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Abstract

The complexity of information processing in the brain requires development of technologies that can provide spatial and temporal

resolution by means of dense electrode arrays paired with high-channel-count signal acquisition electronics. In this work, we

present an ultra-low noise modular 512-channel neural recording circuit that is scalable to up to 4096 simultaneously recording

channels. The neural readout application-specific integrated circuit (ASIC) uses a dense 8.2 mm x 6.8 mm 2D-layout to enable

high-channel-count, creating an ultralight 350 mg flexible module. The module can be deployed on headstages for small animals

like rodents and songbirds, and can be integrated with a variety of electrode arrays. The chip was fabricated in a 0.18 μm 1.8-V

CMOS technology and dissipates a total of 125 mW. Each DC-coupled channel features a gain and bandwidth programmable

analog front-end, along with 14b analog-to-digital conversion at speeds up to 30 kS/s. Additionally, each front-end includes

programmable electrode plating and electrode impedance measurement capability. We present both standalone and in vivo

measurements results, demonstrating readout of spikes and field potentials that are modulated by a sensory input.
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Abstract—The complexity of information processing in the
brain requires development of technologies that can provide
spatial and temporal resolution by means of dense electrode
arrays paired with high-channel-count signal acquisition elec-
tronics. In this work, we present an ultra-low noise modular
512-channel neural recording circuit that is scalable to up to
4096 simultaneously recording channels. The neural readout
application-specific integrated circuit (ASIC) uses a dense 8.2
mm x 6.8 mm 2D-layout to enable high-channel-count, creating
an ultralight 350 mg flexible module. The module can be deployed
on headstages for small animals like rodents and songbirds, and
can be integrated with a variety of electrode arrays.

The chip was fabricated in a 0.18 µm 1.8-V CMOS technology
and dissipates a total of 125 mW. Each DC-coupled channel
features a gain and bandwidth programmable analog front-end,
along with 14b analog-to-digital conversion at speeds up to 30
kS/s. Additionally, each front-end includes programmable elec-
trode plating and electrode impedance measurement capability.
We present both standalone and in vivo measurements results,
demonstrating readout of spikes and field potentials that are
modulated by a sensory input.

Index Terms—Brain-machine interface, biomedical electronics,
in vivo, high-channel-count, neural readout.

I. INTRODUCTION

THE brain is perhaps the most complex system we know
of; multiple brain regions contribute to any given func-

tion through complex, anatomically distributed sub-circuits.
We know that neurons generate electrical activity by means
of action potentials which encode information, and that the
timescales of brain activity range from milliseconds to years.
However, the exact way that spiking patterns encode informa-
tion is still a mystery.

As the neuroscience community attempts to translate these
signals, the need for large-scale, high-density neural recording
increases [1]. A large number of recording sites featuring
high anatomical spatial coverage and millisecond temporal
resolution is necessary for any new technology developed
to tackle this problem. As a result, significant progress has
been made in increasing the number of electrodes in silicon
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and polymer probes [2] [3], which in turn increases the
requirement for high-channel-count neural readout electronics.

One of the most widely adopted commercial ASICs for
neural readout features up to 64 recording channels [4] [5].
Each channel has an AC-coupled front-end and offers ultra-
low noise recording. The large capacitors required for a 1 Hz
high-pass cutoff limit the scalability of the system, however,
making it impractical for recording thousands of channels.

In [6] and [7] up to 384 readout channels are demonstrated
on a single chip. The system is monolithically fabricated with
electrodes and circuits on a silicon substrate and achieves
small area and very low-power recording, at a moderate
analog-to-digital converter (ADC) resolution. In addition, the
probes can be used in multi-module assemblies of thousand
of channels. Although monolithic fabrication allows increased
channel count, the readout cannot be integrated with other
probes or electrode technologies.

A massive 65,536-channel count recording system is
demonstrated in [8]. The system consists of microwire elec-
trode arrays bonded to readout electronics, and is the largest
recording array to date. The readout ASIC does not include
digitization, and power consumption can become a serious
bottleneck since even a small temperature increase at the
recording site can affect the measured potentials. Furthermore,
the device weight and size are too large to be used in awake
and free behaving experiments with small animals like rats.

This work achieves readout and digitization of 512 channels
onto a single chip. The chip can be used in multi-module
assemblies of up to 8 modules, therefore increasing the
channel count to 4096. The prototype borrows a 2D layout
approach that has previously led to major developments in
particle physics and X-ray microscopy, allowing much higher
density of electronics than standard 1D layouts. It features a
DC-coupled programmable analog front-end and in-pixel 14-
bit digitization, as well as programmable clock distribution,
and data encoding and serialization, making it a complete
high-density neural readout solution, compatible with various
high density electrode arrays, in standalone or multi-module
configuration.

The system design is presented in II, with details on the
circuit design for each channel discussed in Sections II-A and
II-B. Bench and in-vivo measurement results are presented in
Section III.
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Fig. 1. High-level system architecture of the proposed neural recording system (top) and readout ASIC (bottom). Top: One module of the system consists of a
flexible ribbon cable which connects four electrode shanks with the substrate. The 512-channel ASIC is bump-bonded onto the substrate, which is bump-bonded
onto the stiffened ribbon cable. Bottom: Block diagram of the proposed readout ASIC. The electrode signals are amplified, digitized, and encoded, before
being sent to the next processing stage.

II. SYSTEM ARCHITECTURE AND DESIGN

The fabricated chip forms the basis of a modular, high-
channel-count recording system. The proposed architecture of
the neural data acquisition system is shown in the top part of
Figure 1. Each module includes a 512-channel polymer probe
consisting of 4 shanks of 128 electrodes, which is connected
to the chip through a flexible ribbon cable. The chip is bump-
bonded on a 10 mm × 17 mm substrate, which is then bump-
bonded to the ribbon cable. The chip I/O is routed to an
ultralight 0.35mm-pitch connector, to be sent to an FPGA for
processing. The whole system is designed to not exceed a
weight budget of 350 mg for each module, therefore allowing
for up to 8 modules to be stacked together inside the headstage.
As a result, a total of 4096 electrodes can be simultaneously
processed by a single FPGA.

The main focus of this work is the neural signal acquisition
ASIC, shown in the bottom part of Figure 1. Each pixel con-
sists of a front-end neural amplifier with programmable gain,
a programmable anti-aliasing filter, a buffer, and a 14b Σ∆
analog-to-digital converter, including the digital decimation fil-
ter. Analog biasing is provided through programmable digital-
to-analog converters (DACs). Digital control, programmable
clock generation and distribution, as well as a serial com-
munication protocol are implemented on chip. Low-voltage
differential signaling (LVDS) is implemented for all high-
speed inputs/outputs (I/O).

A. Analog front-end

A detailed block diagram of the analog front-end (AFE) is
shown in Figure 2. In order to achieve both a programmable
gain and the ultra-high input impedance required for neural
recording, the first stage of the AFE is implemented as a
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CONTROL
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Fig. 2. Detailed block diagram of the analog front-end, including the electrode
plating current scheme.

4-input operational transconductance amplifier, consisting of
one main and one auxiliary input pair. The main amplifier has
high-input impedance and is DC-coupled to the electrode pad.
DC-coupling has the advantage of much lower area than AC-
coupling, but it is more sensitive to electrochemical offsets. In
order to compensate for such offsets while maintaining power,
area, and noise requirements, a simple background offset
calibration is implemented as feedback to the main amplifier;
if the amplifier output exceeds a programmable threshold, a
current charges a capacitor connected to the inverting input so
that the amplifier output voltage is zero. This large capacitor is
implemented as a MOS capacitor (MOSCAP) to minimize area
while maintaining good charge retention. The offset correction
scheme is implemented offline and does not otherwise interfere
with the signal path. The auxiliary inputs of the amplifier
are used to set the gain through an externally programmable
resistive ladder. The available values for the amplifier gain
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are 5, 10, 20, 50, 100, and 200. The final stage of the AFE
is an anti-aliasing filter (AAF) with a programmable cutoff
frequency.

In addition to gain, filtering, and offset calibration, the
AFE features an electrode plating capability. Electrode plating
currents are provided through gated current mirrors. A DAC
common to all channels sets the value of the plating current.
Each pixel can be individually programmed to source or sink
the plating current. The electroplating feature can also be used
for electrode impedance measurements. Both the electrode
plating process and the impedance measurement process are
discussed in more detail in Section III-A3.

B. Sigma-Delta ADC specification and design

To optimally determine the ADC specifications, a spike
sorting algorithm was applied to publicly available 16-channel
rat neural recordings, which were reconstructed to create a
golden data set. The golden data was then digitized in software
with various levels of non-idealities, including quantization,
non-linearity, and noise. The golden data as well as the non-
ideal data was processed through a spike-sorting algorithm
that produces neural clusters [9]. The results were visualized
using a confusion matrix (Figure 3). Events that appear on the
diagonal on the matrix are correctly matched between the two
data sets, whereas off-diagonal events represent either missed
or misidentified events. Additional analyses that explore spike
sorting accuracy as a function of ADC specifications can be
found in [10]. This process enables setting system specifica-
tions that are informed by spike-clustering algorithms.

Fig. 3. Simplified confusion matrices of two data sets of spike data. On the
left, the confusion matrix shows no information loss between the two data
sets. On the right, the confusion matrix shows both missing and misidentified
events.

It was a determined that 14-bit quantization causes a suf-
ficiently small error in neural clustering produced by spike
sorting. Linearity requirements are relaxed, and noise require-
ments allow the effective number of bits of the ADC to be as
low as 12 bits. In addition, bandwidth requirements are limited
to less than ≤ 10 kHz due to the nature of intracortical signals.

1) Sigma-Delta modulator: In order to achieve the desired
specifications while maintaining low power and area, a 14-
bit Σ∆ topology was chosen. Σ∆ topologies have been
increasingly attractive in the field of neural recording [11]
[12], because they are uniquely appropriate for high-resolution,
ultra-low power digitization, and offer advantages such as
quantization noise shaping and relaxed filtering requirements.

A 2nd-order Σ∆ loop was selected in order to provide good
stability at a reasonable oversampling ratio. The oversampling
ratio was set to 256 to achieve a good tradeoff between
required clock frequency and capacitor area, such that the
modulator is small enough to be integrated into the pixel.
The modulator was implemented as a discrete-time, switched-
capacitor topology, in a single-ended-to-differential configu-
ration, shown in the top of Figure 4. The input sampling
capacitors employed a double-sampling scheme, which relaxes
the noise requirements and therefore allows for a smaller input
capacitor size. This allowed us to maintain reasonable linearity
while maximizing dynamic range. The amplifiers were imple-
mented using a fully-differential folded-cascode topology with
capacitive common-mode feedback. The modulator draws a
total of 60 µA when the ADC is operated at 30 kS/s, including
the input buffer current.
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Fig. 4. Simplified schematic of the modulator (top) and block diagram of the
decimator (bottom).

2) Digital decimation filter: In addition to a low-noise
analog front end and a Σ∆ modulator, each pixel contains
a digital decimation filter to convert the single-bit data stream
from the Σ∆ modulator into a slower, multi-bit ADC output
with improved resolution. The key objectives in the design
of the decimation filter are minimum area (to fit the filter
into a small pixel) and low power (to enable the inclusion of
many pixels per chip). Typically, the decimation filter for a
Σ∆ ADC is implemented using multiple stages and the final
stage is usually a high-order finite impulse response (FIR) filter
to reject close-in aliasing due to the decimation process. This
final stage often drives the area and power of the decimation
filter [14]. For this ADC, we separated the decimation into two
components: a pre-filter to be implemented in the pixel and a
post-filter implemented off-chip (Figure 4). This partitioning
allowed a tradeoff between on-chip filter area and data com-
munication bandwidth requirements because as the modulated
signal is decimated in each stage bandwidth is traded for
resolution. Partitioning the filter between on-chip hardware
and off-chip hardware or software allows the decimation filter
to be optimized for the specific application; both reducing
area and improving performance. Integrating the decimation
pre-filter on the chip reduces the data volume that must be
transmitted from the prototype by a factor of 9 compared to
transmitting the raw modulator data stream.
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Fig. 5. Block diagram of Cascaded Integrator Comb filter. The output bits
of the Σ∆ modulator are integrated k times, downsampled by a factor of
N, and then differentiated an additional k times. This structure is highly
computationally efficient as it allows the implementation of a high-order
lowpass filter without multipliers, reducing power dissipation and area.

To minimize on-chip area, the decimation filter is imple-
mented as a Cascaded Integrator Comb (CIC) filter. This filter
structure is a computationally efficient implementation of a
narrow-band FIR lowpass filter that does not require multi-
pliers, which greatly relaxes the area and power dissipation
required to implement the CIC filter [13]. A block diagram of
the CIC filter is shown in Figure 5.

One consequence of using a CIC filter is that it has a strong
sinc(x) response, which requires a droop compensation filter to
recover the frequency response near the Nyquist band. Here,
however, the spike-sorting routines that post-process the data
acquired by the prototype include sharp lowpass filtering as
part of their operations, so good high-frequency fidelity is not
required in the decimation filter.

To balance performance and complexity, typically a CIC
filter used in a Σ∆ ADC is implemented using an order one
larger than the order of the modulator [14]. Since the ADC
is using a second-order modulator, the implemented CIC is a
third-order FIR filter. The CIC filter implemented as part of
the Σ∆ ADC uses a two’s complement data representation to
simplify data flow. To ensure the final filter output does not
overflow, the word width must be greater than:

W = Nlog2(D) + 1,

where W is the required word width to avoid overflow, N is
the order of the CIC filter, and D is the decimation factor.
In this case, the decimation factor for the pre-filter is 128.
This leads to a required word width of 22 bits [13] in the
prototype CIC filter. It is possible to shrink the word width as
data progresses down the pipeline but this was not done here
because we determined that the reduction in area possible was
small relative to the additional effort required.

The key goal of the decimation filter is to minimize area
to enable integration of a complete ADC inside each pixel.
Because the full adder is the key circuit in the CIC filter, a
number of full adder topologies were investigated to optimize
area and power dissipation. We compared a conventional
28-transistor full adder and a more aggressive 18-transistor
adder based on pass-transistor logic [15]. Each full adder
was implemented using transistors with various thresholds.
We also examined adders with even fewer devices but found
the performance variation across corners was problematic. The
results of this simulation study are summarized in Figure 6.
We determined that the conventional 28-transistor full adder
cell implemented using standard-threshold devices had the best

balance of low power dissipation, small die area, and high
reliability across corners given the expected workload.

To minimize the area of the digital filter, the layout was
custom designed. The dimensions of the custom full adder,
shown in Figure 7, are 12.1 µm by 4.8 µm (59.1 µm2) and
the full adder area was reduced by over 30% compared to
a commercial standard cell full adder. The area of the other
cells in the filter was reduced by a similar factor. In addition,
because of the use of minimum-size devices throughout the
layout (to minimize area), the power dissipation of the cus-
tom full adder was reduced by a factor of approximately 3
compared to a commercial standard cell full adder.

In addition to full adders, digital latches are required to
pipeline the data as it flows through the filter. To minimize
area, the latches are implemented using 2-phase logic. This
is possible to do in a simple way by reusing the 2-phase
clocks required for the switched-capacitor circuits in the Σ∆
modulator. The integrators operate at the same speed as the
modulator, while the differentiators (after the downsampler)
operate at 1/128th the rate of the modulator. This implicit clock
division is implemented by masking every 128th phase of the
higher-frequency clock.

The entire filter is implemented using a full-custom layout
style, without including any standard cells in the design. The
filter has an area of approximately 200 µm by 100 µm or 0.02
mm2.

The physical implementation of the CIC filter in each pixel
required 5850 transistors. The breakdown of the per-pixel
CIC filter device usage is shown in Table I. The coder block
converts the single-bit output of the Σ∆ modulator into a 22-
bit two’s complement representation.

C. Digital services

Two 14-bit words, representing the sample from two chan-
nels, are encoded in a 32-bit DC-balanced output word. The
chip serializes the data output on two LVDS channels, each
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Fig. 6. Comparison of power dissipation of several full adder topolo-
gies simulated at 4 MHz and implemented using various transistor flavors.
The conventional 28-transistor full adder cell implemented using standard-
threshold devices had the best balance between power dissipation, die area,
and reliability across power, voltage, and temperature variation. ”svt” refers
to standard-threshold devices, ”mvt” references to medium-threshold devices,
and ”native” refers to zero-threshold devices.
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Fig. 7. Custom full-adder layout. This layout of a standard 28-transistor full
adder consumes 30% less die area compared to the full adder included in a
commercial standard cell library.

TABLE I
TRANSISTOR USAGE IN IMPLEMENTED CIC FILTER

Circuit Instances Transistors Total Transistors

Coder 1 42 42
Integrator 3 880 2640

Downsampler 1 132 132
Differentiator 3 1012 3036

Complete Filter 1 5850 5850

carrying the data from 16 rows × 16 columns of pixels, at a
rate of 32×128×fs, where fs is the sampling frequency. Chip
programming is performed via a 2-wire interface, with token
passing to control multiple chips in multi-module assemblies.

III. SILICON MEASUREMENT RESULTS

The design was fabricated in a 0.18 µm 1.8-V CMOS
process. Figure 8 shows a microphotograph of the prototype,
along with the floorplan and power distribution scheme. Each
chip contains 512 channels, organized as 32 rows by 16
columns. Each channel includes the electrode pad, and one
column of additional power pads is placed between every
two electrode pad columns. These additional power pads
achieve ultra-low resistance power routing, easy decoupling,
and reduced on-chip power regulation requirements, at the cost
of chip area.

Each channel occupies 0.099mm2, including the area of the
power pads. The channel layout is shown in Figure 9. The total
chip area is 55.8 mm2. Figure 10 shows the chip bump-bonded
on the substrate board.

Both standalone bench testing and in vivo testing were
performed, and the results are presented in Sections III-A and
III-B, respectively.

A. Standalone Measurements

1) Chip performance: For standalone testing, the peripheral
power pads and 32 electrodes are wirebonded onto a custom
testboard. Initial testing was done using the programmability
and testability features of the chip. Figure 11 shows measure-
ments of the read-back analog biasing current compared to
simulated values. Measurement reveals currents slightly higher
than expected, but still within the desired range. Figure 12
shows excellent bandwidth programmability of the AAF filter.

POWER PADS

ELECTRODE PADS

DIGITAL I/O

AND


TEST PADS


Fig. 8. Die photo of the chip. The die size is 8.2 mm x 6.8 mm. Power pad
columns (blue) are placed between every two electrode pad columns. Digital
I/O and test pads are the right-most column.

Analog
front-end

ΣΔ
modulator

Decimation
filter

277μm 100μm 100μm

20
5μ
m

477μm

20
0μ
m

Fig. 9. Layout of the complete pixel. The dimensions of the of pixel
are approximately 205 µm × 477 µm, with more than half of the area
dedicated to the analog-front-end. The modulator and decimation filter occupy
approximately 200 µm × 100 µm or 0.02 mm2 each.

Fig. 10. Chip prototype bump-bonded on the substrate board.
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Figure 13 shows the measured signal amplitude compared
against the simulated AAF response, for various AAF DAC
settings. For a AAF DAC value of 20, the measured gain is
53.4 V/V, very close to the expected value. The plating current
DAC was also measured to be comparable with simulation
results (Figure 14). Figure 15 shows signal amplitude over
frequency for a 0.2 mV input sinusoid. The response is
compared to the theoretical response of the AAF and digital
CIC filter with gain scaling, and follows the expected roll-off.
It also reveals a 15% lower gain comparing to the expected
value, in this particular gain setting.
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Fig. 15. Measured amplitude for a 0.2 mV input sinusoid. The AFE gain
setting is 100. ADU size is 61 µV.

Figure 16 shows the input-referred noise (IRN) histogram.
Measured noise is 5.4 µV in the 0.3-10 kHz action potential
(AP) band, and 3.1 µV in the 0.5 Hz-1 kHz local-field potential
(LFP) band. For our application, the AP band of interest is the
0.3-6 kHZ band, which yields an IRN of 4.8 µV.
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Fig. 16. Measured noise spectrum in AP band of interest (0.3-6 kHZ).

At a 1.8 V supply voltage, the total power consumption is
244 µW/channel when sampling at the maximum sampling fre-
quency of 30 kS/s. This includes all on-chip components; the
AFE, buffer and complete ADC, as wells as all programmabil-
ity features, digital communication protocol implementation,
and LVDS I/O circuitry. The power breakdown of the chip is
shown in Figure 17.

2) Data post-processing: Larger than anticipated leakage
currents cause the offset compensation capacitor to charge up,
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imposing a sawtooth-shaped artifact on the signal. The primary
source of this leakage is gate leakage of the capacitor. To
remove this sawtooth background, we take advantage of the
consistent shape of the leakage current-induced patterns. This
involves: 1) detecting the up and down-phases of the sawtooth
signal 2) fitting a line to the up-phases and 3) subtracting
away the linear fit while zeroing out changes in the negligibly
short down-phases. Let the acquired signal be denoted x, n
be the index of the discretely sampled time series, and d
be a sampling-rate dependent delay parameter. In step 1, the
down-phase of the sawtooth is detected when both a delayed
amplitude threshold (1) and a first order difference threshold
(2) are met.

x[n− d] > xmin (1)

∆x[n] < ∆xmax (2)

Since, the leakage current is always in one direction, this
phase detection criteria assumes that sawtooth signal always
rises positively; however, this can easily be generalized to
sawtooth signals of the opposite sign. Samples not detected
as down-phases are classified as up-phases. A least squares
linear model is fit to the up-phases of x, ignoring the down-
phases by concatenating only the up-phases of the signal x
together. Let c be the slope of the linear fit. The final step
involves subtracting away the linear sawtooth component of
the signal which can be done with the first order difference
signal and accumulating ∆x[n]:

∆x[n]←−

{
∆x[n]− c if up− phase

0 if down− phase
(3)
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Fig. 18. The top left panel shows raw data collected with a 1 Hz sine wave
injected into the test chip. The top right shows the signal and fitted sinusoid
after sawtooth removal. The bottom left panel shows raw data collected with
a 0.1 Hz signal injected into the test chip. The bottom right panel shows the
signal and fitted sinusoid after sawtooth removal. In both the 1 Hz and 0.1
Hz case, there is excellent agreement (R2 = 0.96 and R2 = 0.94 for the 1
and 0.1 Hz respectively) between the injected sinusoids and the signals after
post-hoc sawtooth removal.

As shown in Figure 18, post-processing eliminates the
sawtooth background in signals of frequencies both above and
below the sawtooth frequency.

3) Electroplating and electrode impedance measurements:
As outlined in Section II-A, the AFE is equipped with a
digitally-controlled electroplating DAC. There are two main
steps in electroplating process: 1) electrochemically cleaning
the metal surface of the electrodes, and 2) coating with
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PE-
DOT:PSS). Both steps are performed using a 2-electrode
configuration where the reference/ground electrode is a pure
silver wire, and the microelectrodes are 20 µm-diameter plat-
inum contacts. Cleaning involves submerging the electrodes
in a sulfuric acid bath and passing a current that is swept
between -30 to 150 nA at an average rate of 2 nA/s for
10 minutes. After cleaning, the electrode array is rinsed with
70% alcohol and deionized water. Subsequently, the electrode
array is submerged in a solution of PEDOT:PSS. Finally, a
constant current of 10 nA is supplied for 45 seconds through
each electrode, simultaneously plating all electrodes. Figure 19
shows the bare metal electrodes and the plated PEDOT:PSS
electrodes. As a result of plating, the impedance decreased
from 5.4 (90% confidence interval [CI] = 2.4 to 8.5) MΩ to
0.2 (90% CI = 0.04 to 0.88) MΩ, as shown in Figure 20.

Finally, the chip has the ability to perform electrode
impedance measurements at arbitrary frequencies. Each chan-
nel can individually be programmed to enable a positive or
negative plating current. By continuously re-programming the
DAC that sets the plating current for the chip, current patterns
can be implemented including sinusoids. Electrode impedance
can be measured by passing a sinusoidal current through an
electrode and measuring the voltage across the electrode. In a
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Fig. 19. Bare metal electrodes and the PEDOT:PSS plated electrodes.

sample of 6 channels, the resistance measured across a 47 kΩ
resistor at 250, 500, and 1000 Hz was ≤ ±10%, as shown in
Figure 21.
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Fig. 20. Impedance of a baseline and a PEDOT:PSS plated set of electrodes.
The impedance decreases from 5.4 (90% CI = 2.4 to 8.5) MΩ to 0.2 (90%
CI = 0.04 to 0.88) MΩ after electrode plating. The impedance was measured
at 1kHz.
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Fig. 21. Resistance measurements using a 47 kΩ resistor. The measured
resistance is within 10% of the reference.

B. In vivo electrophysiology

We performed an acute craniotomy experiment on a Sprague
Dawley rat, which was anesthetized by intraperitoneal injec-
tions of Ketamine and Xylazine. All rat procedures were per-
formed in accordance with established animal care protocols
approved by the LBNL Institutional Animal Care and Use
Committees (IACUC). A commercial silicon laminar probe
was inserted into the primary auditory cortex, and a platinum

Fig. 22. Photo of the in vivo test setup. A custom testboard was made in
order to interface the chip prototype with the commercial silicon laminar
probe. Auditory stimulus was provided through a speaker, and results were
post-processed using an FPGA.

reference wire was inserted into a contralateral frontal region.
A testboard was fabricated to connect the silicon laminar probe
with the chip. Figure 22 shows a photo on the test setup,
including the custom testboard, prototype, and silicon laminar
probe.

Auditory stimulus included a white noise burst lasting 100
ms played every 1 second for 60 repetitions [17]. The digital
output was sent to an FPGA and main controller unit for digital
processing and finally sent to a computer for visualization and
data saving1.

The recordings were post-processed with a similar back-
ground subtraction technique described in Section III-A2,
and then passed through spectral and spike sorting analy-
sis pipelines. The spectral analysis involves computing the
constant-Q wavelet transform for each trial for center frequen-
cies ranging from 8.3 Hz to 1200 Hz [18] [19]. The magnitude
of the transform is taken and then normalized by z-scoring
relative to baseline. The baseline period lasts 200 samples or
∼6.67 ms, and starts 100 ms prior to the upcoming stimulus
presentation.

For a separate spike analysis, high pass filtering at 300
Hz, whitening, and automated spike clustering were per-
formed using the publicly available spike-sorting algorithms
spikeinterface [20] and MountainSort [9]. Finally,
the produced units or clusters were manually curated to
identify putative single units.

The prototype was able to readout in vivo electrophys-
iological signals including action potentials measured from
laminar polytrodes inserted into cortex. The filtered measured
signals from 4 channels are shown in Figure 23(a). Evoked
potentials were strongly driven by auditory stimuli across the
neural frequency spectrum as expected (Figure 23(b)). Spike
sorting revealed isolated putative single units (Figure 23(c)).
These results demonstrate that the proposed design can readout
spikes and field potentials that are modulated by a sensory
input.

1FPGA developement and post-processing was performed by our collabo-
rators at SpikeGadgets.
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Fig. 23. Chip readout of in vivo electrophysiological signals. a) High pass filtered (fc = 300 Hz) signals from 4 channels during the presentation of an
auditory stimulus indicated by the red vertical line at time 0. b) Median spectrogram across 60 trials of auditory presentation showing a broadband increase
in amplitude relative to a baseline window. The auditory presentation is indicated by the red vertical line at time 0. The amplitude is normalized by z-scoring
(Z) relative to baseline. c) Four putative single unit waveforms generated by using an automated spike-sorting algorithm. The average waveform is plotted in
black and the 95% standard error is plotted as a gray shaded region about the average.

The chip performance summary is shown in Table II, com-
pared to the two most widely adopted state-of-art commercial
neural signal acquisition systems.

TABLE II
PERFORMANCE SUMMARY

[5] [6] [12] [21] This work
Channels 64 384 128 16 512
Tot. area [mm2] 28.7 45.2 0.005 5.8 55.8
Area/ch. [mm2] 0.448a 0.12 0.0045 0.16 0.099
ADC bits 16 10 14 8 14
ADC fs [kHz] 30 30 30 31.25 30
IRN (LFP) [µV] 2.4b 10.32 11.9 - 3.1
IRN (AP) [µV] 2.4b 6.36 7.71 5.4c 5.4
Power/ch. [µW] 351 49.06 8.34 0.96 244
Supply [V] 3.0 1.2/1.8 0.8 0.5 1.8
In vivo results Yes Yes No Yes Yes
Technology [µm] 0.35 0.13 SOI 0.022 0.18 0.18
aIncludes I/O and digital interface. bUnspecified frequency range.
c 1kHz-12kHz frequency range.

IV. CONCLUSION

We report a massive 512-channel neural signal acquisi-
tion ASIC designed to target high-density electrophysiology.
Modularity and scalability enable addressing mutliple brain
regions and were key components of the design, as well as
integration with commercial high-density probe systems. We
briefly discuss our complete system headstage design which
targets 4096-channel recording, and focus on the chip design,
testing, and data processing. The ASIC features programmable
gain, filtering, and 14b Σ∆ digitization, including digital
decimation filtering in each channel. It occupies a 55.8 mm2

area, measures an IRN of 4.8 µV in the AP band of interest
(0.3-6 kHz), and dissipates 244 µW/channel from a 1.8 V
supply. The chip also provides electrode plating and electrode
impedance measurement capability. Finally, we present in vivo
measurements of action potentials using silicon laminar probes
on anesthetized rats. This work demonstrates an ultra-low

noise flexible signal acquisition modular system with potential
for ultra high-density neural recording.
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