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Abstract

Reconstructing 3D MR volumes from multiple motion-corrupted stacks of 2D slices has shown promise in imaging of moving
subjects, e.g., fetal MRI. However, existing slice-to-volume reconstruction methods are time-consuming, especially when a
high-resolution volume is desired. Moreover, they are still vulnerable to severe subject motion and when image artifacts are
present in acquired slices. In this work, we present NeSVoR, a resolution-agnostic slice-to-volume reconstruction method, which
models the underlying volume as a continuous function of spatial coordinates with implicit neural representation. To improve
robustness to subject motion and other image artifacts, we adopt a continuous and comprehensive slice acquisition model that
takes into account rigid inter-slice motion, point spread function, and bias fields. NeSVoR also estimates pixel-wise and slice-
wise variances of image noise and enables removal of outliers during reconstruction and visualization of uncertainty. Extensive
experiments are performed on both simulated and in vivo data to evaluate the proposed method. Results show that NeSVoR
achieves state-of-the-art reconstruction quality while providing two to ten-fold acceleration in reconstruction times over the
state-of-the-art algorithms
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NeSVoR: Implicit Neural Representation for
Slice-to-Volume Reconstruction in MRI

Junshen Xu, Daniel Moyer, Borjan Gagoski, Juan Eugenio Iglesias, P. Ellen Grant, Polina Golland,
Elfar Adalsteinsson

Abstract— Reconstructing 3D MR volumes from mul-
tiple motion-corrupted stacks of 2D slices has shown
promise in imaging of moving subjects, e.g., fetal MRI.
However, existing slice-to-volume reconstruction methods
are time-consuming, especially when a high-resolution
volume is desired. Moreover, they are still vulnerable
to severe subject motion and when image artifacts are
present in acquired slices. In this work, we present
NeSVoR, a resolution-agnostic slice-to-volume reconstruc-
tion method, which models the underlying volume as a
continuous function of spatial coordinates with implicit
neural representation. To improve robustness to subject
motion and other image artifacts, we adopt a continuous
and comprehensive slice acquisition model that takes into
account rigid inter-slice motion, point spread function, and
bias fields. NeSVoR also estimates pixel-wise and slice-
wise variances of image noise and enables removal of out-
liers during reconstruction and visualization of uncertainty.
Extensive experiments are performed on both simulated
and in vivo data to evaluate the proposed method. Results
show that NeSVoR achieves state-of-the-art reconstruction
quality while providing two to ten-fold acceleration in re-
construction times over the state-of-the-art algorithms.

Index Terms— MRI, slice-to-volume reconstruction, mo-
tion correction, super-resolution, 3D reconstruction, im-
plicit neural representation, fetal brain MRI.

I. INTRODUCTION

A. Motivation

High-resolution 3D Magnetic Resonance Imaging (MRI)
plays an important role in clinical examinations but is vul-
nerable to artifacts caused by subject motion. To address this
problem, ultra-fast sequences, e.g., single-shot fast spin echo
T2-weighted imaging [1], have been developed to “freeze”
in-plane motion, making within slice motion artifacts less
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severe compared to multi-shot methods. Nevertheless, inter-
slice motion still exists and remains to be a problem. There-
fore, in order to reconstruct 3D volumes, multiple stacks of
slices at different orientations are acquired. These slices are
then realigned to correct subject motion with slice-to-volume
registration and then combined using super-resolution recon-
struction [2]–[4]. This slice-to-volume reconstruction (SVR)
framework has a wide range of applications in clinical practice
and image analysis, including fetal and neonatal MRI [4], [5],
cardiac MRI [6] and diffusion-weighted MRI [7]. Existing
SVR algorithms explicitly represent the reconstructed volume
as a discrete function on a pre-defined grid. In this formulation,
the complexity and memory footprint of SVR is proportional
to the number of voxels in the volume. For example, reducing
the voxel spacing by half in every dimension would approx-
imately increase the run time by a factor of eight. Moreover,
the discrete representation of the volume may also introduce
discretization error during reconstruction.

Recently, implicit neural representation (INR) has gained
popularity in a variety of tasks in computer vision and
graphics [8], [9]. In contrast to explicit representation, INR
models a 2D slice or a 3D volume as a continuous function
of spatial coordinates, and parameterizes the function with a
neural network, e.g., a multi-layer perceptron (MLP). INR has
several advantages. i) It is resolution-agnostic, i.e., the network
learns a continuous function during training and is able to
sample volumes at different resolutions during inference. ii)
Prior knowledge and constraints of the problem can be injected
into the model by designing the architecture of the implicit
network [10]. iii) INR can also overcome the high storage
costs of dense discretized voxel grids [8].

However, few works have applied INR to 3D MRI recon-
struction and the continuous forward model for slice acqui-
sition is poorly studied. Here, we propose Neural Slice-to-
Volume Reconstruction (NeSVoR), a novel method to solve
the problem of 3D volumetric MR reconstruction from multi-
ple motion-corrupted stacks of slices utilizing implicit neural
representation, which allows a continuous and resolution-
agnostic representation of the reconstructed volume.

B. Related Works

1) Slice-to-Volume Reconstruction: Rousseau et al. [2] pro-
posed a 3D fetal brain reconstruction approach that consisted
of three steps: i) motion correction with multi-resolution
slice alignment, ii) intensity correction for the local relative
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intensity distortion between stacks, and iii) super-resolution
reconstruction using scattered interpolation with a Gaussian
point spread function (PSF). Jiang et al. [5] improved the
scattered interpolation method by utilizing a multi-level B-
spline kernel. Kim et al. [11] proposed a slice intersection
motion correction method that realigned stacks of slices based
on the slice intersection, followed by a gradient-weighted
averaging step for volume reconstruction. Gholipour et al. [3]
formulated volume reconstruction as a maximum likelihood
error norm minimization problem and developed a robust M-
estimation solution that reduced the influence of potential
outliers in the acquired data. Building on this idea, Kuklisova-
Murgasova et al. [4] proposed an SVR approach with complete
outlier removal using robust statistics based on expectation
maximization (EM). An additional intensity matching step
was used to compensate for inconsistent scaling factors and
bias fields of different slices. Tourbier et al. [12] extended
the method in [4] with a total variation regularization, which
can be solved efficiently using the primal-dual hybrid gradient
(PDHG) method. Kainz et al. [13] developed a fast reconstruc-
tion algorithm based on [4], which leveraged the acceleration
from multiple GPUs. Ebner et al. [14] proposed an automated
reconstruction framework that included fetal brain localization
and segmentation, and used a novel slice-level outlier rejection
method by removing outlier slices with low similarity scores.

2) Implicit Neural Representation: The idea of INR has been
widely applied in neural rendering. Mildenhall et al. [8] pro-
posed Neural Radiance Fields (NeRF) to learn a 3D scene with
2D images at different camera positions. NeRF modeled the
density and RGB color as continuous fields in 5D space (3D
spatial location + 2D viewing direction) and simulated 2D ob-
servations from the radiance fields following the principles of
volume rendering. The network was optimized by minimizing
the error between the simulated and ground-truth images. To
mitigate the misalignment of images in cases where ground-
truth camera poses are unknown, NeRF−− [15] was pro-
posed to optimize the camera parameters and neural networks
simultaneously. NeRF-W [16] introduced image-dependent
embedding vectors to model the appearance and transient
objects that vary from image to image. These embeddings
were optimized during reconstruction and helped synthesize
scenes robust to variations in appearance and occluders.

In the field of medical imaging, attempts have been made to
reconstruct super-resolved volumes from 2D slices using INR.
IREM [17] was proposed for super-resolution reconstruction
of adult brain MRI from stacks of thick slices, where only the
motion between stacks is considered. Inspired by NeRF−−,
Yeung et al. developed ImplicitVol [18] for 3D ultrasound
reconstruction. ImplicitVol optimizes both the implicit network
and the rigid transformation of each slice to compensate for
inter-slice fetal motion. However, the aforementioned methods
ignore the complex slice acquisition model as well as the
artifacts and noise that occur during acquisition, and therefore
cannot be directly applied to fetal or neonatal MRI.

Furthermore, the training of NeRF is known to be time-
consuming. Recent researches have revealed that the encoding
layer, i.e., the input layer of the implicit network, had a
significant impact on the convergence of the network [19],

[20]. Pre-defined encoding functions, such as sine and cosine,
required a deep network and long training time to fit the
underlying function. To this end, parametric encodings [20],
[21] were proposed, which had trainable parameters in addition
to the network weights. These parameters were arranged in a
sparse data structure and helped reduce the depth of network
and shorten training time significantly [20].

C. Contribution
In this work, we present NeSVoR, a novel SVR method

than extends INR to learn a continuous representation of the
unknown 3D volume from multiple 2D slices corrupted by
subject motion and image artifacts. The main contributions of
NeSVoR are: 1) We use INR to model the underlying volume
as a neural network that is resolution-agnostic and more
efficient than the explicit grid representation, especially when
high-resolution volumes are desired. 2) In tandem with the
INR, We adopt a continuous slice acquisition model that takes
into account inter-slice subject motion, PSF, and bias fields. 3)
We also introduce a novel approach for outlier removal during
reconstruction by estimating the pixel-level and slice-level
variances. 4) With GPU accelerated implementation, NeSVoR
achieves 2 to 10 times speedup compared to the baselines
while providing state-of-the-art results.

II. MATERIALS AND METHODS

A. Slice Acquisition Model
1) Discrete Model: Let I ∈ RNs×Np be the data of the

acquired slices, where Iij is the intensity of the j-th pixel
in the i-th slice, Ns and Np are the number of slices and
the number of pixels in each slice, respectively. The goal of
3D reconstruction is to find an unknown volume V of the 3D
object, which is represented as an array V ∈ RNv in traditional
methods, where Nv is the number of voxels. The forward slice
acquisition model can be expressed as [3], [4], [13], [14]

Iij = CiBij

Nv∑
k=1

MijkVk. (1)

The relationship between voxels of the reconstructed vol-
ume and pixels of the acquired data is described by M ∈
RNs×Np×Nv , where Mijk is the coefficient of the spatially
aligned, discretized PSF for the acquisition of pixel Iij from
voxel Vk in the volume. Bij is the multiplicative bias field for
pixel Iij and Ci is the scaling factor of the i-th slice which
accounts for global intensity inconsistency in different slices.

2) Proposed Continuous Model: There are two disadvan-
tages of the aforementioned discrete model. First, the discrete
representation of the volume, bias field and, PSF might intro-
duce discretization errors during reconstruction. Second, this
formulation reconstructs a volume only at a specific resolution.
To address these problems, we propose a continuous slice
acquisition model in NeSVoR:

Iij = Ci

∫
Ω

Mij(x)Bi(x) [V (x) + ϵi(x)] dx, (2)

where Ω is the 3D region of interest (ROI). The main differ-
ences between the proposed model and the discrete model
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Fig. 1. A) The overview of NeSVoR. 1) We describe the relationship between the unknown volume and the acquired slices with a continuous
slice acquisition model and approximate the effect of PSF with random sampling (Section II-A). 2) The sampled coordinates are then fed into
the implicit neural network to regress bias field, volume intensity, and noise variance (Section II-B). 3) Finally, we train the model by minimizing
the error between the simulated and acquired pixel values (Section II-C). B) The architecture of the proposed implicit neural network in NeSVoR.
First, encodings of coordinates are generated from a multi-resolution hash grid data structure with look-up and interpolation. Then, the coordinate
encodings and slice embeddings are fed to three different MLPs to regress bias field, volume intensity, and variance, respectively.

are as follows: i) Instead of discretized arrays, we model
the volume, PSF, and bias field as continuous functions of
spatial coordinates x. ii) The bias fields are modeled in volume
coordinates rather than slice coordinates so that they share
coordinates encoding with the volume in INR. Since the
movement of the fetus changes its position relative to the
scanner and creates inconsistencies in the bias field of the
reconstructed volume, we keep the bias fields to be slice-
dependent as in the previous model. iii) We also adopt a
residual (noise) term ϵi in our formulation. The aim is twofold:
to model slice-dependent noise in the acquired data; and to
enable automatic outlier removal during reconstruction.

Assume that ϵi(x) is white Gaussian noise with E[ϵi(x)] =
0 and E[ϵi(x)ϵi(y)] = σ2

i (x)δ(x− y), where δ(·) is the Dirac
delta function. The mean and variance of pixel Iij are

Iij = E [Iij ] = Ci

∫
Ω

Mij(x)Bi(x)V (x)dx, (3)

σ2
ij = var (Iij) = C2

i

∫
Ω

M2
ij(x)B

2
i (x)σ

2
i (x)dx. (4)

In general, there are no closed-form solutions to the integrals
in Eq. (3) and (4). Therefore, we use Monte Carlo sampling
to estimate them. In many cases, the PSF can be modeled as
an anisotropic 3D Gaussian distribution [2], [4],

Mij(x) = g(T−1
i ◦ x− pij ; Σ), (5)

g(u; Σ) =
1√

(2π)3 det(Σ)
exp

(
−1

2
uTΣ−1u

)
(6)

where Ti is the (unknown) rigid transformation from the i-
th slice to the 3D space, pij is the location of pixel Iij in
the slice coordinates, and Σ is the covariance matrix of the
Gaussian PSF. The expression (T−1

i ◦ x − pij) maps the 3D
position x back to the slice coordinates centered at pij , where
the PSF is unrotated. Therefore, we generate K i.i.d. samples
from the Gaussian distribution, with xijk = Ti ◦ (uijk + pij),
uijk ∼ N (0,Σ), k = 1, . . . ,K, to compute Eq. (3) and (4).

E[Iij ] =
Ci

K

K∑
k=1

Bi(xijk)V (xijk), (7)

var(Iij) =
C2

i

K

K∑
k=1

Mij(xijk)B
2
i (xijk)σ

2
i (xijk). (8)

B. Implicit Neural Representation

1) Hash Grid Encoding: In INR, a volume is modeled as a
continuous function f(x) parameterized by a neural network
that takes coordinates as inputs, f(x) = MLP(ϕ(x)), where
ϕ is an encoding function that maps coordinates x to a
high-dimensional feature vector which is then fed into an
MLP to fit f(x). For example, ϕ can be the multi-resolution
sequence of L sine and cosine functions [8], [19], ϕ(x) =
[sin(20x), . . . , sin(2L−1x), cos(20x), . . . , cos(2L−1x)]. How-
ever, with fixed encoding functions, we only rely on the
weights of MLP to fit the target function f(x), and thus require
a deeper network that typically converges slower.

To enable fast INR training, we adopt the recently proposed
hash grid encoding [20], which arranges additional trainable
parameters in multi-resolution 3D grids, and therefore reduces
the depth of MLP. Specifically, Let Φl ∈ RNl×Nl×Nl×F be the
grid of parameters at the l-th level, l = 1, . . . , L, where L is
the number of levels, Nl is the size of the l-th grid in every
dimension, and each vertex of the grid conceptually stores a
feature vector with a length of F . To compute the encoding at
position x, we perform trilinear interpolation on the grid, i.e.,
we find the eight vertices around position x, and compute the
linear combination of the feature vectors stored in these eight
vertices as the feature vector at position x.

Starting with the coarsest grid with a size of N1, each
following grid increases the size by a factor of s, i.e., Nl =
⌊N1s

l−1⌋. The coarse-to-fine strategy enables the model to
learn multi-scale features in a progressively refined manner,
where low-level grids encode slowly varying features, such as
bias field, while high-level grids learn high-frequency details,
like edges in the image. However, if we store the multi-level
grids naively as dense 3D arrays, the memory footprint of each
level increases as cube of grid size, O(N3

l ). In multi-scale
representation, high-resolution details tend to be sparse, so a
large amount of memory space in the dense array is wasted.
To this end, the dense 3D array Φl is replaced by a hash table
Φhash

l ∈ RNh×F , where Nh is the size of the hash table and
Nh ≪ (NL)

3. Therefore, the query of the grid Φl at index
(i, j, k) is translated into two steps: i) mapping (i, j, k) to a
hash code with a hash function, ii) accessing the hash table
Φhash

l with the hash code, Φl(i, j, k) = Φhash
l (i ⊕ jπ1 ⊕ kπ2
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mod Nh), where π1 and π2 are two large primes, and ⊕
denotes the bit-wise XOR operation.

With the hash table structure, we essentially compress the
grids at high levels so that they have a much smaller memory
footprint and only store details that are necessary for volume
reconstruction. The final encoding provided to the networks
is the concatenation of encodings at different levels, ϕ(x) =
[ϕ1(x), . . . , ϕL(x)].

2) Implicit Networks: The architecture of the proposed im-
plicit network is shown in Fig. 1-B. Given the multi-resolution
encoding ϕ(x), an MLP is used to regress the intensity of the
volume at position x. The MLP also outputs a feature vector
z(x) for downstream processing.

[V (x), z(x)] = MLPV (ϕ(x)) (9)

Since bias fields are slice-dependent, we model the slice-
specific information with latent variable optimization [16],
[22] by assigning each slice an embedding vector ei, i =
1, ..., Ns. These slice embedding vectors are trainable and able
to learn slice-specific information during optimization. It is
worth noting that we do not incorporate these embeddings in
MLPV , since we want MLPV to only learn information that is
slice-independent, i.e., the intensity of the underlying volume.

Note that in Eq. (7), Bi(x) is more general than V (x), as
it can be slice-dependent. Hence, if we use the same input
encoding ϕ(x) as in MLPV , Bi(x) may learn the product of
bias field and volume such that V (x) becomes a constant. To
avoid this undesired solution, we need to limit the information
going through the bias field branch. One important prior of
the bias field is that it is a smoothly varying function of
spatial location. Therefore, instead of the full encoding ϕ(x),
we only use the first b levels of the encoding as the input
to the bias field network, which contains the low-frequency
information. In summary, a second MLP is adopted to regress
the bias field Bi(x) from the low-level encoding ϕ1:b(x) =
[ϕ1(x), . . . , ϕb(x)] and the slice embedding ei as well.

Bi(x) = MLPB(ϕ1:b(x), ei). (10)

The last component for evaluating Eq. (7) and (8) is the
variance σ2

i which is also slice-dependent. We use a third MLP
to estimate the variance at location x from the feature vector
z(x), and the slice embedding ei,

σ2
i (x) = MLPσ(z(x), ei). (11)

C. Loss Functions
1) Slice Reconstruction: Given the estimates of the mean

and variance of pixel intensity in Eq. (7) and (8), the underly-
ing volume can be reconstructed by minimizing the negative
log-likelihood of Gaussian distribution:

Lij =

(
Iij − Iij

)2
2σ2

ij

+
1

2
log

(
σ2
ij

)
. (12)

Another way to interpret this loss function is from the per-
spective of outlier removal. The acquired MR slices are often
corrupted by different types of artifacts, e.g., motion blurring,
and spin history. Such slices or pixels should be excluded

during reconstruction to avoid artifacts in the reconstructed
volume. The precision 1/σ2

ij can be interpreted as the weight
of pixel Iij . The model should assign a large variance (small
weight) to the outlier so that they would be ignored during
reconstruction. Also, the log-variance term prevents σ2

ij from
going to infinity. The NeSVoR model is optimized with
stochastic gradient descent, i.e., in each iteration, a batch of
data B ⊂ {1, . . . , Ns} × {1, . . . , Np} is sampled to compute
the loss function:

LI =
1

|B|
∑

(i,j)∈B

Lij (13)

2) Image Regularization: SVR is an ill-posed problem due
to subject motion and insufficient ROI coverage. Thus, regu-
larization methods are adopted to improve image quality and
suppress noise. Although the network architecture implicitly
regularizes the outputs [10], [23], we provide a way to
add (optional) explicit regularizations to the loss function to
demonstrate the flexibility of NeSVoR. A widespread approach
is the first-order regularizer,

RV =

∫
Ω

r(∥∇V (x)∥2)dx. (14)

The function r can be the identity function (isotropic total
variation), square function (first-order Tikhonov), or Huber
function (edge-preserving). Although it is possible to compute
∇V (x) with automatic differentiation, the extra computation
graph significantly increases computational cost. Instead, we
approximate the first-order regularizer by estimating the di-
rectional derivative from the random samples. Specifically, we
split the K samples for computing Eq. (7) and (8) into K/2
pairs, {(1, 1 +K/2), . . . , (K/2,K)}. The directional deriva-
tive for each pair is |V (xijk)−V (xijl)|/∥xijk−xijl∥2, where
l = k+K/2. Then the regularization can be approximated by

RV =
2

K|B|
∑

(i,j)∈B

K/2∑
k=1

r

(
|V (xijk)− V (xijl)|

∥xijk − xijl∥2

)
. (15)

This method requires no extra forward/backward pass of the
network, and therefore, adds only marginal computational cost.

We use isotropic total variation as the default regularization
for the reconstructed volume.

3) Bias Field: In Eq. (7), the bias field Bi and volume V are
only unique up to a constant factor. If (Bi, V ) is a solution,
(cBi,

1
cV ) is also a feasible solution for any constant c > 0.

In order to disambiguate, extra constraints are required. For
example, we can force the mean of log bias field to be zero,∫
Ω
logBi(x)dx = 0, which can be achieved with the following

regularization of the sample mean of log bias field:

RB =

 1

K|B|
∑

(i,j)∈B

K∑
k=1

logBi(xijk)

2

(16)

D. Other trainable parameters
1) Transformation: To allow unconstrained optimization of

the rigid transformation with gradient descent, we adopt the
axis-angle representation for the transformation of each slice,
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i.e., the transformation of the i-th slice Ti is parameterized by a
six-dimensional vector (θini1, θini2, θini3, ti1, ti2, ti3), where
(ni1, ni2, ni3) is a unit vector representing the rotation axis, θi
is the rotation angle, and (ti1, ti2, ti3) is the translation vector.

2) Slice Scaling Factor: The scaling factor Ci in Eq. (7)
introduces an arbitrary constant factor to the solution, and
therefore constraints on Ci need to be imposed. Here, we
assume that the average of the scaling factor is 1, i.e.,
1
Ns

∑Ns

i=1 Ci = 1 and reparameterize C to satisfy this con-
straint,

C = Nssoftmax(c), Ci =
Ns exp(ci)∑Ns

j=1 exp(cj)
, (17)

so that the new parameter vector c is unconstrained.
3) Slice-wise Variance: Under severe artifacts, the whole

slice might be corrupted. Therefore, in addition to the pixel-
wise variance var(Iij), we also introduce a slice variance ν2i
which downplays the whole slice from reconstruction when
the entire slice is of low quality. Eq. (4) is then modified as

σ2
ij = var (Iij) + ν2i , (18)

i.e., the total variance of pixel Iij is the sum of pixel-wise
variance var(Iij) and slice-wise variance ν2i .

E. Training and Inference
During training, we solve the optimization problem:

argmin
Θ

L(Θ), L = LI + λBRB + λV RV , (19)

where λB and λV are the weights for the regularization terms,
Θ is the set of trainable parameters, including the weights
of MLPs, the hash grid Φhash, the slice transformations T ,
the slice embeddings e, the scaling factors c, and the log
slice variances log ν2. We adopt an Adam optimizer [24]
with an initial learning rate of 5 × 10−3 which decays with
a factor of γ = 1/3 at iteration Nτ/2 and 3Nτ/4, where
Nτ is the total number of iterations. We use a batch size
of 4096 and set the number of samples K = 128. The
covariance matrix of the Gaussian PSF is defined as in [4],
Σ = diag(

(
1.2r1
2.355

)2
,
(
1.2r2
2.355

)2
,
(

r3
2.355

)2
), where r1 and r2 are

the in-plane pixel spacings and r3 is the slice thickness.
All MLPs have one hidden layer with 64 units and ReLU

activation. MLPV use softplus as the output activation while
the other MLPs use the exponential function. The length
of slice embedding is set to 16 and the slice embedding
is initialized with the standard normal distribution. For the
hash encoding, we choose the hyperparameters following the
strategy in [20], s = 1.38, N1 ∈ [6, 16], L ∈ [9, 12], depending
on the size of slices. The parameters in the hash grid are
initialized with a uniform distribution U(−104, 10−4). When
there are more than one input stacks, we first perform a
volume-to-volume registration to coarsely correct the motion
between different stacks [4]. The stack transformation after
volume-to-volume registration is then used to initialize the
transformation of each slice Ti.

After training the model, V (x) learns a continuous represen-
tation of the underlying volume. Slices at different views and
volumes of different field of views (FOV) can then be sampled

from the function V (x). Sampling directly from V (x) might
result in aliasing and image noise. Therefore, we sample the
intensity at position x using the PSF model,

V out(x) =

∫
Ω

M(x)V (x)dx. (20)

where M is an isotropic Gaussian PSF with σ = r/2.3548
and r is the isotropic voxel spacing of the output volume.

F. Implementation
All models were tested on a system with two Intel Xeon

Gold 6238R CPUs @2.20 GHz with 768 GB RAM, and
an NVIDIA Tesla V100 GPU with 32 GB RAM. The net-
works were implemented with PyTorch [25] and Tiny CUDA
NN [20], [26]. To further accelerate the training of INR,
we adopt the strategy of automatic mixed precision train-
ing [27] where the hash grid and MLPs are trained with
half-precision format while the other parameters are stored
in single-precision format. The source code is available on
GitHub1.

III. EXPERIMENTS

A. Datasets
We performed extensive experiments to evaluate NeSVoR

using the following four datasets.
1) Simulated Adult Brain Data: An Adult brain MRI dataset

was synthesized from the data in the Human Connectome
Project (HCP) [28]. We randomly selected the T1-weighted
and T2-weighted images of 30 subjects, which were acquired
at 0.7 mm isotropic resolution, and used as ground truth. We
simulated 3 orthogonal stacks of slices from each volume, with
in-plane resolution of 1 mm and slice thickness of 2 mm.
Simulated inter-slice motion with random translations and
rotations was incorporated. The translations along the x−,
y−, and z−axes of each slice were sampled independently
from the range of [−3, 3] mm. The angles of 3D rotation
were randomly sampled from the range of [−6, 6] degree. In-
plane motion artifacts and ghosting artifacts were simulated
as in [29]. Rician noise [30], with a standard deviation of 3%
the maximum intensity, was added to each slice.

Simulated adult brain data Simulated fetal brain data

Fig. 2. A simulated stack of the adult brain data (left) and fetal brain
data (right).

2) Simulated Fetal Brain Data: We also simulated fetal data
from the FeTA [31] dataset, which consisted of fetal brain
volumes with 0.5 mm isotropic resolution. We selected 10
volumes with gestational age (GA) from 27 to 35 weeks as
ground truths. For each subject, 3 orthogonal stacks were sim-
ulated with in-plane resolution of 0.8 mm and slice thickness
of 3 mm. Fetal brain motion trajectories were simulated using

1https://github.com/daviddmc/NeSVoR
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the method in [32]. Specifically, we sampled head motion
from a fetal keypoint dataset [33] that represents realistic fetal
brain motion trajectories during MRI scans. The maximum
translation and rotation motion in the motion trajectory dataset
are 21.4 mm/s and 59.7 degree/s respectively. The fetal brain
volumes were transformed according to the sampled trajectory,
and slices were extracted from the volume at the correspond-
ing positions. Bias fields and signal void artifacts are also
simulated. Image noise was added as in the adult brain data.

Fig 2 shows example stacks from the two simulated datasets.
The goal of the simulated data is twofold: i) to quantitatively
evaluate our approach with ground-truth data, ii) to show that
the proposed method can be applied to data with different
contrasts, sizes of ROI, and image artifacts.

3) Clinical Neonatal Brain Data: We used the clinical neona-
tal brain data from the Developing Human Connectome Project
(dHCP) [34] to evaluate the proposed method. The raw T2-
weighted magnitude images of 10 neonatal subjects were
selected from this dataset. Each subject consists of 2 to 4
image stacks with in-plane resolution of 0.8 mm, slice gap of
0.8 mm, and slice thickness of 1.6 mm. Details on acquisition
parameters can be found in [34].

4) Clinical Fetal Brain Data: A fetal MRI dataset was col-
lected to evaluate the method. This dataset consisted of T2-
weighted MRI from 20 fetuses, with GA from 21 to 32
weeks. All scans were performed in accordance with the local
institutional review board protocol. The data were acquired
with in-plane resolution of 1-1.3 mm, slice thickness of 2-4
mm, no gap, TE = 100-120 ms, TR = 1.4-1.8 s. Each subject
had 3 to 10 stacks of slices. Fetal brains are segmented from
the slices using an existing, trained segmentation network [35].

B. Baselines

We adopted as baseline three state-of-the-art SVR methods
that have open-source implementations: 1) SVRTK2: The
slice-to-volume reconstruction toolkit is an implementation
of the algorithm in [4], which is accelerated with multi-core
parallelism on CPU. 2) SVR-GPU3: This approach [13] is a
GPU-accelerated implementation of [4]. Although it has been
pointed out in previous works [14] that the GPU-accelerated
approach tends to produce blurrier outcomes, we still incor-
porated this method in experiments mainly for comparing the
efficiency of algorithms on GPU. 3) NiftyMIC4: It is the
implementation of the reconstruction algorithm in [14], which
runs on CPU with no parallelism and is slow when the size
output volume is large. We excluded this method from the
experiments on the simulated adult brain data and the neonatal
brain data as the run time for each case exceeded 12 hours.

For tuning hyperparameters for different methods, we ran-
domly picked one subject from the simulated adult/fetal
dataset and adjusted the hyperparameters to minimize the
mean squared error between the reconstructed volume and the
ground truth. The tuned hyperparameters were then applied to
the other data in the same dataset. For the clinical neonatal

2https://github.com/SVRTK/SVRTK
3https://github.com/bkainz/fetalReconstruction
4https://github.com/gift-surg/NiftyMIC

brain dataset, we used the same hyperparameters as the simu-
lated adult brain data, and for the clinical fetal brain dataset,
we used the same hyperparameters as the simulated fetal brain
data.

C. Results on Simulated Data
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Fig. 3. The image quality of reconstructed volume vs. run time (number
of iterations) for different methods. NeSVoR: number of iterations =
1000, 2000, 4000, 8000, 16000; SVRTK: number of outer iterations =
1, 2, 3; SVR-GPU: number of outer iterations = 1, 2, 4, 6.

We reconstructed the simulated adult and fetal data at
the isotropic resolution of 0.7 mm and 0.5 mm respectively
to match the original resolutions of the ground truths. We
compared the reconstructed volumes and ground truths by dif-
ferent quantitative metrics, including peak signal-to-noise ratio
(PSNR), structural similarity (SSIM) [36], normalized root
mean square error (NRMSE), and normalized cross-correlation
(NCC). Results are shown in Table I. NeSVoR achieved
comparable results with SVRTK on the simulated adult brain
data with 4× speedup. Although SVR-GPU was faster than
SVRTK due to GPU acceleration, the reconstruction quality of
this implementation was lower than NeSVoR and SVRTK. For
the simulated fetal data, NeSVoR outperformed the baselines
in terms of both accuracy and speed.

To further study the trade-off between the run time and
the reconstruction quality, we ran NeSVoR on the simulated
adult data with different numbers of training steps Nτ and
altered the number of outer iterations in the baselines, i.e.,
the number of cycles of registration and reconstruction. The
resulting curves are shown in Fig. 3. NeSVoR converged much
faster than SVRTK, requiring only 6% to 25% run time to
achieve comparable results with SVRTK. Although running on
GPU, SVR-GPU suffered from lower image quality compared
to the other methods, resulting in a sub-optimal trade-off curve.

Since fetal MRI routinely suffers from subject motion
during scans, we also evaluated the methods with different
motion levels. We randomly chose a fetal brain volume and
simulated motion trajectories of different levels (3D translation
and 3D rotation were simulated and evaluated separately).
Fig. 4 shows the PSNRs and SSIMs of different methods. In
comparison, NeSVoR is more robust than the baselines when
the motion is small to moderate. As the intensity of motion
increases, the PSNRs and SSIMs of all the reconstruction
methods decrease. Since the slice transformations are opti-
mized by maximizing the local similarity between the slices
and the volume, they easily get stuck in local minima, and
therefore, result in a limited capture range of motion.
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TABLE I
MEAN VALUES OF QUANTITATIVE METRICS FOR DIFFERENT MODELS ON THE SIMULATED DATASETS (STANDARD DEVIATION IN PARENTHESES). ↓

INDICATES LOWER VALUES BEING MORE ACCURATE, AND VICE VERSA.

Methods PSNR / dB ↑ SSIM ↑ NRMSE ↓ NCC ↑ run time / min ↓
Simulated adult brain data

SVRTK [4] 28.71 (3.33) 0.8861 (0.0459) 0.1129 (0.0452) 0.8706 (0.0598) 24.57 (3.42)
SVR-GPU [13] 26.68 (4.38) 0.7526 (0.1936) 0.1518 (0.0867) 0.7360 (0.2775) 11.63 (2.23)

NeSVoR 28.85 (3.22) 0.8901 (0.0317) 0.1103 (0.0427) 0.8772 (0.0526) 6.13 (0.30)
Simulated fetal brain data

SVRTK [4] 22.10 (2.39) 0.8694 (0.0792) 0.1772 (0.0504) 0.6517 (0.2007) 8.38 (2.83)
SVR-GPU [13] 21.64 (0.70) 0.8031 (0.0460) 0.1809 (0.0169) 0.6552 (0.0779) 2.36 (0.87)
NiftyMIC [14] 21.09 (2.20) 0.7919 (0.1651) 0.1978 (0.0525) 0.5647 (0.2445) 189.24 (79.81)

NeSVoR 23.63 (1.17) 0.9290 (0.0354) 0.1446 (0.0199) 0.7804 (0.055) 1.92 (0.09)

18

22

26

P
S

N
R

 (
dB

)

3D Translation

NeSVoR
SVRTK
SVR-GPU
NiftyMIC

3D Rotation

0 25 50 75 100

distance traveled (mm)

0.4

0.6

0.8

1

S
S

IM

0 100 200 300 400

accumulated rotation (degree)

Fig. 4. Comparative reconstruction performance (PSNR and SSIM)
of different methods on the simulated fetal data with different levels of
motion. The x-axes represent the distance traveled and the accumulated
rotation over the trajectory for translation and rotation, respectively.

D. Results on Clinical MRI data

We reconstructed the neonatal data with resolution of 0.5
mm. As there was no ground truth, we evaluated the methods
by measuring the consistency between the output volumes and
the input slices. We extracted slices from the motion-corrected
locations and computed the NCC and SSIM between the
extracted slices and the corresponding slices of an input stack.
The results are presented in Fig. 5 and show that NeSVoR had
similar SSIM and higher NCC while achieving 9× speedup on
average compared to SVRTK. Fig. 6 shows the reconstruction
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Fig. 5. Quantitative comparison based on the similarity metrics between
the input slices and the slices extracted from the reconstructed volumes.
Results of Wilcoxon signed rank test are presented, ∗: p<0.05, ∗∗:
p<0.01, and n.s.: not significant (p≥0.05).

results of a neonatal subject. NeSVoR produced results with
fewer image artifacts than the baseline method.

For the clinical fetal data, we reconstructed volumes with
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Fig. 6. The reconstruction results and an input stack of a subject in
the dHCP dataset. Green arrows indicate artifacts in SVRTK that are
eliminated in NeSVoR.

isotropic resolution of 0.8 mm. Since there was also no ground
truth for the clinical fetal data, we adopted an automated
MRI quality assessment (QA) approach to evaluate the image
quality of reconstructed volumes. Specifically, we used the
trained QA network proposed in [37], which can predict a
QA score between 0 and 1 for a 2D T2 weighted fetal brain
MR image to assess the artifacts in the image, with higher
scores indicating better image quality. The score of the volume
was computed as the average of the scores of all slices in
the volume. We also evaluated the reconstructed volumes
in terms of signal-to-noise ratio (SNR) and partial volume
effect (PVE). We considered the Gaussian mixture model
(GMM) in [38], [39] that models three types of brain tissues,
i.e., cerebrospinal fluid (CSF), gray matter (GM), and white
matter (WM). The SNR of a volume is computed as SNR =
20 log10(µ/σ), where s and σ are the weighted averages of the
mean signal intensities and the standard deviations of noise of
three Gaussian components. We consider the voxels are from
the k-th tissue if their intensities are within ±δk of the mean of
the k-th Gaussian component, where δk is the corresponding
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half FWHM. Thus, the percentage of voxels outside the three
ranges can be used as a proxy for PVE.

Fig. 7 shows the QA scores, SNRs, and PVEs of dif-
ferent methods. NeSVoR achieved higher image quality and
SNR compared to the baselines. While there is no difference
among the PVEs of different reconstruction algorithms. Fig.
8 presents a visual comparison of NeSVoR and the baselines
for three challenging cases that are corrupted by severe fetal
motion. NeSVoR yielded results with the best perceptual
quality.

E. Reconstructing Volumes at Different Resolutions

In NeSVoR, the INR learns a continuous representation of
the reconstructed volume. Therefore, the model only needs to
be trained once, from which volumes at different resolutions
can be sampled (the time for sampling a volume is negligible
compared to the training time). In comparison, conventional
methods reconstruct a volume only at a specific resolution, and
therefore, to reconstruct volumes at different resolutions, the
algorithm needs to be re-run. We call this property of NeSVoR
resolution-agnostic reconstruction.

To demonstrate this, we reconstructed a fetal subject with
different isotropic voxel spacings (0.8 mm, 0.6 mm, and 0.4
mm). We also performed the same experiment using SVRTK,
where the reconstruction algorithm was re-run with different
resolutions. Fig. 9 shows the reconstruction results at different
resolutions for the two methods. Volumes reconstructed at
higher resolution yielded sharper edges. The bar plot in Fig.
9 shows the run time of the two methods. The run time of
SVRTK increases drastically as the voxel spacing decreases
because the number of voxels in the volume is inversely
proportional to the cube of voxel spacing. In contrast, the run
time of NeSVoR is independent of the voxel spacing. When
reconstructing a volume with 4 mm voxel spacing, NeSVoR
achieved 18× speedup compared to SVRTK.

F. Ablation Study

To investigate the contribution of each component in
NeSVoR, we evaluated the model on the simulated fetal
dataset by ablating PSF, bias field estimation, transformation
optimization, variance estimation, slice embedding, and INR.
When ablating INR, we represented the volume, bias fields,
and variance as dense 3D grids that were optimized directly.
The PSNR and SSIM of different variants of the model are
shown in Table. II. The results show that the full model
outperforms other variants.

1) Bias Field: We compared the reconstructed volumes with
and without bias field correction, and the results are shown
in Fig. 10. NeSVoR was able to mitigate the effect of bias
field. For comparison, we performed the same experiment
with SVRTK whose forward model also took into account
the bias fields. However, it failed to correct the smoothly
varying bias field in this subject. The last row shows a selected
intensity profile of the resulting reconstructions without bias
field correction (bottom left) and with bias field correction
(bottom middle).

TABLE II
MEAN VALUES OF PSNR AND SSIM FOR DIFFERENT ABLATED MODELS

ON THE SIMULATED FETAL BRAIN DATASETS (STANDARD DEVIATION IN

PARENTHESES).

Methods PSNR / dB SSIM
full model 23.63 (1.17) 0.9290 (0.0354)
w/o PSF 19.49 (1.23) 0.7101 (0.0916)

w/o bias field correction 23.57 (1.29) 0.8848 (0.0623)
w/o transformation optimization 19.26 (0.70) 0.7179 (0.0495)

w/o variance estimation 17.59 (0.85) 0.4917 (0.1438)
w/o slice embedding 19.94 (0.63) 0.8856 (0.0317)

w/o INR 18.17 (0.48) 0.7402 (0.0599)

Moreover, since we implement the bias field model in a
separate network, computational cost can reduced by disabling
this module, when the effect of the bias field is small or when
other techniques of bias field correction are available.

2) Variance: Fig. 11 shows examples of estimated slice-
wise and pixel-wise variances. From the original slices (the
first row), we can see that images corrupted by severe artifacts
have high values of log slice variance log ν2i (the number
labeled on top of each slice), indicating that NeSVoR can
identify outlier slices and reduce their influence by assigning
high slice variances. The second row of Fig. 11 shows the
maps of pixel-wise variance learned by the model. The pixels
with large variances match the locations of image artifacts.
Thus, the variance maps also provide a way to visualization
of pixel-level uncertainty. The reconstructed volumes show
that the result without the variance model suffered from
severe artifacts propagated from the corrupted slices, while
the variance model succeeded in excluding those slices from
reconstruction.

3) PSF: Fig. 12 shows the reconstructed volumes of the full
model and the model ablating PSF during training or inference.
The model trained without PSF suffered from partial volume
effects leading to blurred results. Ablating the PSF during
inference improved the sharpness of the output while being
more vulnerable to image noise and aliasing.

G. Understanding Hash Grid Encoding
Fig. 13 visualizes the learned hash grids at different levels

as well as the corresponding reconstruction result. The low-
level hash grid is of low resolution, and therefore, learns
low-frequency features in the images. The middle level has
a finer grid, but the conceptual grid size is still comparable
to the actual size of the hash table, so it is able to encode
anatomical structures of the brain volume. For the high-level
grid, however, the conceptual grid size is far greater than
the actual size of the hash table, resulting in severe hash
collisions. Therefore, it would encode some sparse features
or high-frequency noise in the images.

One of the advantages of hash grid encoding compared to
other encodings, e.g., frequency encoding, is the convergence
speed. Fig. 14 shows the convergence of NeSVoR on a
fetal subject. brain data. The model converged to a high-
quality volume in one to two minutes. Fig. 15 shows the
reconstruction results of the same subject by replacing the
hash grid encoding with frequency encoding and using eight-
layer MLPs as in [16]. The frequency encoding needs much
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of the bars indicate the speedup of NeSVoR compared to SVRTK.

more time to converge and results tend to be smoother than
that of hash grid encoding.

H. Hyperparameters

In this section, we study the impact of different hyperpa-
rameters on the performance of NeSVoR. Fig. 16 shows the
PSNR and runtime of NeSVoR per hyperparameter setting,
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where we varied one hyperparameter at a time.
The PSNR increases with the size of slice embeddings, since

it could potentially encode more slice-specific information.
The gain starts to saturate after 16, while the run time increases
faster.

The number of hidden layers has a minimal impact on the
PSNR. This result is consistent with the previous work [20]

w/ PSF w/o training PSF w/o inference PSF

Fig. 12. The reconstruction results of a fetal subject with PSF model
(left), without PSF during training (middle), and without PSF during
inference (right).

low level middle level high level output

Fig. 13. Visualization of the learned hash grids at different levels

and indicates that most of the information of the volume is
encoded in the hash grid.

The scale factor s of the hash grid determines how the size
of the grid increases per level. When s is too small, the grid
size is not enough to encode high-frequency details in the
images. On the other hand, if s is too large, the grid size
increases too fast while the actual size of the hash table is
fixed, leading to severe hash collisions.

Fixing the factor s, the PSNR first increases with the number
of levels, as more and more features are encoded. It also
saturates after a threshold, which indicates the resolution at
the highest level is finer than the finest detail in the data.

In NeSVoR, we propose a method to impose image regu-
larization using sampling. To demonstrate the efficacy of the
regularization, we reconstructed a fetal brain with different
weights of regularization λV . As expected, the reconstructed
volume becomes smoother as λV increases.

For slice-to-volume reconstruction, multiple stacks of slices
of different orientations are acquired to oversample the brain
ROI and the number of input stacks would affect the quality
of reconstruction. We collected 10 stacks of slices of a subject
(2 axial, 4 sagittal, and 4 coronal) and used different subsets
of data to reconstruct the brain volume with NeSVoR. Fixing
the number of input stacks, the setting that contains more
different orientations yields better reconstruction results (e.g.,
4S vs. 2S+2C). Moreover, increasing the number of stacks per
orientation can further increase the reconstruction quality (e.g.,
1A+1S+1C vs 2A+2S+2C).

I. Incorporating Deep Initializer
Slice-to-volume reconstruction is vulnerable to subject mo-

tion, since the slice transformations are optimized by max-
imizing the local slice-to-volume consistency, leading to a
limited capture range of subject motion. Fig. 19 shows the
reconstruction of a fetal subject (GA = 21 weeks) with 7 input
stacks. The input data suffered from severe motion and the
transformation optimization in NeSVoR failed to correct the
slice misalignment in the data.
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Fig. 16. PSNR and runtime of NeSVoR on the simulated fetal data
per hyperparameter setting. In each experiment, we varied one hyper-
parameter (size of slice embeddings, number of hidden layers, scaling
factor of hash grid s, and number of levels in hash grid L), and used the
default hyperparameters for the rest (labeled with black dash lines in the
figures).

Recently, many methods were proposed to address this
problem by formulating the slice-to-volume registration as a
learning problem [40]–[42], where deep neural networks are
trained to predict the 3D location of each input slice. By
learning from a large dataset in a supervised manner, these

approaches are able to identify and correct large motions in
fetal MRI. The predicted slice transformations can be used
to initialize downstream reconstruction algorithms to improve
the robustness in presence of motion.

To demonstrate the potential of combining NeSVoR
with learning based slice-to-volume registration methods,
we adopted the Slice-to-Volume Registration Transformer
(SVoRT) [42] to predict the slice transformation of the data
in Fig. 19, and used them to initialize NeSVoR. The re-
construction results show that, with the SVoRT initialization,
NeSVoR is able to restore the correct 3D anatomical struc-
tures from the 2D slices even though they are corrupted by
extreme subject motion during the scan. Fig. 20 visualizes the
output transformations of NeSVoR, where three input slices
from different stacks are placed at the corresponding output
locations. NeSVoR alone cannot correct the large movement
in the data, leading to a local minimum with significant slice
misalignment. With the help of SVoRT, however, NeSVoR
yields results with better consistency between different slices.

IV. DISCUSSION AND CONCLUSION

We have presented NeSVoR, a novel approach for fast,
robust slice-to-volume reconstruction based on implicit neural
representation. We adopt a continuous representation for the
underlying volume and the slice acquisition model, which is
resolution-agnostic and efficient for reconstructing volumes at
high resolution. We also introduce a probabilistic noise model
for outlier removal in reconstruction. Extensive evaluations on
both simulated and clinical data show that NeSVoR produces
high-quality results that are robust to subject motion, bias
fields, and artifacts while achieving a significant speedup over
traditional SVR methods. The proposed implementation can
reconstruct a high-quality fetal brain volume in about a minute
(Fig. 14), and potentially enables online reconstruction of
fetal MRI during scans, which can be combined with online
image quality assessment [43] and fetal brain tracking [44]
to implement a fully automated pipeline for fetal MRI. Also,
for an input dataset with 9 stacks (309 slices), the peak GPU
memory usage of NeSVoR is only 832MB. Therefore, it can
also be run on a GPU with less RAM.

It is noteworthy that the current model only focuses on the
rigid motion for brain MRI. For applications with larger ROIs,
such as fetal body and placenta reconstruction, a deformable
motion model should be employed [45], [46]. Moreover, as
the slice transformations are optimized with gradient descent,
NeSVoRis only able to recover relatively limited transforma-
tions of the target object. To this end, we further demonstrate
that deep learning based slice-to-volume registration methods,
e.g., SVoRT [42], can be used to initialize slice transformations
and improve the robustness of NeSVoR in presence of large
motion. Also, PSFs beyond the Gaussian function, such as
the sinc kernel, will be explored in the future. The developed
formulation of INR-based reconstruction is general and well
suited to other reconstruction problems that involve a PSF
model. For future work, we plan to extend NeSVoR to other
types of MR acquisitions and even other modalities.

Taken together, NeSVoR provides a rather general frame-
work for exploiting implicit neural representation in slice-to-
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Fig. 17. The reconstruction results and quantitative metrics for a subject using different numbers of input stacks. We use the result with 10 input
stacks as reference. A, S, and C mean axial, sagittal, and coronal respectively. For instance, 2A+4S+4C means the input stacks consist of two axial
stacks, three sagittal stacks, and three coronal stacks.

Fig. 18. The reconstruction results of a subject from the clinical fetal
dataset with different weights for the image regularization term.
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Fig. 19. The reconstruction results of NeSVoR with and without SVoRT
initialization on a fetal subject with severe motion. The last row shows
one of the input stacks that is corrupted by fetal motion.

volume reconstruction, which is potentially applicable to a
broader range of reconstruction problems in medical imaging.

Fig. 20. Visualization of output transformations of NeSVoR with and
without SVoRT initialization. Three input slices from different stacks are
placed in the 3D space according to the corresponding output locations.
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