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Abstract

Thermal management in 3D integrated circuits is a critical challenge due to their high computational density. Heat dissipation

paths from top circuit layers through bottom layers to substrate are heavily constraining heat extraction. Various thermal

management frameworks have been proposed to address thermal issues in different granularities. All these frameworks require

a thermal evaluation stage that characterizes the thermal profile of large designs with fast runtime. In this work, we present

a machine learning based thermal evaluation method that predicts all standard cell temperatures based on features extracted

from circuit CAD files. We have built thermal resistance networks for 10 benchmark circuits. We performed simulations to

achieve the thermal data, and trained the thermal model with the data. The model is highly accurate and can identify all

over-heated cells that need to be thermally-optimized. Runtime overhead is minimal. For a 435k-cell SPARC T2 core, the

runtime for predicting all cell temperatures is as small as 3.12s, which is negligible compared to the runtime of other physical

design stages.
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1 INTRODUCTION 

3D integration is an emerging technology direction to enable surpassing many of the current limitations in 

traditional CMOS scaling, including interconnection bottlenecks [1] [2] [3] [4] [5] [6] [7] [8]. Most research to date 

realizes 3D integrated circuits (ICs) with layer-by-layer stacked implementations, utilizing either parallel or 

monolithic 3D integration. These directions achieve only around a half technology node’s PPA (power, 

performance, area) benefit vs. 2D CMOS, lead to very limited density benefits, and often suffer from reduced 

routability vs. 2D CMOS due to severe pin / routing congestion [8]. In addition, thermal management in 3D ICs 

has become a critical challenge [9] [10]. In the 3D technologies to date, thermal management is usually 

performed at a coarse granularity, optimizing regions containing hundreds or thousands of standard cells. 

Confronted with the limitations in routability and PPA benefits, we proposed Skybridge-3D-CMOS (S3DC), 

a vertically-composed fine-grained 3D CMOS technology, which features much improved pin access, routing 

flexibility, and is based on fine-grained vertical circuits yielding dramatic efficiencies [11] [12] [13] [14] [15]. 

Results have shown that S3DC leads to significant benefits in power, performance and density, with 9.7 to 71X 

PPA benefits vs. the state-of-art transistor-level monolithic 3D approach, while maintaining excellent routability. 

In this paper, we present a fast and accurate machine learning based thermal evaluation methodology. It 

supports thermal management by characterizing all the standard cell temperatures across the design and 

identifying cells that need to be thermally optimized. In this paper, we focus on evaluating this for the S3DC 

technology. However, the machine learning approach and lessons learned are applicable to other fine-grained 

3D IC directions as well.  

The fundamental reasons for the thermal issues in 3D ICs are the higher densities and challenging heat 

dissipation paths vs. 2D circuits. On one hand, the densely packed transistors in 3D ICs lead to high power 

density and more generated heat per unit area. On the other hand, the generated heat in the top layers of 

circuits has to dissipate through the bottom layers before reaching substrate, making the heat dissipation more 

difficult compared with 2D circuits [9] [10] [16]. These issues are common in various 3D IC directions in general. 

Most research to date incorporates thermal considerations as an afterthought and performs optimizations at 

a coarse granularity [17] [18] [19] [20] [21]. These works can be classified into two directions. One is to focus 

on reducing the power density in overheated regions, either by inserting empty spaces to lower the local power 

density of these regions [19], or by re-distributing standard cells or partitions that have high heat generation to 

neighboring regions [20] [21]. The other way is through Through Silicon Vias (TSVs) to improve the heat 

dissipation in overheated regions, either by placing more signal TSVs at regions with higher temperatures [18] 

or by inserting additional dummy TSVs that are only for thermal purposes (Thermal TSVs) – this is to increase 

the number of thermal paths between tiers [17]. In S3DC we have proposed 3-D thermal management fabric 

components that directly support thermal management at a fine granularity [22]. These are specially architected 

fabric components; they are also integrated as intrinsic parts of the circuits during an electrical-thermal circuit 

co-design CAD flow. 

The first step in all thermal management frameworks is to perform thermal evaluation and achieve the 

thermal profile of circuits, such that thermal optimization can be performed accordingly. The way most research 

to date perform thermal evaluation is: 1) divide circuit into smaller blocks / meshes, 2) create a thermal model 

consisting of lumped thermal resistance for each block / node of the mesh, and 3) solve the network to achieve 

the temperatures across the design. The modeling granularity is usually coarse-grained, as otherwise it 

becomes computationally prohibitively expensive for large-scale circuits. However, coarse-grained thermal 
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evaluation would not be sufficient for technologies with poor lateral heat dissipation, including monolithic 3D 

[10] [16]. In these technologies, temperatures can change quite abruptly even across a small distance due to 

the lack of lateral heat dissipation, thus requiring thermal evaluation at finer resolution. 

In this paper we describe a machine-learning based thermal evaluation methodology to address the need 

for characterizing thermal profile across large-scale circuits with small runtime overhead and at a fine granularity. 

First, we have built physical thermal model in a bottom-up manner for our fabric components and standard cell 

designs; we present a flow which automatically extracts the thermal resistance network for large-scale 3D 

circuits, and solves the thermal resistance network through SPICE simulation to generate all cell temperatures 

across the design. Then, we introduce a different machine learning based thermal evaluation method. This can 

predict the results of thermal network simulation based on the statically extracted circuit information from CAD 

files, and achieve all standard cell temperatures without having to solve the thermal network. We have explored 

6 different machine learning models; the XGBoost model has achieved the best accuracy and is thus selected. 

We found the machine learning based approach to be much faster and more scalable compared with the 

previous simulation-based methods; we also found it to be sufficiently accurate to identify all over-heated cells 

and support the subsequent thermal-aware circuit design stages. 

We have studied 10 circuit benchmarks in S3DC to validate the overall flow. The machine-learning based 

thermal model has shown good prediction accuracy with less than 1.1% error. The mean absolute error of 

prediction results is 3.55K compared to simulation-based results. It identifies all the over-heated cells without 

introducing significant False Positives – only 0.85% cells that are below the maximum allowed temperature are 

incorrectly predicted as over-heated. The approach is applicable to other 3D technologies as well, simply by 

creating their own physical thermal models, and continuing the rest of the steps including simulation on thermal 

resistance network to generate the training data and training the machine learning thermal model as described 

here. 

The rest of the paper is organized as follows. In Section 2 we provide a brief overview of the S3DC technology. 

In Section 3 we introduce the fabric-level thermal management support. In Section 4 we provide a brief overview 

of thermal-aware automated circuit design flow and how it is supported by our proposed thermal evaluation 

methodology. In Section 5 we introduce the baseline thermal evaluation method based on fine-grained thermal 

network simulation. In Section 6, we present a machine learning based thermal estimation method that is 

accurate and has much better scalability compared with the baseline method. Section 7 concludes the paper. 

2 SKYBRIDGE-3D-CMOS FABRIC OVERVIEW 

Skybridge-3D-CMOS (S3DC) is a vertically composed fine-grained 3D CMOS IC technology [11] [12] [13] [14]. 

It is enabled by a systematic way of designing static CMOS circuits in a skeleton-style nanowire structure. All 

the circuits are built on the uniform vertical nanowire template, which is pre-doped with p- and n-type horizontal 

stripes as shown in Fig. 1(A). We place and connect active devices on these nanowires either in series or in 

parallel to form the pull-up (with p-type transistors in p-doped region) and pull-down (with n-type transistors in 

n-doped region) networks in static CMOS gates. Series networks are built with devices implemented on one 

nanowire. Parallel networks are built with devices on different nanowires; these different nanowires are shorted 

together on both drain and source sides. A specially designed fabric component called Skybridge-Interlayer-

Connection (SB-ILC) enables connecting the p-type pull-up and n-type pull-down networks together to generate 
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the output signal. The SB-ILC structure and materials (shown in Fig. 1(B)) are designed to provide connection 

between different doping regions with small parasitic resistance and capacitance. 

Figure 1: a) One Single Nanowire with Striped Doping and a Uniform Vertical Nanowire Template; (b). SB-ILC Allows 

Routing between Various Doping Layers without MIVs. 

Other S3DC fabric components are shown in Fig. 2. (i) An n-type Vertical Gate-All-Around (V-GAA) 

Junctionless transistor structure is shown in Fig. 2(A).  The source, channel, and drain regions are based on 

heavily doped vertical nanowires. The channel is surrounded by gate electrodes and dielectric layers. (ii) Fig. 

2(B) shows the routing structures. Routing Bridges are horizontal metal wires connecting adjacent vertical 

nanowires. Routing Nanowires are vertical nanowires that can also act as routing elements since they are 

heavily doped and silicided, having high conductivity. Coaxial Routing structures are metal layers formed along 

the vertical nanowires to add connectivity in vertical directions. 

Fig. 3 shows an example of logic-implementing circuit utilizing the above concepts. It consists of 3 NAND2X1 

gates and implements 𝐴 ∙ 𝐵̅̅ ̅̅ ̅̅ ∙ 𝐶 ∙ 𝐷̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . The p-type transistors on the top are connected at the source side by VDD, 

and on the drain side by the SB-ILCs. Thus, the pull-up network is parallel. The n-type transistors at the bottom 

are connected in series by the vertical nanowire. They form the pull-down network. SB-ILCs connect the pull-

up and pull-down networks to generate the output signal, which is conducted out by the Bridges. The outputs 
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of 1st-stage-NAND2-gates are accessed through Ohmic contact inserted in the middle of NWs and fed to the 

gate electrodes of 2nd-stage NAND2 gates through Bridges. 

 

Figure 2: (a). An n-type V-GAA Junctionless Transistor in 16nm S3DC Technology; (b). 3D Connections within One Doping 

Layer Realized by Bridges, Coaxial Routings, and Routing Nanowires; Four Signals A, B, C, D are Carried in This Example. 

We have developed a device-to-system level design flow incorporating commercial CAD tools [12] [13]. The 

design flow allows us to perform large-scale benchmarking in S3DC to quantify its benefits vs. baseline 

technologies, including 2D and the state-of-art 3D directions such as transistor-level monolithic 3D (M3D). We 

have evaluated routability, as well as performance, power, and area (PPA). As compared to the usually severely 

congested monolithic 3D implementations, S3DC eliminates the routing congestions in all benchmarks studied. 

Further results, for the implemented benchmarks, show 56%-77% reductions in power consumption, 4X-30X 

increase in density, and 20% loss to 9% benefit in best operating frequencies compared with the transistor-level 

monolithic 3D technology. The loss is likely caused by less optimized S3DC devices vs industrial and is primarily 

in smaller circuits where better routability benefits are not that accentuated. Today, Skybridge technologies 

have attracted attention from several leading vendors (under NDA) who initiated a partnership relationship. A 

full scalable manufacturing flow based on industrial requirements and processes is under development in 
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collaboration, through the utilizing of state-of-art process development tool Synopsys SentaurusTM Process 

Explorer. 

 

Figure 3: S3DC 𝑨𝑩̅̅ ̅̅ ∙ 𝑪𝑫̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ Circuit Layout (Dielectric for Isolation between Components and For Structural Support Not 

Shown) 

3 S3DC FABRIC-LEVEL THERMAL MANAGEMENT SUPPORT 

In this section, we provide a briefly overview the thermal management challenges in 3D IC directions including 

S3DC. Then we propose thermal management fabric components that provide fabric-level support for fine-

grained thermal management of S3DC circuits.  

3.1 Thermal Management Challenges in 3D IC 

Heat is generated on chip mainly due to the electron-phonon scattering in transistors [23]. When current flows 

through a transistor, charged carriers are accelerated by the electric field across source and drain. They interact 

with silicon lattice vibration (phonons), exchange energy with the lattice and increase the lattice temperature. 

The main heat generation location is near the drain side of a transistor, since that is where electric field peaks. 

The generated heat raises the local temperature and forms a temperature gradient that drives heat to flow 

towards neighboring cooler regions, and eventually dissipate through the substrate and heat sink. 

Thermal management is a critical challenge for all 3D IC directions for two reasons. On one hand, the power 

density of 3D ICs is usually much higher than for planar CMOS circuits, leading to higher generated heat per 

unit area. For example, power density in the 4-tier monolithic 3D ICs can be up to 3.4X higher compared with 

2D ICs [24]. In S3DC, although S3DC designs are much more energy efficient vs. 2D CMOS, the power density 

of S3DC circuits can still be 3.2-3.5X higher due to the ultra-high-density of S3DC designs [13]. On the other 

hand, heat dissipation in 3D ICs is more constrained due to the longer heat dissipation paths from the top-tier 

circuits through bottom tiers to substrate. As Fig. 4 shows, in S3DC, the heat generated in the top layers of 

transistors flow through bottom layers to the substrate through the vertical silicon nanowires. This heat path is 

inefficient since a silicon nanowire has reduced thermal conductance due to its confined geometry [25] [26]. 

 

Fig. 1. S3DC 𝑨𝑩̅̅ ̅̅ ∙ 𝑪𝑫̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  Circuit Layout (Dielectric for Isolation 

between Components and For Structural Support Not Shown) 
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3.2 Thermal Management Components in 3D IC 

We have developed intrinsic fabric-level support to enable the fine-grained thermal management in S3DC. We 

have designed several thermal management fabric components, including the Thermal Contact, Thermal 

Bridge, and Thermal Pillar. They are inserted as a part of S3DC circuit physical designs through unified electrical 

and thermal designs. These components are shown in Fig. 5. 

 

Figure 4: S3DC Inverter Layout Sideview and Heat Dissipation (when Output is 1 and only P-type Transistor is ON) 

 

Figure 5: Thermal Components in S3DC (Thermal Structures Shown in Grided-Shapes) 
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(i). Thermal Contacts (Fig. 5(A)) are specialized junctions that are designed for extracting heat from hotspots 

on logic nanowires. This achieves efficient thermal extraction without interfering with the electrical operation of 

circuits. 

(ii). Thermal Bridge (Fig. 5(A)) connects a Thermal Contact on one end and a Thermal Pillar on the other. It 

is routed in the metal layer similarly as a signal Bridge through routing tracks. It conveys heat flow from Thermal 

Contacts to Thermal Pillars in the lateral direction. 

(iii). Thermal Pillars (Fig. 5(B)) are vertical metal pillars that are larger in cross-section area than vertical 

silicon nanowires, and thus have lower thermal resistance and provide good heat dissipating paths down to the 

substrate in vertical direction. They are inserted in the gaps between placed S3DC gates and are sparsely 

located on chip. Each pillar can be connected to several Thermal Bridges extracting heat from different S3DC 

gates. In addition to thermal management, these pillars also serve as part of the Power Delivery Network (PDN) 

and are connected to the VDD power rails [27]. 

Fig. 6 shows the added heat dissipation paths formed by inserted thermal components in a thermal-aware 

S3DC inverter design connected to a Thermal Pillar. The primary heat dissipation path is through Thermal 

Contacts, Thermal Bridge, Thermal Pillar and finally the substrate. In the thermal domain, to dissipate heat 

efficiently, all the components in this path need to be thermally conductive. On the other hand, in the electrical 

domain, the added thermal components should not interfere with the electrical operation of a circuit, which 

requires good isolation between a logic nanowire and corresponding Thermal Bridge. Consequently, the 

electrical conductance and the capacitance across a Thermal Contact should be kept minimal. 

 

Figure 6: S3DC Inverter Layout Sideview (Thermal Components Shown in Gridded Shapes) and Its Heat Dissipation Paths 

through Inserted Thermal Components (when P-type Transistor is ON) 

We design the thermal components such that they meet the afore-mentioned thermal and electrical 

requirements. We choose Tungsten as the Thermal Pillar and Thermal Bridge material. On one hand, Tungsten 
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has superior thermal conductivity (167 Wm-1K-1). On the other hand, by sharing the same material type with 

other fabric components (signal Bridge, Coaxial Routing structure), manufacturing complexity is reduced. The 

material type of Thermal Contacts is chosen as Al2O3 since it is both electrically insulating and thermally 

conductive. 

To validate that the designed Thermal Contact meets the electrical requirements, we have performed TCAD 

simulation to characterize the resistance / conductance and capacitance through Thermal Contacts. TCAD 

process simulation is performed to simulate the process steps for building the Thermal Bridge – Thermal 

Contact – logic nanowire structure. TCAD device simulation achieves the IV and CV characteristics of the 

structure. The maximum current flowing through Thermal Contact is 2.1E-19A, which is at least 6 orders of 

magnitude lower than the state-of-art transistor leakage current. The added parasitic capacitance on the logic 

nanowire due to the Thermal Contact insertion is 4.5E-18F, which is more than one order of magnitude smaller 

than the minimum gate capacitance of state-of-art transistors. These results prove that the inserted thermal 

components pose negligible influence on the electrical properties of S3DC circuits. 

4 S3DC THERMAL-AWARE PHYSICAL DESIGN 

In this section, we briefly present how our proposed thermal evaluation methodology supports the thermal-

aware design flow. The flow targets to optimize the over-heated cells leveraging the concepts of thermal fabric 

components and thermal-aware standard cell library. The list of over-heated cells is generated during thermal 

evaluation stage, which is introduced in more details in Section 5 and 6. 

The thermal components are inserted together with the Place & Route of the electrical circuits in a unified 

flow as shown in Fig. 7. The flow takes the post-placement design, performs thermal evaluation to achieve the 

cell temperatures across the design, and generates the list of cells that needs to be thermally optimized. For 

these over-heated cells, we insert Thermal Contacts at the hotspots of the circuit and connect them to inserted 

Thermal Pillars through Thermal Bridges to improve their heat dissipation. The Thermal Pillar locations need to 

be optimized in order to lower the impact on routing. Then the physical design files are updated to include the 

implemented thermal features. The Place & Route tool restores the updated design and continues with the 

remaining physical design steps. 

5 STEADY-STATE THERMAL EVALUATION 

In this section, we present our material-to-system evaluation methodology which yields the hotspot temperature 

of all cells in a S3DC physical design. We build a thermal resistance network that models the steady-state heat 

generation and dissipation in a bottom-up manner for large-scale S3DC circuit designs. We then solve the 

thermal network through simulation to obtain the hotspot temperature of each standard cell in the design. 

5.1 Steady-State Thermal Analysis 

To calculate the steady-state temperatures in a circuit layout, we need to estimate the heat generation and 

dissipation in steady-state. For heat generation, we need to estimate the generated heat at all transistor drains. 

For heat dissipation, as the heat flows through structures, we can apply Fourier’s law of heat conduction to 

calculate the temperature drop across the structure with: 

 

∆𝑇𝑒𝑚𝑝 = 𝑅𝑡ℎ𝑒𝑟𝑚𝑎𝑙 ∗ 𝑄𝑓𝑙𝑜𝑤 (1) 
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where Rthermal is the thermal resistance of the structure that heat flows through, ΔTemp is the temperature 

difference across the structure, and Qflow is the amount of heat flow through the structure. Thermal resistance 

of the heat conductor depends on the material property and geometry, and can be calculated with: 

𝑅𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
𝐿

𝐾∗𝐴
 (2) 

where L is the length of the heat conductor, K represents the material thermal conductivity, A is the cross-

section area. These thermal resistors are interconnected to form a thermal resistance network according to how 

the heat-conducting structures are attached to each other in the circuit layout. Example thermal networks of 

S3DC fabric components will be shown later. 

 

Figure 7: Thermal-aware Automated Circuit Design (SC: Standard Cell) 

The temperatures in the thermal resistance network can be solved similarly to solving the voltages in an 

electrical resistance network, since the concepts in thermal domain are analogous to those in the electrical 

domain. Heat flow, temperature, and thermal resistance are analogous to current flow, voltage, and electrical 

resistance, respectively. In an electrical resistance network, if all the electrical resistance values of resistors 

and current values of current sources are known, and we assume a GND at a reference node in the circuit, we 

are able to solve the voltage at all nodes by applying Ohm’s law and Kirchhoff's Voltage and Current Laws. 

Similarly, in a thermal resistance network, if all the thermal resistance values and the generated heat in 

transistors are calculated, we are able to calculate the temperatures of all the nodes after assuming an ambient 

temperature at the substrate or heat sink. Table 1 summaries these analogous concepts and principles. 
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Table 1: Analogous concepts in thermal vs. electrical domain analysis 

Thermal Electrical 

generated heat at transistor drain current source 

temperature gradient (∆Temp) potential difference 

thermal resistance (Rthermal) electrical resistance 

heat flow through heat conductor (Qflow) current flow through electrical resistor 

Fourer’s law of heat conduction Ohm’s law 

5.2 Thermal Resistance Network of S3DC Fabric Components 

Fig. 8(A) shows the structure of an S3DC transistor and its thermal resistance network. To build the network, 

we look at the structure of the transistor, divide it into elements, calculate the thermal resistance for the elements, 

and connect them according to how they are attached to each other in the fabric component structure. Note 

that nanoscale thermal effects are captured with calibrated thermal conductivity parameter K values. For 

example, K is 147 Wm-1K-1 in bulk silicon and only 13 Wm-1K-1 in thin silicon layer like nanowires [25] [26]. We 

add a source injecting heat at the drain side of the transistor to represent the generated heat. 

We have built the thermal resistance network for all the other fabric components as well, including vertical 

nanowire, Ohmic contact, Coaxial Routing structure and Skybridge-Interlayer-Connection. Fig. 8(B)-(D) shows 

three types of interconnection structures and their thermal resistance network as examples. 

 

 

Figure 8: Thermal Networks of S3DC Fabric Components: Upper Left: N-type Transistor; Upper Right: Coaxial Routing 

Structure; Bottom Left: Ohmic Contact; Bottom Right: Interlayer Connection 

 

5.3 Thermal Evaluation of S3DC Gates 

With all the thermal networks built for S3DC fabric components, we can assemble the thermal networks for 

S3DC standard cells. We need to estimate the generated heat for each standard cell based on its actual power 
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consumption in the circuits. We look at the load capacitance (CL) of the standard cells, and estimate the energy 

converted to heat per switching as 0.5*CLVDD2 [28]. Also, to estimate the number of switches per unit time, we 

multiply circuit operating frequency and switching activity (SA) - the probability of an output being switched in 

each cycle. Generated heat can then be estimated by multiplying energy converted to heat per switch and 

number of switches per unit time, i.e. 0.5*CLVDD2*SA*freq. CL and SA needs to be obtained for each standard 

cell in the circuit. 

We have manually built the thermal resistance networks for all the standard cells in S3DC library, including 

both baseline layout designs and thermally-optimized designs, i.e., layouts with Thermal Contacts inserted at 

hotspots. SPICE simulations were performed on these networks; we measure temperatures on all nodes, and 

generate the hotspot temperature for each gate. Table 2 shows the hotspot temperatures in several example 

S3DC standard cells with baseline vs. thermally-optimized designs. As we can see, in the baseline design 

without inserted thermal components, the hotspot temperature can be as high as 526K, which is far above the 

industrial maximum allowed temperature of 398K. In the thermally-optimized design the hotspot temperatures 

are lowered to 334-344K. 

Table 2: Hotspot temperatures in S3DC standard cells 

 Inverter 2-in NAND 3-in NAND 2-in NOR AOI21 AOI22 

Not Thermally-Optimized 526K 499K 478K 505K 512K 501K 

Thermally-Optimized 334K 339K 342K 341K 341K 344K 

5.4 Thermal Evaluation of S3DC Large-Scale Circuits 

The next step is to perform thermal evaluation for standard-cell-based large-scale S3DC circuits. Fig. 9 shows 

the thermal evaluation flow for a post-placement design to generate a thermal profile that guides the later 

thermal-aware design steps. The thermal evaluation block (in light blue color) extracts circuit information from 

CAD files, creates the thermal resistance network, and solves the network through SPICE simulation to obtain 

the temperatures of all standard cells. The intra-cell networks are from the manually-built pre-characterized 

thermal networks for each cell. The generated heat of each standard cell is estimated according to its load 

capacitance CL (parasitic RC estimated based on Global Routing performed by the Place & Route tool), 

switching activity (from switching activity propagation or functional simulation results), and the estimated best 

frequency of the circuit. The inter-cell heat paths are estimated based on the information on how cells are 

interconnected and placed. This information is achieved from the gate-level netlist and the physical design 

descriptions (DEF file in this work) generated by the Place & Route tool. After the thermal resistance network 

is built, we perform SPICE simulation to solve the network, measure the temperatures of all nodes in each 

standard cell, and get the hotspot temperature of all cells. 

We have performed thermal evaluation for 10 benchmarks including S13207, S38584, B14, B22, SPI, TV80N, 

WB_DMA, SHA1, SYSTEMCAES, and GNG [29] [30] [31]. Fig. 10 shows the temperature distribution across 

all designs. As we can see, despite most cells operating at a low temperature, there are still significant number 

of cells with high temperatures, which necessitates a thermal-aware design flow. The highest temperature is 

found to be 586K, exceeding the industrial maximum allowed temperature by 188K. 
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Figure 9: Thermal Evaluation Flow for Post-Placement Design based on HSPICE Simulation of Thermal Resistance 

Network (SC: Standard Cell) 

 

Figure 10: Temperature Distribution of Standard Cells in 10 Tested Benchmarks 

Fig. 11 shows the thermal map of WB_DMA design. As we can see, one distinction of S3DC’s thermal profile 

is that cell temperatures change abruptly across neighboring cells. This is due to the lack of thermal coupling 

between adjacent cells, as they are located on different nanowires that are separated by thermally-insulating 

dielectric materials. It shows that current thermal optimization techniques targeting at optimizing large areas of 

the design are not fine-grained enough to optimize over-heated standard cells in S3DC. 
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Figure 11: Thermal Map of WB_DMA Benchmark 

One challenge of the presented thermal evaluation method is its large runtime overhead. The SPICE 

simulation of the thermal-resistance networks for large designs takes very long runtime, which is due to the 

large and complex inter-connected thermal resistance network. As an example, the SPICE simulation of B22 

(contains 12,887 cells) thermal resistance network takes 127 seconds, which is 2.3X longer than its placement 

runtime. 

6 MACHINE LEARNING BASED THERMAL MODEL 

The thermal evaluation method based on solving thermal resistance network using SPICE simulation becomes 

intractable as the design size increases. In this section, we present another method to achieve the cell hotspot 

temperatures with better scalability. We have developed a thermal model that predicts hotspot temperatures of 

each cell using machine-learning regression method. The developed thermal model takes the circuit information 

extracted statically for each cell in the S3DC circuits as input features, and predicts the hotspot temperature of 

each cell efficiently without running SPICE simulation. 

6.1 Training Procedure of Thermal Model 

To train the thermal model, we need to obtain the training data set with input features and targets of the thermal 

model: input features are statically extracted circuit information of each cell, and targets are hotspot 

temperatures of each cell. We obtain the training data set from 10 benchmarking results using our simulation-

based thermal evaluation flow that was introduced in Section 5. These benchmarks contain 53050 cells in total. 

Each cell is one sample in the data set. Extracted circuit information that correlates to the hotspot temperature 

in one cell includes estimated heat generation of this cell, cell type (Inverter, NAND2, NAND3, NOR2, AOI21, 

AOI22, Buffer, D Flip Flop), estimated heat generation of its neighboring cells, nearby empty nanowires, and so 

on. These information are the candidate input features to the thermal model. We have performed analysis to 
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achieve good accuracy while minimizing the dimension of input features. Table 3 shows a list of the selected 

input features and provides intuitions on how these features affect the cell temperature. Fig. 12 shows the flow 

of training and thermal model. 

 

Figure 12: ML-Based Thermal Model Training Flow (SC: Standard Cell) 

Table 3: Selected Input Features of Thermal Model to Determine a Cell Hotspot Temperature 

Input Feature Impact on Cell Temperature 

Cell Type determines intra-cell thermal network 

Estimated Heat Gen of This Cell determines the heat generated inside this cell that needs to be dissipated 

Neighboring Routing NW Count adjacent routing NW helps w/ lower cell temperature because: 

1). no transistor on routing NW -> no generated heat from routing NW 

2). added heat path from this cell through dielectric to adjacent routing NWs to substrate 

Distance to Nearest Thermal 
Pillar 

determines length (and thus thermal resistivity) of heat path from cell through Thermal 
Bridge to Thermal Pillar 

Avg Estimated Heat Gen in Cells 
that Are Connected to This Cell 
(with Various Levels of Distance) 

affects temperature of this cell due to thermal coupling through signal Bridges 
connecting in between; shorter signal Bridge length means stronger thermal coupling 

Avg Estimated Heat Gen in 
Neighboring Cells (with Various 
Levels of Distance) 

affects temperature of this cell due to thermal coupling through dielectric between NWs; 
nearer cells have stronger thermal coupling 

Ratio of Total Thermal Pillar 
Count to Total Design Area 

determines the density of heat paths from PDN through Thermal Pillar to substrate; 
higher density leads to lower overall temperature in the design 
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We split the data into 80% training and 20% test sets. During training we apply a 5-fold cross validation with 

the training set. The testing set is reserved only for testing purpose to evaluate if over-fitting has occurred. We 

have multiple choices of regression models, including support vector regressor (based on radial basis function 

and polynomial kernel function), gaussian process regressor, random forest regressor, nearest neighbor 

regressor, voting, multi-layer perceptron, as well as gradient boosting models including XGBoost and 

AdaBoostRegressor. We have tested these models, and have achieved best accuracy with the XGBoost model 

as Fig. 13 shows. Thus, XGBoost is selected for developing our thermal model. 

 

Figure 13: Scattered Plot from Different Machine Learning Models: Y: Predicted Temperatures, X: Temperatures from 

Thermal-Network-Simulation-Based Thermal Evaluation (Blue: Testing Data, Black: Training Data) 

Fig. 14 shows the flow of cell hotspot temperature estimation based on our machine learning based thermal 

model. The flow requires the same input CAD files with the simulation-based thermal evaluation flow, including 

post-placement physical design, pre-extracted thermal networks for standard cells, switching activity, and load 

capacitance of each cell. These inputs provide all the information that is needed to statically extract the input 

features of the thermal model. The thermal model predicts the hotspot temperature for each cell based on the 

input features. The predicted cell temperatures can be used to determine which cells are over-heated and thus 

need to adopt their thermally-optimized version of layout in the thermal-aware design flow. 
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Figure 14: Thermal Evaluation Flow with Machine-Learning-Based Thermal Model (SC: Standard Cell) 

6.2 Standard Cell Temperature Prediction Results 

Compared with the simulation-based thermal evaluation method, using this machine learning based thermal 

model to estimate cell temperatures takes much shorter runtime. Among the large benchmarks we have 

predicted cell temperatures using our developed thermal model, the thermal model runtime is less than 0.04% 

of the placement runtime of the benchmark. In addition to the 10 afore-mentioned benchmarks, we have 

implemented more larger-scale circuits and used our developed thermal model to predict the cell temperatures. 

The largest benchmark we have implemented - the SPARC T2 core containing 435K cells [32], takes 3.12 

second for predicting all cell temperatures, which is only 0.17% of the runtime for performing cell placement for 

the design. 

Fig. 15 shows the thermal maps of WB_DMA benchmark circuits generated by simulation-based thermal 

evaluation method and machine learning based thermal model, showing good agreement. The predictions from 

trained model have a mean absolute error of 3.55K in training set and 3.61K in testing set, proving very minor 

overfitting in our trained thermal model. The error distribution is shown in Fig. 16. 

Fig. 17 shows the trend of temperature prediction accuracy across benchmarks with different design sizes. 

The observation is that the accuracy is generally better in larger designs. The reason is that in our case, the 

accuracy of cells closer to boundaries are not as good as those away from boundaries. In larger designs, more 

cells are further away from boundaries, leading to better overall accuracy in larger designs. Consequently, we 

can train the thermal model based on the data from a number of smaller designs with similar technology 

assumption and be able to predict the cell temperatures for a larger design 

6.3 Dealing with Prediction Errors 

The standard cell temperatures generated by thermal model are compared with the industrial maximum 

allowed temperature (398K) to determine if a cell is over-heated. Based on the cell temperatures achieved from 

thermal network simulation, we classify all the standard cells into two sets, simulated negative or simulated 

positive. Similarly, the cell temperatures predicted by machine-learning thermal model divide all the standard 
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cells into two sets, predicted negative or predicted positive. In the problem that targets to flag over-heated cells, 

the True Positive, True Negative, False Positive, False Negative are visualized by Fig. 18. 

 

Figure 15: Thermal Map from HSPICE Thermal Network Simulation (Left) and Machine-Learning-Based Thermal Model 

(Right) 

 

 

Figure 16: Error Distribution (X-axis: error range, Y-axis: number of cells in the error range) 
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Figure 17: Mean Absolute Error vs Design Scale by Partitions 

 

Figure 18: Visualizing True Positive (TP) / True Negative (TN) / False Positive (FP) / False Negative (FN). X axis: 

Temperature from Simulation Results, Y axis: Predicted Temperatures. Data Point Color Scheme: Blue for Below Threshold 

Temperature, Red for Above Threshold Temperature; Edge Color for Predicted Temperature, Filling Color for Simulated 

Temperature 

Considering predicted cell temperatures guide the thermal-aware design flow, False Negatives are more 

catastrophic compared to False Positives as is explained here. False Positive causes over-design by making a 

standard cell that is below the threshold temperature being unnecessarily adopting its thermally-optimized 

layout, leading to over-design in thermal domain. False Negative, on the other head, leaves over-heated cells 

not being thermally optimized, causing thermal issues in the design and thus leading to potential reliability issue, 

timing degradation and even functional failures. Therefore during the training of thermal model we need to 

spend more effort on eliminating False Negatives than False Positives. 
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To make sure these False Negative cases are addressed in presence of the prediction errors in our thermal 

model, one straightforward method is to introduce additional guard band by applying a static margin below the 

original threshold temperature. In this way we cover more False Negatives at the cost of introducing more False 

Positives. The concepts are visualized in Fig. 19. In our tested benchmarks, a 10.7K margin is needed to 

address all the False Negatives, meaning all cells with predicted hotspot temperatures above 387.3K would be 

targeted for thermal optimization during the thermal-aware design flow. In this case, the portion of False Positive 

among all standard cells is 1.48%. 

 

Figure 19: Addressing False Negative with Additional Margin. By Applying the Additional Margin, We Classify if a Cell is 

Predicted Positive or Predicted Negative based on a New Lower Threshold, Leading to More Eliminated False Negatives at 

the Cost of Introducing Additional False Positives 

The other way to eliminate the False Negative is to customize the loss function – the function that indicates 

the inaccuracy and is minimized during the training of the machine-learning model. We can customize the loss 

function to make it asymmetric such that under-estimating cell temperatures is penalized more during training. 

We have experimented different asymmetric loss functions that scales the loss function by 5X-100X when it is 

under-estimation. Fig. 20 shows the scattered plots of predicted temperatures vs simulated temperatures when 

scaling the loss function by 40X when under-estimating. As we can see, the under-estimation of cell 

temperatures has been significantly suppressed compared to the default loss function, making it much easier 

to eliminate the False Negative. In the case of scaling up loss function for under-estimation by 40X, a 2.2K static 

margin can eliminate all the False Negatives, while the portion of False Positive cells is only 0.85% 

7 RESULTS AND DISCUSSION 

S3DC technology is a promising vertically-composed fine-grained 3D technology that achieves significant 

benefits in PPA while maintaining routability. It features the fine-grained 3D thermal management framework 

with fabric-level support. Our developed machine learning based thermal estimation method provides fast and 

accurate feedback on the thermal profile of current design and guides the unified automated co-design of 
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thermal and electrical circuits. The thermal evaluation runtime is only up to 0.04% of placement runtime, posing 

negligible runtime overhead to the physical design flow. It is accurate enough to identify all over-heated cells 

with a small 2.2K static margins, which leads to minor over-design in thermal domain on 0.85% of the standard 

cells. The proposed thermal evaluation method is also potentially applicable to other 3D technologies and 

promising to support their thermal-aware design. 

 

Figure 20: Scattered Plot: Y: Predicted Temperatures, X: Golden Temperatures from Custom Asymmetric Custom Function 

that Penalize More on Under-Estimation (Blue: Testing Data, Black: Training Data) 
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