
P
os
te
d
on

2
N
ov

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
13
97
41
3.
v
1
—

e-
P
ri
n
ts

p
o
st
ed

on
T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Requirements and Reference Architecture for MLOps:Insights from

Industry

Indika Kumara 1, Rowan Arts 2, Dario Di Nucci 2, Willem Jan Van Den Heuvel 2, and
Damian Andrew Tamburri 2

1Tilburg University
2Affiliation not available

October 30, 2023

Abstract

Machine Learning Operations (MLOps) streamline the lifecycle of machine-learning models in production. In recent years,

the topic has picked the interest of practitioners, and consequently, a considerable number of tools and gray literature on

architecting MLOps environments has emerged. However, this has created a new problem for organizations: selecting the

most appropriate tools and design options for implementing their MLOps environments. To alleviate this problem, this paper

proposes a reference architecture and requirements for MLOps by systematically reviewing 58 industrial gray literature articles.

Such reference architecture drawn from the state of practice shall aid organizations in making better design and technology

choices when embarking on their MLOps journey while providing a technology-independent baseline for further MLOps research.

1



Requirements and Reference
Architecture for MLOps:
Insights from Industry

Indika Kumara
JADS and Tilburg University, Netherlands

Rowan Arts
JADS and Tilburg University, Netherlands

Dario Di Nucci
University of Salerno, Italy

Rick Kazman
University of Hawaii, United States

Willem Jan Van Den Heuvel
JADS and Tilburg University, Netherlands

Damian Andrew Tamburri
JADS and Eindhoven University of Technology, Netherlands

Abstract—Machine Learning Operations (MLOps) streamline the lifecycle of machine-learning
models in production. In recent years, the topic has picked the interest of practitioners, and
consequently, a considerable number of tools and gray literature on architecting MLOps
environments has emerged. However, this has created a new problem for organizations:
selecting the most appropriate tools and design options for implementing their MLOps
environments. To alleviate this problem, this paper proposes a reference architecture and
requirements for MLOps by systematically reviewing 58 industrial gray literature articles. Such
reference architecture drawn from the state of practice shall aid organizations in making better
design and technology choices when embarking on their MLOps journey while providing a
technology-independent baseline for further MLOps research.

Introduction
Organizations are increasingly adopting artifi-

cial intelligence (AI) and machine-learning (ML)
in their businesses to turn their raw business data
into value [1]. However, achieving productive ML
solutions is tough, mainly due to the challenges
of maturing an ML model—developed by data
scientists who are typically not skilled software
engineers—into production and keeping it op-
erating at scale [2]. For example, according to

Algorithmia [3], only 22% of organizations that
use ML have successfully deployed a model into
production.

ML operations (MLOps) has emerged as a
discipline to help bridge the gap between the
development of ML models and their (continuous,
resilient, etc.) operations [4], [5]. Like DevOps,
MLOps aims to offer a set of practices and tools
to automate and combine the processes between
model development and model operations, accel-



erating the delivery of models.
MLOps has gained the attention of technology

providers, and the MLOps landscape is exploding
with tools and platforms [5], [6]. With many
diverse technology options available, a problem
for organizations is to select specific options and
build or assemble an MLOps environment that
can best serve their needs. To help address this
problem, we synthesized a reference architecture
for an MLOps environment and distilled the typ-
ical minimum requirements for each component
in the architecture. An organization can use this
reference architecture as a template for creating
their MLOps system designs. MLOps should be
agnostic from language, tool/platform, and in-
frastructure [5]; a reference architecture and a
common set of requirements could facilitate this
objective.

Despite the popularity of MLOps, little aca-
demic literature exists on the topic, particularly
on designing MLOps solutions [6], [7]. However,
we have witnessed a significant amount of gray
literature on the topic because practitioners (e.g.,
tool developers, data scientists, and consultants)
are increasingly publishing their advice and ex-
periences. Hence, we saw an opportunity to con-
duct a systematic review of the gray literature
on MLOps to identify the requirements for an
MLOps environment and derive a reference ar-
chitecture that addresses those requirements.

Methodology
We adopted the standard guidelines used

by the research community for systematically
reviewing white, gray, and multi-vocal litera-
ture [8], [9].

We first defined three research questions to
obtain the data necessary for creating a reference
architecture for an MLOps environment.

• RQ1: What requirements should an MLOps
environment meet?

• RQ2: What components should an MLOps
environment include?

• RQ3: What architectures have practitioners
proposed for MLOps environments?

Guided by the above research questions, we
next formulated the query: mlops AND archi-
tecture(s) OR requirement(s) OR feature(s) OR
component(s). We ran the query on the Google

search engine, scanning each resulting page until
saturation. We only considered textual sources
such as articles, blogs, white papers, and slides.
We identified 257 sources and applied inclu-
sion/exclusion criteria and quality assessment cri-
teria to create a final list of 58 literature sources.
For the eligibility criteria, we used the standard
measures (commonly used by the gray litera-
ture studies [9]) such as the focus of the study
(as defined by the research questions), written
in English, publisher’s reputation, and author’s
expertise. The first two authors of the paper
independently performed this study selection pro-
cess. We measured Cohen’s kappa coefficient to
assess the inter-rater reliability, which was 0.74,
indicating substantial agreement.

To extract the data from the selected sources,
we applied the qualitative data generation tech-
niques from the grounded theory approach [10].
In particular, we used structural and descriptive
coding to establish codes, groups, and categories.
The first author of this paper coded all sources,
and the second and third authors reviewed the
generated codes. We resolved all the discrepan-
cies via discussions. In addition to the text, we
analyzed the architectural designs in the sources.

The replication package for our study is avail-
able online 1. It contains the flow chart of the
review methodology, the complete list of sources,
the qualitative analysis performed with the At-
las.ti tool, and the extracts from the sources.

Reference Architecture and
Requirements

MLOps processes take place on a compute
stack with the necessary development and op-
erations capabilities. We formulated the require-
ments (see Table 1) and a reference architecture
(see Figure 1) for such a stack from the results
of our gray literature analysis. The reference
architecture consists of three horizontal layers
and two vertical cross-cutting modules. The hor-
izontal layers present the key capabilities and
responsibilities of infrastructures, platforms, and
applications (i.e., MLOps pipelines). The vertical
modules, i.e., automation and governance, capture
the key functionalities relevant to each horizon-
tal layer. This section discusses each layer and

1https://github.com/IndikaKuma/MLOpsGLR.git

2



requirement in detail.

Infrastructure Layer
This layer provides computing resources to

host and execute platform services, pipelines,
governance applications, and CI/CD automation
services. The infrastructure needs to be flexible
and portable to prevent vendor lock-in and enable
the rapid (re)deployment of pipelines (R1). A re-
producible and versionable infrastructure supports
auditing and debugging infrastructure changes
and allows switching between different versions
of platform services, pipelines, and ML mod-
els. The other desired features of the infras-
tructure layer include multi-cloud support, auto-
scalability, and hardware accelerators (R2). The
multi-cloud support allows different teams in an
organization to use the best possible cloud and
tools for building and deploying their models.
Auto-scaling enables scaling up and down train-
ing pipelines and models (serving components)
automatically to cope with fluctuating data and
serving requests. Hardware accelerators may be
necessary to speed up pipeline execution during
experimentation and (re)training and to improve
real-time serving latency.

An MLOps environment can include separate
development, staging, and production environ-
ments (R3). These environments’ configurations
(e.g., tools and hardware resources) may exhibit
variations. Infrastructure as code (IaC) can be
used to automate the provisioning and manage-
ment of such environments while preserving their
reproducibility and auditability (R4).

Platform Layer
This layer facilitates applying platform think-

ing [11] to build a self-serve MLOps platform
to empower different actors involved in creating,
deploying, and maintaining ML models. It sup-
ports managing the entire lifecycle of models and
related artifacts such as data and ML code. In this
section, we present the platform capabilities that
we synthesized from the gray literature.

Pipeline Development and Execution The
pipelines implement ML processes such as data
pre-processing, feature engineering, (re)training,
and prediction. A pipeline consists of steps that
must be executed in a specific order. The platform

should empower developers to publish, share and
reuse pipelines to enable fast development and au-
tomated (re)deployment of pipelines (R5). More-
over, the pipeline steps need to be implemented
as modular containerized components that can be
easily reused and composed (R6). The pipeline
execution can adopt a choreography model or an
orchestration model (R7). The former needs an
event bus to facilitate the event/message-driven
coordination of pipeline steps. The latter defines
the pipeline as a workflow model that a workflow
engine can execute centrally.

Experimentation, Training, and Testing
The experimentation of a pipeline requires its
deployment, execution, and debugging, followed
by the analysis and interpretation of the produced
artifacts (e.g., models and features). Notebooks
are commonly used for experiments. However,
they are not recommended in production due to
the difficulties of versioning, instrumentation, and
automated execution. Hence, the platform should
provide services to export notebooks into deploy-
able pipelines (R8). Moreover, the platform needs
to offer a service to record and query the metadata
of each experiment to enable reproducing and
troubleshooting experiments (R9). The typical
metadata includes, but is not limited to, code
versions, data versions, configuration files, output
artifacts, and performance metrics.

Platform services for training may improve
the performance and reliability of training jobs
through strategies such as model check-pointing,
distributed model training, exploitation of specific
heterogeneous hardware (e.g., GPU and TPU
accelerators), prioritizing training activities, train-
ing on a slice of the data set, and AutoML
(Automated Machine Learning) (R10 and R11).
Check-pointing enables incrementally training a
model using more iterations and recovering from
failures during the training. The distributed train-
ing needs specific middleware capable of running
a training job elastically over multiple compute
nodes. A scheduler service can queue and prior-
itize the training jobs, enabling policing training
activities, for example, capping the amount of
data used by training or preventing long-running
jobs from blocking the deployment of critical
tasks such as security or bug fixes. Finally, Au-
toML can simplify and accelerate building ML

3



Table 1: Requirements for an MLOps Environment
Category Requirements Sources

Infrastructure

R1 Portability, reproducibility, and versionability S2, S4, S12, S15, S18, S35
R2 Auto-scaling and use of GPU and hardware accelerators S3, S5, S19, S28, S35, S37, S38, S44, S52, S53
R3 Cater for different environments (e.g., test and production) S3, S2, S6, S17, S27
R4 Manage the infrastructure using IaC (Infrastructure as Code) S7, S12, S22, S54

Pipeline
Development,
and Execution

R5 Create, publish, discover, use, and customize pipelines S3, S5, S17, S26, S29, S28, S32, S33,
S34, S35, S42, S44, S47, S49, S53, S56, S58

R6 Modular and reusable pipelines and components S3, S14, S17, S19, S32, S41, S49, S58
R7 Execution of pipelines via orchestration or choreography S2, S7, S10, S26, S52, S53, S58

Experimentation,
Training, and
Testing

R8 Export experimental code from notebooks into pipelines S4, S17, S22, S49
R9 Record and query experiments and training runs S7, S9, S16, S22, S23, S25, S30, S33, S38, S53, S58

R10 Apply training scaling strategies such as model check-pointing, distributed
training, use of hardware accelerators, and training with data set slices S2, S3, S4, S8, S9, S10, S23, S24, S36, S38, S53

R11 Use automated machine learning tools S7, S10, S11, S16, S29, S58
R12 Validation tests for all ML artifacts (e.g., model, code, and data) S3, S4, S5, S9, S24, S25, S33, S39, S45, S47, S58
R13 Prioritization and scheduling of tests and training jobs S3, S4, S33

Model
Deployment
and Serving

R14 Ensure the compatibility of the model with the target infrastructure S17, S22, S44, S58
R15 Use open model formats for portable and flexible deployments S7, S9, S10, S16, S24, S35, S38, S40, S57
R16 Package models for ease of deployment, integration, and testing S3, S17, S28, S48, S49

R17 Support different patterns of deploying, releasing, and serving models S1, S2, S7, S9, S17, S23, S24, S26, S28, S31,
S33, S34, S35, S51, S58

Monitoring and
Feedback Loops

R18 Realtime monitoring of and alerting for various issues in
models, data, pipelines, and infrastructure

S1, S2, S3, S4, S7, S10, S11, S13, S15, S16, S17,
S19, S20, S23, S25, S26, S28, S29, S31, S32, S33,
S34, S35, S43, S44, S48, S52, S54, S57, S58

R19 Automated triggering of corrective actions for alerts S1, S2, S16, S17, S25, S35
R20 Generation of custom actionable dashboards for models S2, S3, S10, S34, S40, S54
R21 Support different pipeline triggering models S2, S3, S4, S5, S7, S9, S17, S19, S20

Model Life
Cycle
Management
and
Governance

R22 ML asset storage and marketplace S1, S2, S3, S9, S16, S17, S18, S19, S21, S23,
S26, S35, S50, S51, S53, S56, S58

R23 Version control and lineage tracking for ML artifacts S2, S4, S5, S7, S9, S20, S22, S23, S26, S25, S31,
S33, S34, S35, S41, S45, S57, S58

R24 ML asset metadata management S9, S14, S16, S17, S24, S35, S49, S58
R25 Access control and privacy compliance for ML artifacts S2, S5, S7, S10, S11, S12, S24, S28, S54, S56, S58
R26 Ensure adversarial robustness and interpretability of models S2, S7, S10, S19, S22, S24, S34, S41, S43, S54, S58

General
Platform
Services

R27 Support for general data platform services such as data catalog, data storage,
data discovery, data exploration, data augmentation/labeling, and data fusion

S7, S10, S11, S19, S23, S24, S31, S33, S36,
S38, S50, S53, S58

R28 Support for general ML platform services such as feature engineering, model
exploration, model selection, hyper-parameter tuning, and model validation S2, S4, S6, S9, S26, S33, S58, etc. (most articles)

CI/CD
Automation

R29 Treat ML artifacts as first-class citizens in DevOps processes S1, S2, S3, S4, S5, S7, S8, S9, S22, S25, S27,
S29, S31, S32, S35, S45, S55, S57

R30 Integrate unit, integration, and smoke tests of ML artifacts to CI/CD pipelines S8, S9, S24, S25, S26, S33, S53, S58

applications and lower domain experts’ barriers
to developing their ML models.

All ML artifacts must be tested appropriately;
the key testable artifacts are data, code, and model
(R12). Data tests can verify that input data and
features do not exhibit data quality issues such
as malformed data, anomalies, and mismatches
with the expected schemas and distributions. Such
tests can prevent training-serving skew, namely
differences in model performance during training
and serving, which can be caused by differences
between training data and serving data. Similar
to testing of conventional software applications,
source code tests can assess the quality of the ML
code, e.g., violation of best practices, existence
of known defects, and resource efficiency of
training tasks. Finally, the model validation tests
can verify model fairness and consistency.

As model training and data processing can
be expensive and time-consuming, the execution
of tests needs to be prioritized and scheduled
appropriately, for example, running a subset of
tests or long-running testing during off-hours and
training on small datasets (R13).

Deployment and Serving When deploying
a model to the target serving environment, it
is necessary to ensure its compatibility with the
infrastructure regarding compute resources, soft-
ware dependencies, and model formats (R14). As
ML libraries may use specific formats for their
models, a model translation service may be neces-
sary to convert models into an open model format
for portable and flexible deployments (R15). A
platform can also offer an image-building service
to package models, scoring code, and dependen-
cies into container images (R16). In this way,
the operational team can quickly deploy a model
into staging and production environments, test it,
and integrate it with the applications that need to
consume the predictions from the model.

The platform must support different strate-
gies for deploying/releasing and serving models
(R17). Standard model deployment approaches
include shadow, canary, and blue/green deploy-
ment. A shadow deployment does not immedi-
ately release the new model to users but instead
uses the production traffic to test the model.
A canary deployment releases the new model

4



Figure 1: Layered Reference Architecture for an MLOps Environment

to users incrementally. In contrast, a blue/green
deployment immediately deploys and releases the
new model to users.

Common patterns from serving predictions
from a model include model-as-service, precom-
pute, and model-as-dependency. Model-as-service
exposes the model as a web service or a messag-
ing endpoint. Precompute compute predictions for
a batch of input data and store them to serve the
clients later. In the model-as-dependency pattern,
the application embeds the model as a binary
and loads it at runtime to make predictions.
The application can also download the model at
runtime from a model registry. Serving methods
can also be classified into offline and online
serving. Each method may need specific platform
services, for example, a middleware to run batch
and streaming data processing pipelines.

Monitoring and Feedback Loops The plat-
form layer should continuously monitor various
quality issues in models and data at runtime,
generating alerts and triggering corrective actions
(R18). Two typical quality issues are data drift
and concept drift, which refer to the changes
to the statistical properties of the model input
and the target variable, respectively. Both can

contribute to the degradation of the model per-
formance over time, i.e., model drift. The metrics
related to the stability of the model need to
be monitored continuously to detect drifts. The
model needs to be retrained regularly in response
to drift alerts to address the model drift. Pipelines
also should be monitored continuously as their
failures can prevent updating models. The logs of
a pipeline can be collected and analyzed to gauge
its health. Common performance metrics such as
resource usage, execution time, and throughput
should also be collected for pipelines and in-
ference services. Such metrics can be used to
trigger auto-scaling services to scale pipelines and
models up and down.

Platform services can automate monitoring,
altering, and enacting corrective actions (R19).
For example, the developer should be able to
develop and run a monitoring pipeline that can
process logs and metrics and generate alerts,
and define the rules to select and trigger actions
on alerts. In addition, a dashboard service can
support creating interactive dashboards that allow
monitoring models, pipelines, and infrastructure
and troubleshooting suspicious or poorly per-
forming models and failed pipelines (R20).

Platform also needs to support common

5



approaches for triggering continuous training
pipelines (R21): metrics-driven, schedule-driven,
event-driven, and ad-hoc manual. In the metrics-
driven approach, data and model performance
metrics are measured and used to determine
pipeline (re)execution. The schedule-driven strat-
egy triggers the pipelines at a specified time or
regularity. In the even-drive model, events, such
as changes to the model’s source code and the
availability of a new training data set, trigger
pipelines. Finally, a human operator can manually
execute a pipeline.

Lifecycle Management and Governance
Services ML artifacts and metadata must
be versioned, stored, and managed to support
their reproduction, discovery, auditing, and reuse
(R22-24). Different artifacts may need specific
storage components, e.g., a model registry for
models, a feature store for features, a pipeline
store for data/ML pipelines, and a source code
repository for ML and IaC scripts. The artifact
metadata (e.g., schemas, hyper-parameters and
model metrics) can also be placed in the data store
or a separate metadata store.

The platform should provide the services for
enforcing policies governing ML artifacts’ life
cycle, for instance, identity and access man-
agement services for implementing access con-
trol policies, and privacy-preserving mechanisms
(e.g., data anonymization and federated learning)
for enforcing data privacy compliance. Moreover,
the practitioners may need tools for authoring,
testing, and observing policies.

The models should be resilient to model
attacks such as membership inference attacks,
adversarial attacks, and model inversion attacks.
Moreover, model decisions should be explainable
and interpretable (R26). Hence, the practitioners
need platform services to test models for their
vulnerability to attacks and to generate and visu-
alize explanations for model behavior.

Data Platform Services Developers use data
pipelines to turn raw historical and online data
from multiple sources into features for their ML
models. A data pipeline typically considers tasks
such as data ingestion, storage, discovery, stan-
dardization, labeling, cleaning, transformation,
and feature extraction (R27). The platform should

offer services to simplify the implementation
of these tasks, e.g., a messaging service and a
data catalog service. Moreover, the platform also
should provide tools for building, testing, orches-
trating, monitoring, and managing data pipelines.

Pipelines Layer
This layer consists of the pipelines that can be

built, tested, and executed using platform services
and CI/CD automation services. From the gray
literature, we identified eight major pipeline types
in an MLOps environment: build, release (and
deployment) , data , feature engineering, exper-
imentation, training, scoring/serving, and mon-
itoring. Build and release pipelines are CI/CD
pipelines. The first pipeline builds the code, ex-
ecutes tests to verify code quality, and publishes
the artifacts produced. The second pipeline op-
erationalizes and promotes the artifacts across
different environments (e.g., staging and produc-
tion) to enable their consumption and testing.
When building ML and data pipelines, the source
codes are pipeline models (e.g., workflow config-
urations) and pipeline components (e.g., Python
programs). The pipeline models are generally
published on the platform services of pipeline
coordinators/engines as endpoints to enable their
execution via API calls. In addition, the pipeline
components are containerized and stored in an
image registry. The same processes apply to plat-
form services and scoring/prediction services.

Figure 2 shows the pipelines and (a sub-
set of) their interconnections. Developers create
and test pipelines and platform services, poten-
tially reusing the relevant existing implementa-
tions. The deployment of pipelines and platform
services may need provisioning and configuring
compute stacks, which can be automated via IaC.
All source codes should be version-controlled.
Changes to the code can trigger build pipelines,
which can result in publishing ML/data pipelines
and container images. Let us consider the first-
time execution of the training process. A data
pipeline extracts the raw data sets from multiple
sources, cleans, standardizes, and stores them in a
data store. A feature engineering pipeline creates,
selects, and stores features in a feature store.
Finally, the training pipeline builds and tunes a
model and publishes it to the model registry,
which triggers the model release pipeline, which

6



Figure 2: MLOps Pipelines and their Relationships

builds and deploys serving pipelines/services. A
deployed model may serve client requests using
batch, event-driven, or real-time serving methods.
The logs from the execution of each step of the
training and serving processes are continuously
collected. The monitoring pipelines can analyze
such logs and generate alerts indicating quality
issues in models, data, pipelines, and infrastruc-
ture. Alerts can be used to trigger the re-execution
of the training process and, consequently, the
deployment of a new model.

Governance and Automation Cross-Cutting
Modules

Governance needs the ability to consistently
specify, configure, observe, and enforce policies
for all ML artifacts and MLOps processes (e.g.,
model approval and data collection/sharing). Poli-
cies can consider various metrics, for example,

model accuracy, model fairness, and data pri-
vacy. Platform services can empower pipeline
developers to use the policy-as-code approach
for automating policy enforcement. For exam-
ple, access control policies for controlling data
and model access can be embedded into the
stages of data and ML pipelines using a policy
authoring service. Those policies can then be
tested when developing pipelines using a policy
testing service, and observed and enforced during
their execution using a policy engine service and
model/data monitoring services.

Automation applies CI/CD techniques and
processes to automate the provisioning and con-
figuration of infrastructure resources in target
environments and the building, testing, deploying,
and configuring of components such as platform
services, pipelines, serving apps, and governance
apps (R29-30). The relevant artifacts are stored

7



in version-control repositories, and their CI-CD
Pipelines are triggered in various ways, e.g., man-
ual, event-driven, or scheduled.

Roles and Responsibilities
From the gray literature, we identified three

key roles for MLOps team members: data en-
gineer, data scientist, and ML engineer. Data
engineers build, test, deploy, execute and manage
data pipelines that pull raw data from various
sources, validate, clean and standardize the raw
data, and make the curated data accessible to the
data scientists in a secure and timely manner.
Data scientists analyze a business problem that
needs a data science solution, and then build
ML models that address the business problem.
They typically work in an experimentation envi-
ronment. ML engineers are responsible for oper-
ationalizing models developed by data scientists.

An MLOs team must interact with other in-
dividuals and groups, such as business analysts,
DevOps engineers, application developers, and
infrastructure engineers. Our reference architec-
ture introduces two new teams: platform and gov-
ernance. The former builds (or sourcing), tests,
deploys and manages platform services. The latter
defines and enforces governance policies using
the services offered by the platform.

Related Work
Kolltveit and Li [4] reviewed 25 academic

articles on MLOps, focusing on tooling and in-
frastructure aspects. John et al. [12] synthesized
a maturity model for MLOps adoption, using
the findings from the gray and academic litera-
ture. They also proposed an MLOps framework
consisting of three main pipelines (i.e., data,
modeling, and release) and a governance layer.
Warnett and Zdun [7] systematically reviewed 35
gray literature articles to identify design deci-
sions for model deployment, where MLOps is
a specific design option. Symeonidis et al. [13]
surveyed the tools that support various tasks
in MLOps, such as model deployment, experi-
ment tracking, and feature engineering. They also
identified several MLOps challenges, including
pipeline development, retraining, and monitoring.
Idowu et al. [6] compared 17 tools for managing
ML assets such as data, models, pipelines, and
experiments. Philipp et al. [14] introduced 22

requirements for MLOps and mapped 26 existing
tools to them. They did not conduct a systematic
literature review, and the requirements mainly
consider general platform features such as data
ingestion, versioning, model selection, model reg-
istry, and model performance monitoring.

Different from the work above, we aimed to
determine the requirements for, and components
of, a reference architecture for a complete MLOps
stack (from infrastructure to applications) by sys-
tematically reviewing the relevant gray literature.

Conclusions
Organizations are adopting MLOps to accel-

erate the deployment and delivery of high-quality
ML models and pipelines into production. Not
surprisingly, there has been a rapid prolifera-
tion of gray literature on MLOps. This paper
investigated the requirements and architectures
for MLOps proposed by the gray literature. By
systematically analyzing 58 sources, we distilled
a catalog of 30 requirements and a reference
architecture for MLOps environments. The re-
quirements and reference architecture can pro-
vide a research framework for MLOps and guide
identifying key research challenges in bringing
ML models into widespread use. They can also
help practitioners build or assemble an MLOps
environment, select and adapt an existing MLOps
environment, and select or develop tools for sup-
porting various tasks in an MLOps environment.

REFERENCES
1. A. Cam, M. Chui, and B. Hall, “Global ai survey: Ai

proves its worth, but few scale impact,” 2019.

2. A. Paleyes, R.-G. Urma, and N. D. Lawrence, “Chal-

lenges in deploying machine learning: A survey of case

studies,” ACM Comput. Surv., apr 2022.

3. Algorithmia, “2020 state of enterprise machine learn-

ing,” Algorithmia, Tech. Rep., 2020.

4. A. B. Kolltveit and J. Li, “Operationalizing ma-

chine learning models - a systematic literature re-

view,” in 2022 IEEE/ACM 1st International Workshop

on Software Engineering for Responsible Artificial

Intelligence (SE4RAI), 2022, pp. 1–8.

5. Thoughtworks, “Guide to evaluating mlops platforms,”

Tech. Rep., 11 2021.

6. S. Idowu, D. Strüber, and T. Berger, “Asset management

in machine learning: A survey,” in 2021 IEEE/ACM 43rd

International Conference on Software Engineering:

8



Software Engineering in Practice (ICSE-SEIP), 2021,

pp. 51–60.

7. S. J. Warnett and U. Zdun, “Architectural design deci-

sions for machine learning deployment,” in 2022 IEEE

19th International Conference on Software Architecture

(ICSA), 2022, pp. 90–100.

8. S. Keele et al., “Guidelines for performing systematic

literature reviews in software engineering,” Technical

report, Ver. 2.3 EBSE Technical Report. EBSE, Tech.

Rep., 2007.

9. V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines

for including grey literature and conducting multivocal

literature reviews in software engineering,” Information

and Software Technology, vol. 106, pp. 101–121, 2019.

10. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Reg-

nell, and A. Wesslén, Experimentation in software

engineering. Springer Science & Business Media,

2012.

11. Z. Dehghani, “Data mesh: Delivering data-driven value

at scale,” 2022.

12. M. M. John, H. H. Olsson, and J. Bosch, “Towards

mlops: A framework and maturity model,” in 2021 47th

Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), 2021, pp. 1–8.

13. G. Symeonidis, E. Nerantzis, A. Kazakis, and G. A. Pa-

pakostas, “Mlops - definitions, tools and challenges,” in

2022 IEEE 12th Annual Computing and Communication

Workshop and Conference (CCWC), 2022, pp. 0453–

0460.

14. P. Ruf, M. Madan, C. Reich, and D. Ould-Abdeslam,

“Demystifying mlops and presenting a recipe for the se-

lection of open-source tools,” Applied Sciences, vol. 11,

no. 19, 2021.

Indika Kumara is an Assistant Professor at the
Jheronimus Academy of Data Science (JADS) and
Tilburg University, the Netherlands.

Rowan Arts was a master student at JADS and
Tilburg University, the Netherlands.

Dario Di Nucci is an Assistant Professor at University
of Salerno, Italy.

Rick Kazman is a Professor at University of Hawaii
and a Visiting Researcher at Software Engineering
Institute of Carnegie Mellon University.

Willem-Jan Van Den Heuvel is a Full Professor at
JADS and Tilburg University, the Netherlands.
Damian Andrew Tamburri is an Associate Professor
at JADS and Eindhoven University of Technology, the
Netherlands.

9


	Introduction
	Methodology
	Reference Architecture and Requirements
	Infrastructure Layer
	Platform Layer
	Pipeline Development and Execution
	Experimentation, Training, and Testing
	Deployment and Serving
	Monitoring and Feedback Loops
	Lifecycle Management and Governance Services
	Data Platform Services

	Pipelines Layer
	Governance and Automation Cross-Cutting Modules
	Roles and Responsibilities

	Related Work
	Conclusions
	REFERENCES
	Biographies
	Indika Kumara
	Rowan Arts
	Dario Di Nucci
	Rick Kazman
	Willem-Jan Van Den Heuvel
	Damian Andrew Tamburri


