = 5 (left) and p = 10 (right). The plots show the 12 best ranked tuple medians
of the 100 simulations for different sets of parameters Mi, Mh, wi, wh, ci and ch, and for different values of α.

Mh is generated following the same procedure as Mi, but it
is calculated only once and not for each agent.

3) Solution with ADMM: Following the specifics of the
problem in (42) and the ADMM expression in (2), we can
derive a closed-form solution for the update of the ADMM’s
variable xk+1

i . Because the function fi is convex, the optimal
solution of xk+1

i is attained when the gradient of the objective
function vanishes. By taking the gradient of the xk+1

i -update
and equaling it to zero we obtain

xk+1
i = (Mi + ρIp)

−1(ρzki − wi), (44)
where Ip is the p×p identity matrix. The expression in (44) is
the closed-form solution of the optimization for the xi update
to be computed at the agent side.

Similarly, we can derive a closed-form solution for the ȳk+1

update. Because the function h is also convex quadratic then
once again the optimal solution of ȳk+1 is attained when the
gradient of the objective function vanishes, leading to the
expression

ȳk+1 = (nMh + ρIp)
−1(ρ(uk + x̄k+1)− wh). (45)

Finally, combining the ADMM expression in (2) with the
expressions in (44) and (45), we get that the ADMM updates
are expressed as

xk+1
i = (Mi + ρIp)

−1(ρzki − wi)

ȳk+1 = (nMh + ρIp)
−1((ρ/n)vk − wh)

uk+1 = (1/n)(vk − nȳk+1), (46)
where vk = nȳk − (1/ρ)

∑n
i=1 β

k
i .

B. Specific form of the joint trace

As presented in Section IV-B, our proposed collective query
strategy depends on an uncertainty measurement given by the
trace of the joint uncertainty of the ADMM updates. The spe-
cific expression of tr(Cov[xk+1; ȳk+1;uk+1]|γk]), following
the specific ADMM updates presented in (46), is given by

tr(Cov[xk+1; ȳk+1;uk+1|γk]) =(
(1/ρ)2 + (1/nρ)2

) n∑
i=1

(1− γki )tr
(
Σk

i (z
k
i )
)
+

(2/n2)

n∑
i=1

(1− γki )tr
(
CTCΣk

i (z
k
i )
)
−

2(1/n2ρ)

n∑
i=1

(1− γki )tr
(
CΣk

i (z
k
i )
)

, (47)

where C = (nMh + ρIp)
−1.

C. Simulation Implementation
The problem in (42) is solved with two different algorithms:
1) Sync: this algorithm uses ADMM with proximal operator

as in (2), which simplifies to (46) with ρ = 10.
2) STEP-GP: the algorithm proposed in [18].

For the STEP-GP algorithm, different query methods are
considered as follows:

• MaxVar: The query strategy presented in Section V-A.
• MaxRat: The query strategy presented in Section V-B.
• MaxEig: The query strategy presented in Section V-C.
• L1Norm-Trace: The query strategy presented in Sec-

tion IV-B.
In our simulations, we consider the following combina-
tions: Sync, STEP-GP:MaxVar, STEP-GP:MaxRat, STEP-
GP:MaxEig, and STEP-GP:L1Norm-Trace. Also, we consider
three cases where n ∈ {10, 20, 30}.

The simulations were implemented in MATLAB. For com-
parison purposes, the solution to the minimization problems
following (42) are obtained directly using the YALMIP
toolbox [24]. For the regression training and inference, we
use the GPstuff toolbox [25]. The computation was conducted
with high-performance computational resources provided by
Louisiana State University (http://www.hpc.lsu.edu).



10

5 5.5 6 6.5 7
0

0.2

0.4

0.6

0.8

Median Negative Logarithm of Relative Error

M
ed

ia
n

R
el

.T
xT

im
e

R
ed

uc
tio

n
20 Agents (p=5)

Sync:Exact STEP-GP:MaxVar STEP-GP:MaxRat STEP-GP:MaxEig STEP-GP:L1Norm-Trace

5.5 6 6.5 7 7.5 8
0

0.2

0.4

0.6

0.8

Median Negative Logarithm of Relative Error

M
ed

ia
n

R
el

.T
xT

im
e

R
ed

uc
tio

n

20 Agents (p=10)

Fig. 3: Performance trade-off between the Relative Transmission Time Reduction and the Negative Logarithm of the Relative
Error for 20 Agents with variable’s dimension p = 5 (left) and p = 10 (right). The plots show the 12 best ranked tuple medians
of the 100 simulations for different sets of parameters Mi, Mh, wi, wh, ci and ch, and for different values of α.

D. Metrics and Considerations

1) MAC Metric: We include a simulation component to
reflect the channel contention assuming that the coordinator
communicates with the agents wirelessly following the IEEE
802.11 specification. We employed the 802.11 CSMA/CA
simulator presented in [26], which was implemented in MAT-
LAB. The simulator returns the number of total transmissions,
successful transmissions, and an efficiency value defined by
ζ = st/tt, where st is the successful transmissions observed
and tt the total amount of transmissions performed. The
simulation was run offline 1000 times to obtain an average
efficiency ζ. At iteration k, the coordinator receives a certain
number of simultaneous responses which are expressed in the
variable T k

simul. The expected transmission time in one iteration
round will be T k

round = T k
simul/ζ

∗ , where ζ∗ is the average
efficiency in the MAC simulation for the given scenario. The
total transmission time is Txt =

∑N
k=1 T

k
round, where N is the

number of iterations taken to reach convergence. This metric is
not only affected by the total number of communications that
were performed but also the number of agents communicating
at each iteration, thereby making it a more robust metric to
compare the performance of our proposed methods.

2) ADMM Termination Criterion: For our simulations, we
use the ADMM termination criterion presented in Section 3.3.1
in [4]. Such criterion presents two conditions comparing the
primal and dual of ADMM against two different tolerances.
Expressing the primal and dual in terms of the specifics of our
problem result in a termination criterion of the form:

∥x̄k+1 − ȳk+1∥2 ≤ ϵpri and ∥ρ(ȳk+1 − ȳk)∥2 ≤ ϵdual (48)
, where ϵpri > 0 and ϵdual > 0 are feasibility tolerances for the
primal and dual feasibility conditions. These tolerances can be
chosen using an absolute and relative criterion, such as

ϵpri =
√
pϵabs + ϵrel max(∥x̄k+1∥2, ∥ȳk+1∥2),

ϵdual =
√
pϵabs + ϵrel∥ȳk+1∥2, (49)

where ϵabs > 0 is an absolute tolerance, ϵrel > 0 is a relative
tolerance, and the factor

√
p account for the fact that the l2

norms are in Rp. Both ϵabs and ϵrel are manually set at the
beginning of the algorithm. The choice of ϵabs depends on the
scale of the typical variable values of the application, while
reasonable values for ϵrel might be 10−3 or 10−4, depending
on the application.

3) Performance Trade-off: We propose to present the results
showing directly the trade-off between the transmission time
reduction and the accuracy of the algorithm. Let’s define the
negative logarithm of the relative error (NLRE) expression as

NLRE = − log(|Jgt − J∗|/Jgt), (50)
where Jgt is the true optimal value calculated directly with
a convex solver, and J∗ is the objective value obtained by a
particular approach. Also, let’s define the relative transmission
time reduction (RTx) as

RTx = (TxADMM − TxGP )/TxADMM , (51)
where TxADMM is the transmission time obtained when
running the Sync:Exact algorithm, and TxGP is the transmission
time obtained by any of the methods using the STEP-GP
algorithm. The metric RTx assumes that Sync:Exact and the
method using STEP-GP use the same set of problem’s variables.

We present our results in a graph where the vertical axis
shows values for RTx and the horizontal axis presents values
of NLRE. Each point of the graph is a tuple of transmission
time reduction and accuracy, and its location indicate how well
it performs in terms of the trade-off between these two relative
metrics. In particular, the ideal scenario is when NLRE and
RTx are both as large as possible. Hence, we want the points
to be as close as possible to the right upper corner of the graph.

E. Initial Threshold Tuning

We believe that the variation of the initial threshold has
the potential to significantly affect the overall performance of
the tested algorithms. For that reason, we propose to fine-tune
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Fig. 4: Performance trade-off between the Relative Transmission Time Reduction and the Negative Logarithm of the Relative
Error for 30 Agents with variable’s dimension p = 5 (left) and p = 10 (right). The plots show the 12 best ranked tuple medians
of the 100 simulations for different sets of parameters Mi, Mh, wi, wh, ci and ch, and for different values of α.

the initial threshold for the multiple methods proposed in this
work. We consider testing 11 different initial thresholds per
case so we can capture the impact of such variation in the
proposed methods. The threshold presented in Section IV-D
initializes its initial threshold ψk0 following the expression
in (18). Such initialization requires manually setting the
variable ι which indicates how proportional concerning V k0

we want ψk0 to be. For all the different methods tested
in this chapter, we considered tunning ψk0 by considering
ι = [0.5, 0.6 . . . , 1.4, 1.5].

F. Simulation Results Setting

In this subsection, we present the results for 10, 20, and 30
agents when using the different query strategies proposed in this
work with the threshold mechanism described in Section IV-D.
We considered different initial threshold values following the
description in Section VII-E. Each algorithm for the different
methods was run 100 times with different sets of Mi, Mh, wi,
wh, ci and ch generated as in Section VII-A2. In the generated
graphs, each point among the same colored cluster represents
a tuple of the median values among the 100 simulations of the
same method for the NLRE and RTx metrics, as presented
in Section VII-D3.

The decaying threshold described in Section IV-D is greatly
affected by the selection of the decay rate α. For that reason,
we also considered running simulations for different values of
α on top of the tuning of the initial threshold. Since we are
considering a set of 11 initial thresholds per method, then each
tested scenario has 11 points per method and per value of α.
The best performance of a given method might occur for a
value of α that is not necessarily the same as the rest of the
methods. Consequently, we present the results in Figures 2-4
as a ranking of all the median points across all different values
of α tested. The ranking is done by setting a tuple as an upper
bound with a value of NLRE and RTx that is higher than any

of the obtained values in our results. Then, we will calculate
the Euclidean distance of all the median points obtained across
the different values of α to the upper bound tuple. The 12
median points that attain the lowest distance are included in
the graph.

This set of results considered values of η = 0.2, ϵd =
1, ρ = 10, p = 5, an absolute tolerance value of ϵabs =
10−6, a relative tolerance value of ϵrel = 10−5, values of
α = [0.95, 0.96, . . . , 0.99], and x0i = ȳ0 = u0 = 0 .

G. Simulation Results for 10, 20, and 30 Agents

Figures 2-4 (left) present the NLRE vs RTx graph for
10, 20, and 30 agents of the median of 100 simulations for
Sync:Exact and the STEP-GP based algorithms for the different
initial thresholds considered, per each of the considered values
of α when the variables’ dimension is p = 5, while Figures 2-4
(right) show the same information but for variables’ dimension
p = 10. The presented results were selected as a consequence
of a rank of the best points in terms of the trade-off across
all tested values of α. The results in all cases show three
main clustering of the presented points. In the lower-left corner
appear the points corresponding to STEP-GP:MaxRat in all
cases, which presents the worst performance in terms of the
trade-off between communication reduction and accuracy. In
the upper-left corner, with similar results to each other in
all cases, appear STEP-GP:MaxVar and STEP-GP:MaxEig.
Those methods present a similar reduction of the transmission
time, however STEP-GP:MaxVar presents better relative error
values than STEP-GP:MaxEig which is showcased by the points
coming from STEP-GP:MaxVar being closer to the ideal case.
In the upper-right corner and separated from the other methods
appears STEP-GP:L1Norm-Trace with all its points close to
each other in all the presented graphs.

On the other hand, the results presented in terms of the
relative transmission time reduction in Figures 2-4 correlates
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Fig. 5: Results of the median out of 100 simulations for 30 agents and different sets of parameters Mi, Mh, wi, wh, ci, and ch
when those variables dimension is p = 10. Graph (a) presents the median values of the Transmission Time for each of the
considered values of ι for a decaying rate α = 0.97. Graph (b) presents the median values of the Negative Logarithm of the
Relative Error for each of the considered values of ι for a decaying rate α = 0.97. Graph (c) presents the median values of the
Transmission Time for each of the considered values of ι for a decaying rate α = 0.99. Graph (d) presents the median values
of the Negative Logarithm of the Relative Error for each of the considered values of ι for a decaying rate α = 0.99.

with the analysis presented in Section VI. As seen in the graphs,
STEP-GP:MaxRat presents the least communication reduction
in all cases. The observation of the intermediate results showed
that this method asked queries for each agent in around 80% of
the total iterations required to reach convergence. Additionally,
the two methods based on an L2 norm confidence sphere
(STEP-GP:MaxEig and STEP-GP:L1Norm-Trace) present as
a cluster a little more relative transmission time reduction
than the STEP-GP:MaxVar method. This difference is not
significant if we only analyze the relative transmission time
reduction metric. However, observing the intermediate results
we observed that STEP-GP:MaxEig and STEP-GP:L1Norm-
Trace present a lower frequency of queries but require more
iterations to converge than STEP-GP:MaxVar. This behavior is
more pronounced for the STEP-GP:L1Norm-Trace where the
frequency of queries is considerably lower but the increment in
number of iterations is also very significant. Thus, the results
generated are aligned with the anticipated query behavior.

H. Initial Tuning Impact

The results presented in Figure 5 show the impact of the
initial parameters on the overall performance of our proposed
methods. The graph presents 4 different plots for the case of 30
agents with variable’s dimension p = 10. The two upper plots
show results of the variation of the median of the transmission
time (Graph (a)) and the NLRE metric (Graph (b)) through the
different values of ι considered and for a threshold decay rate
α = 0.97. Graphs (c) and (d) present the same information but
for a threshold decay rate α = 0.99. In the results presented in
the previous subsections, we considered a ranking of the results
to present the best results achieved by each method across the
tested scenarios. Figure 5 shows that for specific cases, the
best performance is not always attained by the method that
achieved the best-ranked performance. In all of the cases where
the ranked points were presented, STEP-GP:L1Norm-Trace
is the one achieving the biggest relative transmission time
reduction and lowest relative error. However, when α = 0.99
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Fig. 6: Variation of the primal residual through the iteration count for all the proposed query methods. The graphs present the
test scenario for the same set of parameters Mi, Mh, wi, wh, ci, and ch of 10 agents with variables’ dimension of p = 10, an
initial threshold given by ι = 1, and decay rate α = 0.97 for all cases.

we can see that this method presents worse relative error values
than STEP-GP:MaxVar and STEP-GP:MaxEig through all the
considered values of ι. This is because under those setting the
STEP-GP:L1Norm-Trace method presents a really low query
frequency which makes the ADMM algorithm rely heavily upon
a GP prediction that is not updated often which, overall, affects
the accuracy of our algorithm. Furthermore, if we weigh lower
communication cost as more important, overall for all methods
choosing α = 0.99 would be the best option, where STEP-
GP:MaxEig has the best performance in terms of attainable
accuracy. However, if we weigh more on the relative accuracy,
choosing α = 0.97 is the better option, at which the STEP-
GP:L1Norm-Trace ends up as the best. This example illustrates
the difficulty to present a fair comparison between our proposed
algorithms and the challenge of finding the parameters that
produce the best results for each one of them.

I. Empirical Convergence

In this subsection, we present an empirical analysis of the
convergence of our methods. Figure 6 shows the ADMM primal
residual as defined in Section VII-D2 through the iteration
count until reaching convergence for all the tested methods.

The four graphs present the test scenario for the same set of
parameters Mi, Mh, wi, wh, ci, and ch of 10 agents with
variables’ dimension of p = 10, an initial threshold set by
ι = 1, and decay rate α = 0.97 for all cases. The presented
figures show the decaying behavior of the residual until a
significant drop when convergence is achieved. The main
difference between methods is the speed of convergence which
is defined by the query frequency. The smaller such frequency,
the larger the convergence speed. The speed of convergence
shown in Figure 6 for each method is aligned with the analysis
presented in Sections VI and VII-G. Even though only one
case is presented, this trend is observed in all the test scenarios
considered in all our experiments presented in the previous
subsections. Thus, all the simulations generated (regardless of
the test scenario parameters) reached convergence and each
query strategy present the same convergence speed behavior.

J. Prediction Error

In this subsection, we present statistics about how the predic-
tion error behaves in our algorithm through all different query
methods. Figure 7 presents two graphs showing information on
the prediction error of a simulation corresponding to agent 1
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Fig. 7: Prediction Error statistics corresponding to agent 1 under the STEP-GP:L1Norm-Trace query strategy for a specific set
of parameters Mi, Mh, wi, wh, ci, and ch in a system of 10 agents with variables’ dimension of p = 10, an initial threshold
set by ι = 1, and decay rate α = 0.97. Graph (a) presents the histogram of the normalized prediction error while graph (b)
presents the variation of the L2 norm of the prediction error at each iteration.

under the STEP-GP:L1Norm-Trace query strategy for a specific
set of parameters Mi, Mh, wi, wh, ci, and ch in a system of 10
agents with variables’ dimension of p = 10, an initial threshold
set by ι = 1, and decay rate α = 0.97. To generate both graphs
we calculated the real values of the Moreau Envelope and its
gradient even in iterations where a query was not requested.

In Figure 7 (a) we present the histogram of the normalized
prediction error defined as

ϵki[NPE] =

∣∣∣∣[f 1
ρ

i (zki );∇f
1
ρ

i (zki )

]
− µk

i

∣∣∣∣
ski

.

This normalized error results in a vector generated at each
iteration for each agent. To construct the presented histogram,
we consider each individual component of the vector ϵki[NE]

as a point to be considered in the graph. Following the GP
assumptions, we should expect that the discrepancy between
Moreau Envelope and its gradient, with the predicted mean
follows a Gaussian distribution. However, the histogram in
Figure 7 (a) contradicts the prior expectation. This non-
normality of the prediction error is also observed in other query
strategies throughout different system parameters. Some cases
presented histograms showing more discrepancy with respect
to the expected Gaussian bell shape than the one presented in
Figure 7 (a). This is interesting because these results show that
even though the assumed Gaussian distribution of f

1
ρ

i (zki ) does
not hold, the GP is still able to perform a good prediction with
acceptable accuracy. Furthermore, this discrepancy with the
initial assumption did not prevent any of the tested scenarios
to reach convergence.

On the other hand, Figure 7 (b) presents the variation of the
L2 norm of the prediction error at each iteration for agent 1.
This is defined as

ϵki[PE] =

∣∣∣∣∣∣∣∣[f 1
ρ

i (zki );∇f
1
ρ

i (zki )

]
− µk

i

∣∣∣∣∣∣∣∣
2

.

This metric generates a single point per iteration, so the
presented graph shows the variation of the prediction error
over the algorithmic iterations. Figure 7 (b) also makes a
differentiation between iterations where a query was made
(green points) and iterations where there was no query (blue
points). The decaying behavior of the prediction error is clearly
seen in the graph with a significant drop closer to convergence.
This behavior is desirable because we want our prediction
to become more accurate through the algorithmic iterations
which is a favorable condition to be confident not only that
we reach convergence but that we converge to a good solution.
Furthermore, the figure shows a bursting behavior between
intervals where we see an increment in the prediction error
during the interval where no query was made and an abrupt
drop once a query is requested. This behavior of the prediction
error is observed for all agents through all the different test
scenarios and different query strategies.

K. Query Dynamics

In this subsection, we present information on the distances
between the queries zki generated at each iteration compared to
the past query points included in the GP training set. Figure 8
(a) presents the measurement of the minimum distance between
a new query vector against all the query vectors already in the
training set. This distance is defined as

d(zki , Z
k) = inf{d(zki , z) : z ∈ Zk

i },
where Zk

i is the set containing the queries inside the GP training
set for agent i until iteration k and d(.) is the distance function.
Since each generated zki is a vector, the distance function
considered is d(zki , Z

k) = ||zki − z||2 where z ∈ Zk
i . Figure 8

(a) presents a differentiation between iterations where a query
was made (green points) and iterations where there was no
query (blue points). The results show that the distance between
the queries throughout the iterations tends to reduce the closer
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Fig. 8: Distances between generated query points for a specific set of parameters Mi, Mh, wi, wh, ci, and ch in a system of
10 agents with variables’ dimension of p = 10, an initial threshold set by ι = 1, and decay rate α = 0.97. Graph (a) presents
the measurement of the minimum distance between a new query vector against all the query vectors already in the training set.
Graph (b) presents the minimum query distances between query points that are already part of the training set only.

we are to convergence. This correlates with the information
observed in Figure 7 (b) where the prediction error also reduces
the closer we are to convergence. The closer the query points are
at the end of the algorithm run the more points are trained in GP
around a close vicinity, reducing considerably the uncertainty
of the prediction. Also, the behavior of the distance of queries
presented in Figure 8 (a) presents a similar bursting behavior
as observed for the prediction error in Figure 7 (b).

On the other hand, Figure 8 (b) presents the minimum query
distances between the query points already included in the
training set. Only when a new point is added to the training set
this minimum distance is recalculated. This distance is defined
as

d(z, x) = inf{d(z, x) : z, x ∈ Zk
i , z ̸= x},

where d(.) once again is defined as d(z, x) = ||z − x||2. The
graph in Figure 8 (b) presents a new point when a query is
made, so each point presented represents an interval after a
period of iterations where no query was made. Similar to the
results presented in Figure 8 (b), the distance between query
points also decrease closer to convergence. However, in the
case where we only compare points that are part of the training
set we do not see increasing variations at any point.

L. Overall Remarks

The presented results across different initial parameters
showed that the joint query method STEP-GP:L1Norm-Trace
is the method that achieved better trade-off performance among
all query strategies tested. An observation we made during
the simulations is that such a method tends to reduce the
required queries considerably, however, it does not require
extensive communication rounds to obtain good values for
the NLRE metric. When compared to the other tested
methods, for similar values of total transmission time the
STEP-GP:L1Norm-Trace method usually produces a global

ADMM solution closer to the true solution. On the contrary,
the STEP-GP:MaxRat method proved to be the one with the
worst trade-off performance among all the tested methods.
Even though the other individual query strategies presented
a similar behavior, it was STEP-GP:MaxVar that presented
a better overall trade-off performance compared to STEP-
GP:MaxEig. Also, the results obtained were consistent through
all the different simulation cases presented. The querying
behavior observed during simulations correlates with the
previous analysis resulting in an anticipated querying behavior
of the proposed methods.

The results presented showed that the more complex querying
strategy can achieve the best performance. This outcome agrees
with the intuitive idea that the method closer to the general
querying framework should achieve better performance. On
the other hand, the individual query methods despite their
simple strategy were able to maintain an acceptable accuracy
while reducing the transmission time considerably. Thus, the
individual strategies STEP-GP:MaxVar and STEP-GP:MaxEig
are viable options in scenarios where the computation cost
needs to be as low as possible.

VIII. CONCLUSION

Distributed optimization methods such as ADMM usually
incur excessive undesired communication overhead. In such
context, the use of Gaussian Processes has proven effective
in learning the unknown proximal operators of the agents.
Therefore, the coordinator can predict the solutions to the
local proximal minimization sub-problems, requiring fewer
queries to the agents, which leads to a significant reduction in
communication. However, the extent of the achievable commu-
nication reduction is in part dependent on the mechanism upon
which the coordinator decides if communication with the agents
is needed. For that reason, this work proposed several query
strategies to decide whether the coordinator should send queries
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to the agents in a particular iteration when running the STEP-
GP algorithm based on the notion of the general querying
framework. Such an ideal mechanism solves a constrained
optimization problem balancing two opposing criteria which are
to maximize the communication reduction while minimizing
the error of the final solution obtained. Motivated by this
systematic method and an alternative expression of the regular
ADMM updates showcasing the inherent coupling between
agents, we proposed a joint query strategy that consists in
minimizing a convex communication cost constrained by the
trace of the joint uncertainty of the ADMM variables. On the
other hand, to reduce the computational burden added to our
algorithm, we proposed different individual query strategies for
each agent using an individual uncertainty measure to determine
if the prediction is reliable enough to skip a communication
round. Numerical simulations of a distributed network solving
a sharing problem with quadratic cost functions showed the
different performance of the proposed methods in terms of
the trade-off between communication reduction and accuracy.
In particular, the proposed collective query method achieved
a better trade-off performance, when compared with the
independent query strategies.
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APPENDIX
APPENDIX A: PROOF OF PROPOSITION 2

Combining the definition of zki = xki + ȳ
k− x̄k−uk and the

expression for xk+1
i defined in (5), we can express the update

of ȳ in (8) as
ȳk+1 = (1/n)argmin

ŷ∈Rp

{
h(ŷ) + (ρ/2n)∥ŷ − n(x̄k+1 + uk)∥2

}
,

where ŷ = nȳ. Then, we can express ȳk+1 in terms of its
proximal operator ȳk+1 = (1/n)prox(n/ρ)h[n(x̄

k+1 + uk)],
which can be expressed in terms of the gradient of the Moreau
Envelope of h, as in (5), leading to
ȳk+1 = (x̄k+1 + uk)− (1/ρ)∇hn/ρ

(
n(x̄k+1 + uk)

)
. (A.1)

Now, expressing the u-update presented in (2) in terms of (A.1)
gives

uk+1 = (1/ρ)∇hn/ρ
(
n(x̄k+1 + uk)

)
. (A.2)

Next, we can express (A.1) in terms of zki as

ȳk+1 = (1/n)

n∑
i=1

[zki − (1/ρ)∇f1/ρi (zki )] + uk

− (1/ρ)∇hn/ρ
(
n(x̄k+1 + uk)

)
, (A.3)

and by inserting the definition of zki we get

ȳk+1 = ȳk−1/(ρn)

n∑
i=1

∇f1/ρi (zki )−(1/ρ)∇hn/ρ(n(x̄k+1+uk)).

(A.4)

https://www.mathworks.com/matlabcentral/fileexchange/44110-ieee-802-11-mac-protocol
https://www.mathworks.com/matlabcentral/fileexchange/44110-ieee-802-11-mac-protocol
http://www.jstor.org/stable/2674095
http://www.jstor.org/stable/3318720
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Taking the average of the definition of zki we get z̄k = ȳk−uk,
and by inserting it in the average of the xi-updates given by
x̄k = z̄k − 1/(ρn)

∑n
i=1 ∇f

1/ρ
i (zki ) we get the equality

ȳk − 1/(ρn)

n∑
i=1

∇f1/ρi (zki ) = x̄k+1 + uk. (A.5)

Thus, combining (A.4) and (A.5) we obtain that

ȳk+1 = ȳk − 1/(ρn)

n∑
i=1

∇f1/ρi (zki )−

(1/ρ)∇hn/ρ
(
nȳk − (1/ρ)

n∑
i=1

∇f1/ρi (zki )

)
, (A.6)

and the u-update combining (A.2) with (A.5) is expressed as

uk+1 = (1/ρ)∇hn/ρ
(
nȳk − (1/ρ)

n∑
i=1

∇f1/ρi (zki )

)
. (A.7)

As presented in Section II, each agent’s ∇f1/ρi (zki ) is
predicted by the GP and this prediction is used by the ADMM
algorithm when the coordinator skips a communication round
with an agent. This dynamic is expressed in (7) with the variable
βk
i , where depending on the communication decision, βk

i takes
the value of ∇f1/ρi (zki ) or its predicted value. In the context
of our problem, we replace ∇f1/ρi (zki ) from the expressions
in (A.6) and (A.7) with the dynamics defined in (7), giving
the ADMM expression

xk+1
i = zki − (1/ρ)βk

i

uk+1 = (1/ρ)∇hn/ρ
(
nȳk − (1/ρ)

n∑
i=1

βk
i

)

ȳk+1 = ȳk − 1/(ρn)

n∑
i=1

βk
i − uk+1. (A.8)

Defining the variable vk = nȳk − (1/ρ)
∑n

i=1 β
k
i , we get

that the u-update is given by
uk+1 = (1/ρ)∇hn/ρ

(
vk
)

. (A.9)

APPENDIX B: PROOF OF PROPOSITION 1
Theorem 6 in [27] presents upper and lower bounds for an

inequality following the format of (13). However, the derived
bounds included variables that were not fully defined. For that
reason, we follow the proof of Lemma 1 in [28] to get a
better-defined bound for the inequality in (13).

In the proof of Lemma 1 in [28], we get that for a random
vector Z with individual components Zl ∼ N (0, 1), the
logarithm of the Laplace transform of Z2

l − 1 is given by

ψ(u) = log[E[exp(u(Z2
l − 1))]] = −u− 1

2
log(1− 2u),

which for 0 < u < 1/2 we get the bound

ψ(u) ≤ u2

1− 2u
.

Therefore, extending the previous expressions for a variable
Y =

∑p
l=1 al(Z

2
l − 1), with al ≥ 0, we get

log[E[exp(uY )]] =

p∑
l=1

log
[
E[exp(ual(Z

2
l − 1))]

]
≤

p∑
l=1

a2l u
2

1− 2alu
, (B.1)

which leads to the inequality

log[E[exp(uY )]] ≤ ||a||22u2

1− 2||a||∞u
. (B.2)

On the other hand, in [29] it was proven that if

log[E[exp(uY )]] ≤ vu2

2(1− 2cu)
, (B.3)

then, for any positive x,
P(Y ≥ cx+

√
2vx) ≤ exp(−x). (B.4)

Thus, given (B.2) and (B.3) we get that v/2 = ||a||22 and
c = 2||a||∞, which allow us to rewrite (B.4) as

P(Y ≥ 2||a||∞x+ 2||a||2
√
x) ≤ exp(−x). (B.5)

We can define α = 2||a||∞ and β = 2||a||2, and by equalling
2||a||∞x+ 2||a||2

√
x to a positive number t we get

αx+ β
√
x = t

αx+ β
√
x− t = 0.

Solving the quadratic equation we get that
√
x =

−β +
√
β2 + 4αt

2α
,

where we can obtain a value for x that depends on t and will
be named x(t) defined as

x(t) =
β2

2α2
− β

2α2

√
β2 + 4αt+

t

α
. (B.6)

Introducing the definition of α and β into (B.6) we get

x(t) =
||a||22
2||a||2∞

− ||a||22
2||a||2∞

√
1 +

2t||a||∞
||a||22

+
t

2||a||∞
, (B.7)

which after some algebraic manipulations can be expressed as

x(t) =

(√
t

2||a||∞
+

||a||22
4||a||2∞

− ||a||2
2||a||∞

)2

. (B.8)

Inserting (B.8) and αx + β
√
x = t into (B.5), we get the

expression for the desired probability as
P [Y ≥ t] ≤ exp(−x(t)),∀t ≥ 0. (B.9)

Going back to the context of the inequality in (13) given by

P

[
X +

p∑
l=1

λl ≥ ||µ||22δ2
]
≤ ξ,

and since
∑p

l=1 λl = tr(Σ) this inequality is expressed as
P
[
X ≥ ||µ||22δ2 − tr(Σ)

]
≤ ξ. (B.10)

This probability can be also bounded following (B.9) as
P
[
X ≥ ||µ||22δ2 − tr(Σ)

]
≤ exp(−x∗(||µ||22δ2−tr(Σ))) ≤ ξ,

(B.11)
where x∗

(||µ||22δ2−tr(Σ))
is the specific form for our problem of

(B.8) which is defined as

x∗(||µ||22δ2−tr(Σ)) =(√
||µ||22δ2 − tr(Σ)

2λ1
+

∑p
l=1 λ

2
l

4λ21
−
√∑p

l=1 λ
2
l

2λ1

)2

, (B.12)

with λl representing the eigenvalues of the covariance matrix
Σ and λ1 representing the biggest of those eigenvalues.
Combining (B.11) and (B.12) we find a bound on the trace of
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Σ given by

−

(√
||µ||22δ2 − tr(Σ)

2λ1
+

∑p
l=1 λ

2
l

4λ21
−
√∑p

l=1 λ
2
l

2λ1

)2

≤ ln(ξ)√
||µ||22δ2 − tr(Σ)

2λ1
+

∑p
l=1 λ

2
l

4λ21
−
√∑p

l=1 λ
2
l

2λ1
≥
√
ln(1/ξ)

||µ||22δ2 − tr(Σ)
2λ1

+

∑p
l=1 λ

2
l

4λ21
≥

(√
ln(1/ξ) +

√∑p
l=1 λ

2
l

2λ1

)2

tr(Σ) ≤ ||µ||22δ2−2

λ1 ln(1/ξ) +√ln(1/ξ)

√√√√ p∑
l=1

λ2l


(B.13)
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