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Abstract

Load profile synthesis is a commonly used technique for preserving smart meter data privacy. Recent efforts have successfully
integrated advanced generative models, such as the Generative Adversarial Networks (GAN), to synthesize high- quality load
profiles. Such methods are becoming increasingly popular for conducting privacy-preserving load data analytics. It is commonly
believed that performing analyses on synthetic data can ensure certain privacy.

In this paper, we examine this common belief. Specifically, we reveal the privacy leakage issue in load profile synthesis enabled

by GAN. We first point out that the synthesis process cannot provide any provable privacy guarantee, highlighting that directly

conducting load data analytics based on such data is extremely dangerous. The sample re-appearance risk is then presented

under different volumes of training data, which indicates that the original load data could be directly leaked by GAN without

any intentional effort from adversaries. Furthermore, we discuss potential approaches that might address this privacy leakage

issue.
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Abstract—Load profile synthesis is a commonly used technique
for preserving smart meter data privacy. Recent efforts have
successfully integrated advanced generative models, such as the
Generative Adversarial Networks (GAN), to synthesize high-
quality load profiles. Such methods are becoming increasingly
popular for conducting privacy-preserving load data analytics.
It is commonly believed that performing analyses on synthetic
data can ensure certain privacy.

In this paper, we examine this common belief. Specifically,
we reveal the privacy leakage issue in load profile synthesis
enabled by GAN. We first point out that the synthesis process
cannot provide any provable privacy guarantee, highlighting
that directly conducting load data analytics based on such
data is extremely dangerous. The sample re-appearance risk
is then presented under different volumes of training data,
which indicates that the original load data could be directly
leaked by GAN without any intentional effort from adversaries.
Furthermore, we discuss potential approaches that might address
this privacy leakage issue.

Index Terms—Privacy; Data Synthesis; GAN; Differential
Privacy; Load Profiling

I. INTRODUCTION

Smart meters collect user load profiles, which enable a
variety of data-driven applications such as demand side man-
agement, customer behavior analysis, and load forecasting.
Unfortunately, the sensitive information in the load data raises
public concerns over privacy and security. For example, using
some prior knowledge of appliances’ power signature, adver-
saries may apply None-Intrusive Load Monitoring (NILM)
[1] techniques to disambiguate the load data, knowing each
appliance’s status at every moment. Moreover, it has been
shown that even without any prior knowledge, it is possible to
extract complex usage patterns from load profiles using off-
the-shelf statistical methods [2], revealing detailed appliance
information of users. At the same time, from the load data, an
adversary can immediately know the household occupancy and
may use it to infer habits or life patterns of households or even
plan for burglaries. Such privacy risks harm users’ willingness
to share their load profiles, impeding the digitization of the
power grid.

†C. Wu is the corresponding author. This work was supported by the
National Natural Science Foundation of China (Grant No. 72271213), the
Guangdong Provincial Key Laboratory of Future Networks of Intelligence
(Grant No. 2022B1212010001), and the Shenzhen Institute of Artificial
Intelligence and Robotics for Society.

A. Opportunities and Challenges

To address the privacy issue, a common technique is to
generate synthetic load profiles, thereby avoiding the direct use
of the original data. Generative models can be classified into
white-box models and black-box models. Building a white-box
model requires explicit rules to generate load data from sketch,
requiring tremendous efforts in making assumptions about
the data attributes. Even so, data generated in this manner
may be insufficient to reflect the real data’s characteristics
accurately. In addition, privacy disclosure may occur during
the preliminary modeling stage. Black-box models, on the
other hand, generate synthetic data without the need for
extensive preliminary analyses. These models can generalize
well and produce high-quality synthetic data after training. Be-
cause black-box models are highly complex and their internal
workings are unknown, it is commonly believed that carrying
out analyses on the synthetic dataset generated by black-
box models can protect certain privacy. However, no previous
research has proved an explicit privacy guarantee of this
scheme. It remains understudied whether these synthetic data
will reveal the private information of users, which motivates
our study in this paper.

B. Related Works

To address the privacy issue, many recent studies have inves-
tigated the use of Generative Adversarial Networks (GAN) to
generate synthetic load data. The early effort from Fekri et al.
[3] integrates a recurrent GAN (R-GAN) to generate load data.
They demonstrate the data quality by the high performance
of machine learning models trained on this data. Gu et al.
further incorporate the auxiliary classifier GAN (ACGAN)
to generate load profiles under typical load patterns [4].
Experimental results show that the generated load profiles have
good diversity and similarity. Zhang et al. [5] use a conditional
GAN to learn distribution from the real dataset and generate
samples accordingly. The synthetic datasets they generate have
a low maximum mean discrepancy compared to real datasets.
Despite the success in providing high-quality load data, none
of these studies have proved a privacy guarantee for the
generated samples. To the best of our knowledge, only Wang
et al. mention this issue in their work [6] that GANs serve the
function of anonymizing smart meter data, thereby protecting
certain privacy. On the contrary, in this study we examine



the boundaries of utilizing GAN in terms of smart meter data
privacy protection.

C. Our Contributions

In this paper, we study the privacy risk of the synthetic
load profiles generated by GAN. Our main contributions can
be summarized as follows:

• Analysis on GAN’s risk: GAN is a complex model with a
large parameter space, but no provable privacy guarantee.
We analyze why this makes GAN a threat to data privacy.

• Revealing Sample Re-appearance Risk: We present the
sample re-appearance risk of GAN, showing that the
output samples may directly recover the training data.

• Discussion on Potential Solutions: We discuss some
potential solutions to the privacy issue of load profile
synthesis and present some preliminary findings.

The remaining of this paper is structured as follows. In
Section II we review some necessary concepts on GAN.
Section III provides a detailed analysis of the privacy problems
of GAN enabled and load profile synthesis. The sample re-
appearance risk is presented in Section IV, and the potential
solutions are discussed in Section V. We conclude this study
in Section VI.

II. PRELIMINARIES

A. Generative Adversarial Networks (GAN)

GAN is a generative model paradigm that has gained
popularity for producing highly realistic images that do not
exist in the real world [7]. In the past few years, GAN
algorithms have been consistently showing their capabilities
of generating high-quality synthetic data, resulting in varieties
of applications (see [8] for a comprehensive survey).

GAN is composed of two deep neural networks, the Dis-
criminator Network (DN) and the Generative Network (GN).
These two networks compete against each other during train-
ing. The goal of GN is to generate realistic samples from
random noise in order to mimic the training data, whereas DN
is a classifier that distinguishes the generated samples from the
real ones. The training procedure of GAN can be viewed as
a zero-sum game played by GN and DN with value function
V (G,D):

min
G

max
D

V (G,D) = Ex∼pdata (x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))], (1)

where G and D are functions representing GN and DN, re-
spectively. During training, DN and GN are trained alternately
using gradient descent. They both use V (G,D) as their loss
function, but GN aims to minimize this loss while DN aims
to maximize it. At each DN’s step, DN is shown both real
samples and fake samples (generated by current GN) with
corresponding real or fake labels and trained to distinguish the
two classes of samples. At each GN’s step, all parameters of
DN are fixed. GN is then trained to maximize log(D(G(z))),
where the back-propagation of GN’s gradients goes through
DN’s parameters. Although GN does not see any real images

during the training process, it can generate realistic samples
only from random vectors after training.

III. PRIVACY RISK ANALYSIS

In this section, we analyze the privacy leakage risks asso-
ciated with models which have a lot of parameters but cannot
satisfy any kind of privacy guarantee.

A. Lacking Theoretical Privacy Guarantees

In general, data privacy is a concept that states that users’
personal information cannot be leaked or cause harm to the
user in any way. However, it is hard to explicitly define what
is information leakage and what is not, so it has always
been challenging to give a rigorous definition of data privacy.
Existing privacy definitions and standards are often derived
from known potential risks. For example, differential privacy
[9], a golden privacy standard, asks that it should be impossible
for adversaries to infer whether or not any specific person is
involved in the dataset. In other words, when an algorithm
doesn’t satisfy differential privacy, then it is very likely to
leak the participation information of users.

None of the existing GAN-based load profile synthesis
approaches can provide a provable privacy guarantee. Most
works only achieve a preliminary level of anonymization by
removing the labels of training data. However, in privacy
research, data anonymization typically refers to a strict def-
inition that the dataset cannot contain any information that
is personally identifiable, and there exist explicit standards of
data anonymization such as k-anonymity. If the data is only
literally anonymized (i.e., having no label), it can be easily de-
anonymized when the adversaries have some prior knowledge,
shown in real-world cases [10]. In smart grids, for example,
adversaries may use some unique features or signatures of
appliances to identify specific users from load data. They can
therefore infer other sensitive information such as the users’
habits or lifestyles, causing privacy disclosure.

B. Memorization Leads to Privacy Disclosure

GAN is a very complex black-box model with a huge
parameter space, which seems unlikely for adversaries to
recover any training sample, providing some sense of security.
However, the large parameter space may unintentionally record
sensitive information from training samples. After all, the most
secure way to protect privacy is not to use sensitive data at
all. Once the data is used, especially when some information
derived from the data is recorded or presented, the data owner
suffers from the risk of being harmed. The more information
recorded, the greater the risk might be.

Because deep networks have a huge amount of parameters,
such a large capacity (i.e., parameter space) allows the models
to memorize training samples during training [11]. Even when
the training data is completely made up of random noises with
random labels, which means there is no feature to learn at
all, a neural network is still capable of achieving zero loss,
indicating that the network has memorized all of them [12].
This remarkable memorizing ability enables adversaries to
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Fig. 1: The sample re-appearance phenomenon of GAN, when the training dataset has 6 samples. (The generated samples
displayed above is manually ordered to align the nearest training sample (in l2-distance) for each.)
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Fig. 2: The sample re-appearance phenomenon of GAN, when the training dataset has 60 samples. (The generated samples
displayed above is manually ordered to align the nearest training sample (in l2-distance) for each.)
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Fig. 3: The generated samples of GAN, when the training dataset has 300 samples.



recover information of the training samples, e.g., inferring the
participation of specific user [13] (i.e., membership inference
attacks).

Such realistic risks demonstrate that complex black-box
models may not prevent the training samples from being recov-
ered from the model parameters. The risks are not completely
unexpected, as the attacks often have formulable objectives, so
the attacks can be easily conducted by gradient computations
when adversaries know the network parameters. Moreover,
explicit risks are proven to exist even when adversaries know
nothing about the model [14]. In the next section, we further
show how users’ load profiles are leaked automatically without
any intentional design or computation.

IV. EMPIRICAL EVIDENCE FOR THE LEAKAGE

In this section, we present empirical results showing that
GAN may leak users’ load profiles from the training dataset
simply and directly.

A. Experimental Settings

We conduct our experiments on the Pecan Street Dataset
[15]. In our experiments, each user’s data are divided into
samples by days, so all samples are of equal length 1440.
Each 1440-length sample is treated as the data from a specific
user. The model we use is a Wasserstein GAN (WGAN) [16]
with 2D convolution layers, where each 1440-length sample
is reshaped to 60×24 before entering the network. WGAN is
used to improve the quality of generation, and we test LSTM
layers, 1D convolution layers, and 2D convolution layers,
finding that 2D convolution layers have the best performance.

B. Re-appearance of Samples

We train the WGAN on a tiny dataset of only six samples.
After training, we obtain some output samples from GN and
observe that each generated sample is nearly identical to a
sample in the training dataset. We align the generated samples
with the training samples, as shown in Figure 1. Such a
phenomenon demonstrates that the model memorized all of
the training samples and can leak these data directly without
being intentionally attacked. We refer to this phenomenon as
the re-appearance risk of GAN, where the harm of leaking the
original data has been discussed in Section III.

To simulate more practical cases, we also train the WGAN
on datasets with 60 or 300 samples, respectively. We observe
that for most of the generated samples, we can still find very
similar training samples. We pick the re-appearance samples
when the dataset has 60 samples and show them in Figure 2.

It becomes particularly interesting in the 300-sample case.
To present in detail, we pick more and not only re-appearing
samples and number them as in Figure 3. As before, we present
the nearest training sample of each generated sample. We can
see that the sample re-appearance phenomenon still happens
at generated samples (2), (5), (6), (7), (9), (10), (11), and (12).
Meanwhile, the patterns of generated samples (1), (4), and (8)
are distinctly different from the training samples. In addition,
it seems that recombination happens sometimes. For generated

sample (3), its left-hand side is exactly the same as the training
sample (3), but its right-hand side seems like a pattern obtained
from another training sample.

V. POTENTIAL SOLUTIONS

In this section, we discuss some potential solutions that
might address the privacy risk of load profile synthesis.

A. Insights from the Sample Re-appearance Risk

The experimental results presented in the previous section
can give us some insights on mitigating the GAN’s privacy
risk. In our experiment, we find that if the volume of training
data is too small (i.e., 6-sample case), then every output
sample from the network will be identical to one of the
training samples. When the training data volume gets larger,
the generated samples become not always identical to the
training samples. This indicates that a larger group of training
samples may promote the model’s generalization and reduce
memorizing specific samples.

Some simple tricks may also be helpful. For example, we
can prohibit the output of a sample if its l2-distance is too close
to a training sample. However, such tricks are still unable to
provide any guarantee of privacy. To obtain a strong sense of
security, we can integrate rigorous privacy standards into our
approach, as discussed in the following.

B. Differentially Private Deep Learning

As a de-facto standard of privacy, differential privacy has
been incorporated into deep learning to provide privacy guar-
antees solid for the training samples, known as private learning
[17]. To conduct private learning, we can inject some specific
amount of Gaussian noise into the gradients at each iteration of
training. The injected noise is large enough to overwhelm each
sample’s gradients but at the same time being not that large to
change the direction of the aggregated gradients. Therefore,
it can protect each sample’s privacy while minimizing its
impact on the training process. The level of differential privacy
protection is represented by a privacy parameter ε, which can
be calculated through the noise amplitude.

To study how differential privacy can prevent GAN from
memorizing the training samples, we train a GAN using
the differentially private stochastic gradient descent (DPSGD)
algorithm presented in [17] so that it satisfies differential
privacy. We use the same setting as the sample re-appearance
experiment with 6 training samples, and see if it can reproduce
the re-appearance phenomenon.

The experimental results are presented in Figure 4, which
shows even when ε = 200, 000, it is still a long way from
reproducing the re-appearance phenomenon. An acceptable
reproduction is achieved when ε arrives 4,000,000. As a
reference, the privacy parameter ε is usually required to be less
than 1.0 in order to provide meaningful privacy guarantees,
and the protection is often regarded as meaningless when the
value of ε exceeds 10. From this point of view, we can confirm
that private learning does well in mitigating the sample re-
appearance phenomenon. After all, differential privacy is a
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Fig. 4: The memorization ability of GAN is largely weakened when trained with differential privacy.

rigorous standard that prevents adversaries from even knowing
the participation of data. The privacy risk of load profile syn-
thesis will be largely reduced if we can develop a differentially
private GAN with a meaningful privacy parameter ε.

VI. CONCLUSION

This paper takes GAN as a representative example to study
the privacy leakage problem of load profile synthesis. We
show the sample re-appearance risk of GAN when trained
with different volumes of training samples, indicating that
a complex black-box model may leak the original data in a
simple and direct way. We hope this finding will encourage
the community to focus on developing data generative methods
that can provide rigorous privacy guarantees in future research.
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