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Abstract

Due to the rapid development of satellite imaging sensors, high-resolution images are being generated for use. Various image

processing algorithms, such as deep learning models, require images of reduced sizes given the computational constraints.

Hence, preprocessing the images to reduce their size is crucial for any deep learning model. This paper proposes a novel

approach to compress satellite images using quantum computing. A comparative study on different standard data embedding

techniques used in quantum computing is undertaken. We propose four quantum compression techniques (???s) by extending the

unitary operations of amplitude encoding for compressing satellite images. The proposed methods provide exponential scaling

as amplitude encoding is used, where 2? classical data values are encoded into ? qubits. Compression performance, visual

evaluation, and quality metric evaluation were carried out to assess the proposed compression techniques. Our experimental

results showed that the crucial patterns in images are retained in the compressed images without quality loss even after 75%

compression. The compressed images can be used for post-processing tasks such as classification using classical or quantum

computing algorithms.
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Abstract—Due to the rapid development of satellite imaging sensors, high-resolution images are being generated for
use. Various image processing algorithms, such as deep learning models, require images of reduced sizes given the
computational constraints. Hence, preprocessing the images to reduce their size is crucial for any deep learning model.
This paper proposes a novel approach to compress satellite images using quantum computing. A comparative study
on different standard data embedding techniques used in quantum computing is undertaken. We propose four quantum
compression techniques (𝑄𝐶𝑇s) by extending the unitary operations of amplitude encoding for compressing satellite
images. The proposed methods provide exponential scaling as amplitude encoding is used, where 2𝑛 classical data
values are encoded into 𝑛 qubits. Compression performance, visual evaluation, and quality metric evaluation were carried
out to assess the proposed compression techniques. Our experimental results showed that the crucial patterns in images
are retained in the compressed images without quality loss even after 75% compression. The compressed images can be
used for post-processing tasks such as classification using classical or quantum computing algorithms.

Index Terms—Quantum computing, data encoding, data compression, satellite image processing, quantum circuit, image size reduction.

I. INTRODUCTION

Imaging sensors of remote sensing satellites generate a large
amount of data which is used for various real-time applications
such as classification and object detection [1]. However, extensive
storage and computational facilities are required to store and process
high-resolution satellite images. Hence, traditional computational
methods are sometimes insufficient. Quantum computing [2] is a
rapidly growing technology based on quantum-mechanical properties
for computation. Classical computers can only encode data in bits
that take a value of either 0 or 1. Whereas quantum computers encode
data in more than two states at a time using quantum-mechanical
properties such as superposition and entanglement. Thus, quantum
computers are fundamentally different in processing information than
classical computers.

A quantum bit or qubit is the basic unit of information in quantum
computing. A qubit differs from a classical bit as qubits can be
represented using a superposition of two basis states, |0〉 and |1〉.
Hence, a qubit is a two-dimensional quantum system and similarly
d-dimensional quantum systems (qudits) can be represented using
superposition of 𝑑 basis states such as |0〉, |1〉, |2〉 , . . . , |𝑑〉.

As discussed earlier, analyzing remotely sensed images requires
storing and processing massive data. Also, training deep learning
models with large images increases the complexity of handling
the training phase [3]. Quantum computing can solve the problem
as quantum computers efficiently handle vast amounts of data by
providing exponential scaling using qubits for computation [4].

This letter introduces a novel image data compression approach
using quantum computing where image data in the classical domain is
encoded into a quantum computer for compression. The compressed
image data in the quantum domain is later transformed into a down-
scaled image in the classical domain for desired post-processing
tasks. The main contributions of this work are as follows.

Corresponding author: B. S. Manoj (e-mail: bsmanoj@ieee.org).
Associate Editor: NAME.
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1) We compared three existing quantum encoding techniques from
the perspective of satellite imagery.

2) We propose four quantum embedding methods using quantum
circuits for high-resolution satellite image compression.

3) We experimented with the four methods on a dataset comprising
200 satellite images to reduce the size of the images.

4) We analyzed the effect of tuning the quantum circuits on the
compressed image data using performance, visual and objective
evaluation methods.

The rest of this letter is organized as follows. Section II discusses
the details of the dataset used in this work and a comparative study
of the standard data encoding techniques. In Section III, we propose
four data compression techniques using quantum circuits. Section IV
provides the details of the experiments carried out using the proposed
technique along with results and discussion. In the end, conclusions
are drawn in Section V.

II. DATASET AND DATA ENCODING TECHNIQUES

In this work, we used a dataset of 200 satellite image tiles from [5]
with less than 1% cloud coverage for the experiments. The chosen
dataset has 100 pairs of SAR (grayscale) and Optical (RGB) images
of the same area and taken at the same time. The 100 image pairs are
split into two classes (50 image pairs each of airports and forestry).
The selected satellite image tiles have a tile size of 1024×1024 pixels
and a tile area of around 105𝑘𝑚2.

Data encoding is essential in processing information using qubits
on a quantum computer. The way of data encoding affects the
efficiency of computational algorithms [6]. However, selecting a
specific data encoding mechanism for high-resolution satellite images
is an interesting research area. The properties of the data and the nature
of the target remote sensing application are to be considered while
selecting data encoding algorithms. The huge size of images is another
consideration when selecting such a data encoding mechanism.
Encoding image pixel data is the primary step in processing high-
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(a) Basis embedding (b) Angle embedding (c) Amplitude embedding

Fig. 1: Data encoding using the three standard qubit embedding techniques.

resolution satellite images. Embedding methods for data encoding
are based on the following three standard techniques.

1) Basis Embedding: In basis embedding [6], the classical data is
converted to binary form, then the string of binary inputs is translated
as a quantum basis state as shown in Figure 1a. The binary value
of classical data is encoded as a basis state with an amplitude of
one. A classical data value with 𝑛 binary bits is encoded using a
basis state of 𝑛 qubits in basis embedding. Thus, basis embedding
requires many qubits to encode high-dimensional data because binary
representations of the classical data are encoded as basis states.

2) Angle Embedding: In angle embedding, classical data features
are encoded as the rotational angles of qubits using unitary operations
as shown in Figure 1b. The qubit rotation can be achieved around
𝑥-axis 𝑅𝑥 (𝑣𝑖) or 𝑦-axis 𝑅𝑦 (𝑣𝑖) or 𝑧-axis 𝑅𝑧 (𝑣𝑖) in a Bloch sphere [7]
where 𝑣𝑖 is the classical data value. The angle embedding encodes 𝑛
classical features into a minimum of 𝑛 qubits [6] where each feature
is encoded as a rotational angle of a quantum rotational gate.

3) Amplitude Embedding: In amplitude embedding, the classical
features are mapped into amplitudes of a quantum state. The initial
step in amplitude embedding is converting classical data into angular
representations, as shown in Figure 1c. The data is encoded into
amplitudes of quantum states using uniformly controlled rotations [8]
as per Equation 1.��𝜓𝑎𝑚𝑝

〉
= R (𝑥𝑖 , 𝛽) |𝑘1𝑘2, ....., 𝑘𝑠−2𝑘𝑠−1〉 |𝑘𝑠〉 (1)

𝑅 is a function of 𝑥𝑖 and 𝛽, where 𝑥𝑖 is the 𝑖𝑡ℎ classical feature vector
and 𝛽 is a parameter depending on the dimensions of the classical
features [6]. State

��𝜓𝑎𝑚𝑝

〉
is the result of n rotations on 𝑦-axis in a

cascade where n is the power for embedding a classical feature vector
𝑥𝑖 . In general, to associate each amplitude with a component of the
input vector, the dimension of the vector must be equal to a power of
two because the vector space of an 𝑛 qubit register has dimension 2𝑛.
After the rotations, the input vector 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} is encoded
in the amplitudes of the quantum state as

|𝜓〉 =
𝑛−1∑︁
𝑖=0

𝑥𝑖 |𝑖〉 (2)

where, 𝑥𝑖 is the normalized value of the 𝑖𝑡ℎ classical feature.

A. Selection of Embedding Technique

Basis embedding is a primary way of encoding classical data
using basis states. However, basis embedding encodes binary features
into basis states; hence, the dimensionality and qubits requirement
increases drastically. In angle embedding, a minimum of 𝑛 qubits

to encode 𝑛 classical features. At present, noisy intermediate-scale
quantum devices (NISQs) contain limited qubits to work with, and
also maintaining the coherence of many qubits is a difficult task [9].
Hence, basis and angle embedding schemes are not the best choices
for satellite images as encoding the classical data require many
qubits. In amplitude embedding, 2𝑛 classical data features can be
encoded using only 𝑛 qubits. Since exponentially fewer qubits are
required compared to other standard encoding techniques for data
encoding, amplitude embedding is more suitable for satellite image
data compression.

In this work, we opted for a flexible approach where amplitude
embedding followed by unitary operations are used as the quantum
embedding method to encode and process satellite imagery. The
unitary gates are meant for fine tuning the results.

III. QUANTUM CIRCUITS FOR DATA COMPRESSION

This section discusses the four proposed quantum compression
techniques (𝑄𝐶𝑇s) using amplitude embedding scheme followed
by unitary operations to process and compress the remotely sensed
image data. All four proposed compression techniques work on a
4-wired quantum circuit that needs encoding of 24 = 16 classical
input parameters. The details of each 𝑄𝐶𝑇 are provided as follows.

1) 𝑄𝐶𝑇1𝑄𝐶𝑇1𝑄𝐶𝑇1: In this compression technique, classical image pixel
features (𝑝) are encoded onto the 4–Wired quantum embedding circuit
(QEC) using an amplitude embedding scheme (U𝑎𝑚𝑝) with |0〉 as
the initial state of all four qubits [10]. After encoding all the classical
features into four qubits, Pauli-Z measurement operator is used to
measure the qubit values (𝑞) as shown in Figure 2.

2) 𝑄𝐶𝑇2𝑄𝐶𝑇2𝑄𝐶𝑇2: In this technique, encoding classical features (𝑝) through
U𝑎𝑚𝑝 , is similar to 𝑄𝐶𝑇1, but has Pauli-X operation at each wire
after encoding step as shown in Figure 2. The four wires after the
Pauli-X operation are measured using Pauli-Z measurement operator.

3) 𝑄𝐶𝑇3𝑄𝐶𝑇3𝑄𝐶𝑇3: This technique starts in the same way as 𝑄𝐶𝑇1 by
encoding classical data 𝑝 through U𝑎𝑚𝑝 . After the data encoding
step, the information in the four wires is entangled with the help of
three CNOT operations, as shown in Figure 2. The four entangled
wires are then measured using Pauli-Z measurement operator.

4) 𝑄𝐶𝑇4𝑄𝐶𝑇4𝑄𝐶𝑇4: This compression technique is a combination of 𝑄𝐶𝑇1,
𝑄𝐶𝑇2 and 𝑄𝐶𝑇3 where the classical image pixel data (𝑝) is encoded
through U𝑎𝑚𝑝 . After encoding the data, each wire is subjected to
Pauli-X operation, and the resulting qubits are then entangled with
three CNOT operations as shown in Figure 2. The four entangled
qubits are then measured using Pauli-Z measurement operator.
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Fig. 2: Schematic diagram of the steps involved in high-resolution image processing.

IV. EXPERIMENTS AND RESULTS

The experiments are conducted using PennyLane [11] Python
module. The chosen 200 SAR and optical images are downsized from
1024×1024 to 400×400 due to the current limitation in the availability
of quantum computational resources. First, each downsized image
is split into sub-blocks containing 16-pixel data values, as shown in
Figure 2. The initial state of all qubits is set to |0〉 by default and
the pixel values in each sub-block (𝑝1, 𝑝2, . . . , 𝑝16) are then encoded
into a 4–Wired QEC by (U𝑎𝑚𝑝) embedding scheme [10]. Later, a set
of post-encoding quantum gates further modify the classical encoded
data in the quantum domain. Finally, the modified quantum data is
measured and converted back to the classical domain with Pauli-Z
measurement operator at the end of each wire. Since the work is with
four wires, four measured values (𝑞1, 𝑞2, 𝑞3, and 𝑞4) are obtained in
the classical domain with each value between [-1, 1]. The measured
values are scaled to [0, 255] for further processing. The resulting
sub-block is arranged to recreate a compressed image of 200×200
as shown in Figure 2. Hence, this method theoretically compresses
a sub-block of 16 values to 4 values, resulting in 75% compression.

The effect of quantum gates in overall image compression can be
studied with the four proposed techniques (𝑄𝐶𝑇1, 𝑄𝐶𝑇2, 𝑄𝐶𝑇3, and
𝑄𝐶𝑇4). For this study, the compressed images are evaluated by three
methods. The first is to analyze the four techniques based on their
compression performance with the image dataset. The second is a
visual analysis of the four techniques, which is a direct and commonly
used evaluation approach. Since evaluating compressed images on
visual interpretation is subjective, we have proceeded with the final
evaluation method where the compressed images of all four techniques
are objectively assessed with well-established quality metrics. The
three evaluation methods to evaluate the proposed techniques are
discussed as follows.

A. Compression Performance

As noted in the above section, the theoretical data compression
rate of the proposed four techniques is (16 pixels)/(4 values) = 4 : 1.
However, a comparison with an actual image dataset is required
for analyzing the four compression techniques. Hence the average
compression rates of the four techniques with SAR and optical

Table 1: Compression performance of the proposed techniques.

Input data
size (MB)

Compression
technique

Output data
size (MB)

Compression
ratio (In/Out)

100 optical im-
ages with total
size = 38.0502

𝑄𝐶𝑇1 10.7545 3.53807 : 1
𝑄𝐶𝑇2 10.7545 3.53807 : 1
𝑄𝐶𝑇3 10.6226 3.58200 : 1
𝑄𝐶𝑇4 10.6590 3.56977 : 1

100 SAR im-
ages with total
size = 13.3040

𝑄𝐶𝑇1 3.44506 3.86176 : 1
𝑄𝐶𝑇2 3.44510 3.86171 : 1
𝑄𝐶𝑇3 3.34790 3.97383 : 1
𝑄𝐶𝑇4 3.36338 3.95554 : 1

image datasets are provided in Table 1. It is observed that the actual
compression rates of the four proposed techniques are near to the
theoretical value of 4 : 1. Also, all four techniques show a better
compression rate with SAR images when compared to optical images.
This could be due to the technique dealing with three bands (RGB)
in the case of optical images in comparison with only one grayscale
band in SAR imagery. Even though the overall compression rates of
all the four techniques are near to 4 : 1, comparing the compression
rates of 𝑄𝐶𝑇2 with 𝑄𝐶𝑇1 and 𝑄𝐶𝑇4 with 𝑄𝐶𝑇3, it can be observed
that the Pauli-X operation is impacting negatively in data compression
performance. Another observation is that 𝑄𝐶𝑇3 and 𝑄𝐶𝑇4 compress
better than the other two techniques implying that the entanglement
of qubits through CNOT operation is improving the compression
rates.

B. Visual Evaluation

Figure 3 shows eight sample SAR and optical image pairs in
two dataset classes, along with the compressed images through each
technique. Identifiable patterns are visible in all the compressed
images. The compression of SAR imagery leads to distinguishable
artificial structures such as airport runways, taxiways, paths, and
constructions. In contrast, compression of optical imagery leads to
better patterns in natural formations such as fields around airports,
terrain structures, water bodies, etc. Therefore, a fusion of these two
compressed image pairs, as proposed in [12] would further enhance
the image. Also, images from 𝑄𝐶𝑇1 and 𝑄𝐶𝑇2 show better patterns
when compared to images from the other two techniques.
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Fig. 3: Objective evaluation of eight selected SAR-Optical pairs and their compressed images.

Table 2: Objective evaluation of the compressed images with different
quality metrics (each provided value is the average of 200 images).

Images Technique RV PSNR SSIM UIQI

100
optical
images

𝑄𝐶𝑇1 0.64595 17.6239 0.97959 0.67290
𝑄𝐶𝑇2 0.64595 16.1442 0.97878 0.64452
𝑄𝐶𝑇3 0.69528 16.9517 0.97870 0.66253
𝑄𝐶𝑇4 0.69532 16.3907 0.97826 0.64825

100
SAR

images

𝑄𝐶𝑇1 0.77409 17.3483 0.98976 0.84298
𝑄𝐶𝑇2 0.77409 15.4930 0.98913 0.82017
𝑄𝐶𝑇3 0.82938 16.7122 0.98943 0.83669
𝑄𝐶𝑇4 0.82939 16.0712 0.98911 0.82641

C. Objective Evaluation

In this work, four benchmark quality metrics are used for the
objective evaluation of the compressed images. They are Relative
Variance (RV) [12], Peak Signal-to-Noise Ratio (PSNR) [13],
Structural Similarity Index Measure (SSIM) [12], and Universal
Image Quality Index (UIQI) [14]. From Table 2, it is observed that
the RV and PSNR values of compressed optical images are generally
better than those of compressed SAR images implying a lower noise
in compressed optical images. However, all SSIM and UIQI values of
compressed SAR images are better than those of compressed optical
images. This indicates that though the compressed SAR images
contain noise, they are structurally more similar and have greater
quality than the compressed optical images. Comparing the RV values
of𝑄𝐶𝑇1 and𝑄𝐶𝑇2 or𝑄𝐶𝑇3 and𝑄𝐶𝑇4 show that the Pauli-X operation
as a post encoding operation make a little to no change in details of
(or patterns in) images. However, comparing the PSNR, SSIM, and
UIQI values of 𝑄𝐶𝑇1 and 𝑄𝐶𝑇2 shows that the Pauli-X operation
alters the pixel intensity values of the compressed images. Another
observation is that 𝑄𝐶𝑇1 and 𝑄𝐶𝑇3, in general, perform better than
the other two techniques implying that post-encoding entanglement
of qubits is preferable over rotational quantum operations.

V. CONCLUSIONS AND FUTURE WORK

In summary, we introduced a novel approach to compressing image
data using quantum computing. Based on this approach, four quantum
compression techniques (𝑄𝐶𝑇s) were proposed and were applied to
compress a dataset of remotely sensed 200 SAR and optical images.
Visual and quality metric evaluations were carried out to assess the
compressed images. The results showed that the proposed techniques
performed well at compression and were on par with the calculated
theoretical value of compression. Also, the crucial patterns in images
are retained in the compressed images without significant loss of
quality even at 75% compression.

The current limitation in the availability of qubits in real hardware
has forced the use of four-qubit quantum circuits in all 𝑄𝐶𝑇s.
Use of different quantum circuits is possible with the development
and availability of additional hardware resources. The experiments
are limited to the use of a few sets of quantum gates, as this
work focused on introducing the possibility of quantum techniques
for image compression. Further tuning in quantum circuits can be
achieved to enhance image compression and quality. As an extension
of this work, classical or quantum post-processing algorithms can
be designed to process the compressed images for remote sensing
applications. Also, deep learning models can be trained with the
compressed images for scene classification.
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