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Abstract

We previously introduced a novel mixed reality (MR) teleguidance system, human teleoperation [1,2], in which a human (expert)
leader and a human (novice) follower are tightly coupled through MR and haptics for applications such as tele-ultrasound. In this
paper, a communication system suitable for human teleoperation is presented and characterized in various network conditions,
over Ethernet, Wi-Fi, 4G LTE, and 5G. To study all types of latency in the system, the human response time is additionally
characterized through step response tests with 11 volunteers. The step responses were obtained by tracking the position and
force of the human hand in response to a change in the MR target.

The round-trip communication latency is 40+/-10 ms over 5G, and down to 1+/-0.6 ms over Ethernet for typical throughputs.

The human response time to a step change in position depends on the step magnitude, but is 485-535 ms, while the reaction

time for forces is 150-200 ms. Both lags are decreased when tracking smooth motions. Thus, we demonstrate that the system

is network agnostic and can achieve good teleoperation performance and secure, fast communication in appropriate network

conditions. The presented tools and concepts are applicable to any high-performance teleoperation system, for example for

remote surgery.
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Evaluation of Communication and Human Response
Latency for (Human) Teleoperation

David G. Black, Dragan Andjelic, Septimiu E. Salcudean, Fellow, IEEE

Abstract—We previously introduced a novel mixed reality
teleguidance system dubbed human teleoperation [1], [2], in
which a human (expert) leader and a human (novice) follower
are tightly coupled through mixed reality and haptics. Our
first evaluation of human teleoperation is in the context of tele
ultrasound, in which a sonographer or radiologist’s gestures
are copied by a remote novice to carry out an ultrasound
examination. In this paper, a communication system suitable
for implementation of human teleoperation is presented and
characterized in various network conditions, over Ethernet, Wi-
Fi, 4G LTE, and 5G. To obtain a full understanding of latency in
the system, the human response time is additionally characterized
through a series of step response tests with 11 volunteers. The
step responses were obtained by tracking the position of, and
force exerted by, the human hand in response to a change in the
mixed reality target. Different rendering methods were evaluated.

The round-trip communication latency is 40±10 ms over 5G,
and down to 1 ± 0.6 ms over Ethernet for typical throughputs.
The human response time to a step change in position depends
on the step magnitude, but is between 485 to 535 ms, while
the reaction time to a change in force is 150 to 200 ms. Both
lag times are greatly decreased when tracking a smooth motion.
Thus, we demonstrate that the system is network agnostic and can
achieve good teleoperation performance and secure, low latency
communication in appropriate network conditions. This brings
the human teleoperation concept a step closer to human trials
in a clinical environment, and the presented tools and concepts
are applicable to any high-performance teleoperation system, for
example for remote surgery.

Index Terms—Teleoperation, Human-Computer Interaction,
Augmented Reality, Telemedicine, Communications

I. INTRODUCTION

A. Background

MANY fields including telemedicine, manufacturing, and
maintenance profit from remote guidance [3][4].

One particularly relevant procedure to which telehealth can
be applied is ultrasound (US). This is useful not only for
remote or under-resourced communities [5][6], but for Focused
Assessment with Sonography in Trauma (FAST) examinations
of trauma patients on ambulances [7], for elderly patients in
care homes for whom mobility is difficult [8], for COVID-
19 patients [9][10], and even for patients in hospitals when
radiologists have to cover call in several hospitals at once.
Remote training of sonographers is another popular application
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[11][12]. Point of Care Ultrasound (POCUS) is becoming
increasingly more popular [13]. Existing approaches to tele-
ultrasound include robotic teleoperation as well as multimedia
applications that combine verbal and graphical guidance on a
smartphone or tablet application.

Robotic US systems can provide high precision, low latency,
and haptic feedback [14][15][16][17]. One system has demon-
strated clinical utility in trials [18], and much recent work has
focused on autonomous robotic US [19][20] using combina-
tions of force-based positioning [21][22], depth camera-based
trajectory planning [23], and reinforcement learning [24]. A
good review of robotic ultrasound systems is found in [25],
and more recently in [26]. Despite the large body of literature
in this field, the issues of safe human-robot interaction and
guaranteed robust autonomy remain difficult, especially from
a regulatory perspective. Further limitations include restricted
workspaces, time consuming set-up, large physical size that
prevents use in ambulances, and cost, especially compared to
inexpensive US systems. The questions of cost and complex
setup and maintenance in particular make it difficult to deploy
such systems in small communities where they are needed.

Conversely, systems sold by Clarius Mobile Health Corp.,
Butterfly Network, and Philips use a portable US probe with
images and video conferencing available via a cloud interface
on a mobile phone or tablet application. Though inexpensive
and flexible, the desired probe pose and force are given
verbally or with some overlays of arrows or pointers on the US
image, which is very inefficient, leading to high latency and
low precision. These systems are designed more for expert
review of images captured by a capable sonographer rather
than guidance of a novice.

Robotic teleoperation and video conference-based teleguid-
ance fall on either end of a spectrum from performance to ease
of use and deployment, leaving a large gap for solutions that
are both flexible and easy to use and precise and efficient.
In a previous paper [1], we introduced a novel concept of
“Human Teleoperation” through mixed reality (MR) which
bridges this gap. In this control framework, the human follower
is controlled as a flexible, cognitive robot such that both the
input and the actuation are carried out by people, but with
near robot-like latency and precision. This allows teleguidance
that is more precise, intuitive, and low latency than verbal
guidance, yet more flexible, inexpensive, and accessible than
robotic teleoperation.

While virtual reality immerses a user in a virtual envi-
ronment, augmented reality takes the real environment and
augments it by adding visual information to it [27]. This
augmentation can take place within the real environment itself



2

Communication SystemExpert Side

Ex
pe

rt

Graphics
(Unity 3D)

Follower Side

HoloLens 2
(MRTK + 

MR-WebRTC)

Ultrasound DeviceClariusCast

Force Sensor

Fo
llo

w
er

-

Pose

Force

MR Capture

US Image

Force

Mesh (T)

T

kT

(kT)-1

Mesh (T)

Pose

US Image

Force

Force

MR Capture

Audio

+

Ha
pt

ic 
Co

nt
ro

lle
r

W
eb

RT
C

Op
en

Ha
pt

ics

Un
ity

 3
D

WebSocket
ICE Candidates ICE CandidatesSignaling Signaling

Internet

Wi-Fi/5GEthernet

Audio

HoloLens 2 projects 
teleoperated virtual 
probe onto patient for 
operator to follow

Desired pose, force, 
video, audio, 
ultrasound

Actual force, video, 
audio, patient mesh

Ultrasound Images

Desired probe pose, 
force, patient mesh

Patient view and mesh, 
probe pose, ultrasound 
image displayed on PC or 
VR headset 

Expert haptically interacts with patient 
mesh while controlling virtual transducer

Follower 
Side

Expert 
Side

HoloLens 2 projects 
teleoperated virtual 
probe onto patient for 
operator to follow

Desired pose, force, 
video, audio, 
ultrasound

Actual force, video, 
audio, patient mesh

Ultrasound Images

Desired probe pose, 
force, patient mesh

Patient view and mesh, 
probe pose, ultrasound 
image displayed on PC or 
VR headset 

Expert haptically interacts with patient 
mesh while controlling virtual transducer

Follower 
Side

Expert 
Side

Expert Follower

HoloLens 2 projects 
teleoperated virtual 
probe onto patient for 
operator to follow

Desired pose, force, 
video, audio, 
ultrasound

Actual force, video, 
audio, patient mesh

Ultrasound Images

Desired probe pose, 
force, patient mesh

Patient view and mesh, 
probe pose, ultrasound 
image displayed on PC or 
VR headset 

Expert haptically interacts with patient 
mesh while controlling virtual transducer

Follower 
Side

Expert 
Side

ICE Candidates

Fig. 1: System Architecture. k is a scaling factor for the force while T is the transform from expert to follower coordinates,
obtained from the mesh. The force feedback (dotted lines) has not yet been implemented.

or on a video stream or similar. Mixed reality is a subset
of augmented reality in which the visual cues are overlaid
onto the real, physical environment using overlays in an
optically transparent headset such as the Microsoft HoloLens
2, MagicLeap 2, Nreal Light, and the newly announced Meta
Quest Pro [28]. It should be noted that Milgram and Kishino
[29] described a “reality-virtuality continuum” in which mixed
reality was a superset of augmented reality and augmented
virtuality, but this notation is now largely out-of-date after
28 years. The classification was revisited recently in [30],
but this does not differentiate between information overlaid
onto recorded images or videos and information projected
into the real world. Thus, we keep the MR nomenclature
described above. Indeed, the ability to project 3D information
seamlessly into the real environment is the primary enabling
technology for human teleoperation, as this information can
be used to guide a novice follower while he/she interacts with
the environment, for example for an ultrasound exam.

Human trials were carried out in [31] to investigate this
ability of humans to act as a robot in tracking an input MR
signal, showing promising performance. However, these tests
were performed with the expert and follower sides connected
over WiFi, on a fast network. Introducing communication
latency can have a strong negative effect on teleoperation
performance. Li et al. found that performance decreases above
150 ms delay for haptic tasks in teleoperation [32], while
Jay and Hubbold determined that delays of 69 ms in visual
feedback and 187 ms in haptic feedback are disruptive to a
user manipulating a haptic device [33]. The same group later
found that delays of 25ms affected specific haptic tasks for
collaborative virtual environments [34], but that the effect of
delays is highly task-dependent. Though users seem to be more
sensitive to delays in visual rather than haptic feedback, when
a haptic delay is perceived, performance drops much faster
than if the delay is visual [32].

Thus, latency is key for almost all aspects of the teleop-
eration. The sonographer relies on visual feedback from the
ultrasound images, the haptic feedback, and the video stream
from the mixed reality headset to decide where to move and

what force to apply. Delays in any of the data lead to a
very unintuitive experience. Masuda et al. achieved telerobotic
ultrasound latency of < 1 second [35], compared to previous
experiments where they had 4-5 seconds of latency [36], which
they described as “very stressful” [35]. However, even delays
of 1 second in force control can cause instability. Niemeyer
and Slotine proposed the use of wave variables to maintain
stability for time-delayed force reflecting teleoperation [37],
which have since been improved for time-varying delays
[38], using disturbance observers [39], time domain passivity
control [40], µ-synthesis [41], and more.

Given the profound effects of time delays on performance,
stability, and controller design, it is important to minimize and
then measure and characterize these delays in any system.
In this paper, we present a communication system which
uses a secure, high-speed, network-agnostic Web Real Time
Communication (WebRTC) interface, described in Section
II-A. Section II-D describes a number of tests that were
performed on the communication system to characterize its
performance in different network conditions, including latency
tests over Ethernet, WiFi, 4G LTE, and 5G, all with various
signal conditions. To our knowledge, no other remote ultra-
sound system in the literature presents detailed communication
system design or thorough characterization thereof in different
network conditions that it may practically be exposed to. These
tests are equally applicable to any remote teleoperation system.

Since human teleoperation is a human-in-the-loop system,
however, the delays associated with the human response time
are also critical. These are evaluated through step response
tests with 11 subjects. The tests are significant to show that
the perceptual and cognitive delay in the human subjects is
within the range observed in prior work (cited above) to
allow successful human teleoperation. The measured values
provide a starting point for control system design, to optimize
the human teleoperation system response. To the best of our
knowledge, no other study has explored the human response
when guided by an MR interface. To perform these tests,
the prototype developed in [1] was improved to take direct
force input from the expert, and a dummy ultrasound probe
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TABLE I: Uplink and downlink throughput on the follower side, which is mobile and thus more bandwidth limited

Type Uplink Note Downlink Note
Timing 1.28 Kbps 1 8bit long × 20 Hz 3.84 Kbps 3 8bit longs × 20 Hz
Force 16 Kbps 3 32bit floats + 1 64bit timestamp × 100 Hz 16 Kbps Same as uplink
Pose 28.8 Kbps 7 32bit floats + 1 64bit timestamp × 100 Hz 28.8 Kbps Same as uplink
Video ≈ 1-2 Mbps 960× 540 H.264 encoding, 25 Hz, Variable quality 0 No downlink video
Audio 128 Kbps Typical MP3 bitrate (Part of MPEG-4 stream) 128 Kbps Same as uplink

US 4.64 Mbps 58KB JPG image × 10 Hz 0 No downlink US
Mesh 2.3 MB ≈12k mesh triangles × 3 points and 3 indices × 32bit floats 0 No downlink mesh
Total 6.81 Mbps Mesh sent rarely on demand. Peak throughput 9.43 Mbps 180 Kbps Sum

was designed for the follower, including 6 axis force/torque
sensing and 6-DOF position and orientation (pose) tracking
(Section II-B). A novel visual control system for the forces
was developed, as described in Section II-C. Further rigorous
tests of the visual force control and human tracking ability are
presented in [31].

B. Human Teleoperation

The human teleoperation system consists of the follower
side and the expert side, which communicate over the Internet.
The follower, who need not have any US experience, wears
an MR headset (Microsoft HoloLens 2) which projects a
virtual US transducer into the follower’s scene. The expert
sonographer controls the virtual probe in real time using a
haptic controller (Touch X, 3D Systems, Inc.) to input the
desired pose and force. The follower tracks the virtual probe
with his/her real probe. The expert, in real time, receives the
US images, a video stream of the patient with the virtual
and real probes in position (called an MR capture), and
is in verbal communication with the follower. Additionally,
the follower sends a spatial mesh of the patient, generated
by the HoloLens 2, to the expert. The mesh is rendered
haptically as a virtual fixture for the haptic device, giving the
expert the sensation that they are physically interacting with
the tissue. This spatial mapping also provides the expert-to-
follower coordinate transform. The system is shown in Fig. 1.

The effectiveness of the approach was demonstrated first
using a WebSocket server and Robot Operating System (ROS)
on a local wireless network (WLAN), showing large im-
provement in accuracy and completion time compared to
existing teleguidance methods [1]. In the following sections,
we describe and characterize a much improved communica-
tion system for human teleoperation, testing it in different
networks, signal conditions, and data throughputs. An instru-
mented dummy ultrasound probe is introduced to enable these
tests and the development of force control methods, and finally
the human-in-the-loop latency is investigated as well.

II. METHODS

A. Communication

The US images, video feed, and spatial meshes require a
large bandwidth while haptic feedback and MR teleoperation
necessitate very low latencies for stable, transparent, and
intuitive teleoperation. Accounting of required throughputs is
shown in Table I. The follower side is very biased towards
uplink although available uplink bandwidth is usually smaller

than downlink. Thus, bandwidth is particularly important in
this system.

A WebRTC-based system is more suitable to meet these
requirements and support tele-US at large distances. This
framework provides a direct peer-to-peer connection between
the expert and follower, thus removing server-related delays.
Data is sent either over data channels (general data) or media
channels (video encoded streams), which are built upon Stream
Control Transmission Protocol (SCTP) [42] and Realtime
Transport Protocol (RTP) [43] respectively. RTP is built on
top of UDP (User Datagram Protocol) but highly optimized
for real time video communication while SCTP can act much
like UDP with some improved features. As with UDP, dropped
packets can be ignored for maximum performance. In this case
there is no guarantee that packets sent in a specific order will
arrive in the same order. However, a second configuration is
available which guarantees chronological ordering while not
retransmitting dropped packets. Finally, full acknowledgement
and retransmission can be configured as well, leading to more
TCP-like behaviour. These settings are tested in Section II-D.
Generally, however, given the high-performance application,
the higher speeds of UDP are preferable to the reliability
of TCP. Dropped packets are quickly replaced with new
information, and local consistency checks are in place.

A further benefit of WebRTC is that it uses several existing
sub-protocols such as Session Description Protocol (SDP)
and Interactive Connectivity Establishment (ICE) to establish
an optimal connection between two peers over any network
and through any router NAT (Network Address Translation)
scheme or firewall. This is achieved by having both peers
connect to a signaling server and exchange SDP information.
Based on this information, they can automatically discover
an efficient route through the different network hops between
the peers. Once connectivity is established, all data is sent
directly peer to peer, and the signaling server is no longer
needed. In addition, WebRTC uses Datagram Transport Layer
Security (DTLS) to ensure the connection is authenticated and
encrypted. Thus, all transported information is secure, making
it ideal for this medical application.

We have implemented WebRTC-based communication for
the human teleoperation system, using separate data and media
channels for each of the rows in Table I, in addition to two
control channels that exchange occasional commands. The
signaling server is implemented in Python and runs on a
password-protected web server hosted on Heroku, a cloud
platform. All SDP data is securely encrypted before being
sent to the server, and is decrypted by the other peer. The
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flexibility of WebRTC allows the system to work without
any modification over Ethernet, Wi-Fi including enterprise
networks in universities or hospitals, 4G LTE, or 5G.

In collaboration with Rogers Communications, we have set
up an antenna which connects to mobile networks and to a
Wi-Fi router, which in turn connects to the HoloLens via Wi-
Fi or to a PC via Ethernet, thus allowing the HoloLens or PC
to communicate over the mobile network. A diagram showing
the setup is in Fig. 4. The University of British Columbia
was the first campus equipped with a non-standalone (NSA)
sub-6GHz 5G network in North America by Rogers, allowing
the system to be tested over 4G and 5G. The 5G network in
particular holds promise for achieving the required bandwidth
and latency, and provides additional features such as multi-
access edge computing (MEC), allowing costly computations
to be outsourced at very low latency to a server at the base
station. Furthermore, 5G can utilize a mm-wave band, leading
to vastly improved latencies and throughputs. Testing the
benefits of both MEC and mm-wave will constitute future
work.

d
c

b

a
e

Fig. 2: Instrumented dummy US probe (c) for tests, including
pose sensing (a) and force sensing at the tip (d). The pose
sensor is shown next to a thumb tack for scale. Both sensors
connect to a PC (b), and the electromagnetic transmitter (e)
has ArUco markers for registration.

B. Instrumented Test Probe

In order to complete the teleoperation system, force and
pose feedback are required from the real ultrasound probe.
The measured force is compared to the desired one in order
to generate the visual force indicator for the follower to track.
Similarly, the measured pose can be compared to the desired
one to produce a feedback signal, or it can be used in conjunc-
tion with the measured force to estimate the mechanical tissue
impedance to feed back to the expert’s haptic device. In [31]
and Section III-C, the measurements are used to characterize
human performance in the system.

To implement pose sensing, several options were explored.
An inertial measurement unit (IMU) can provide accelerometer
and gyroscope readings which give a good orientation estimate
but are subject to large drift and not feasible for position
tracking. Optical tracking using an NDI Polaris or similar
device is fast and accurate and was tested with our system.

However, it loses tracking when the reflective markers are
occluded, which happens often during an ultrasound exam.
Initial work on a similar infrared-marker-based optical tracking
system using the HoloLens IR sensor was carried out in
[44]. However, this suffers from some of the same occlusion
problems, and it was found that the HoloLens 2 tracking
was only accurate to about 3-4 mm and had a relatively
low update rate which was not sufficient for this application.
Sensor fusion with optical tracking and IMU data has also
been explored [45], but adds complexity. We instead utilized
an electromagnetic tracking system (NDI driveBAY) which
does not rely on line-of-sight and is accurate to about 1.4 mm
and 0.5◦. With a readout rate of up to 420 Hz and very small
size, it is ideal for this application.

The electromagnetic sensor includes a small sensing ele-
ment (Fig. 2 a), and a transmitter (Fig. 2 e), which also defines
the sensing coordinate frame. ArUco markers [46] are included
in known positions on the transmitter, allowing the HoloLens
to accurately determine its pose in the HoloLens frame, thus
providing the transform from measured force coordinates to
desired force coordinates.

For force sensing, an ATI Nano25 6-axis force/torque sensor
was used for its high precision (0.02-0.06 N), reliability, and
small size. This can be installed between a 3D printed shell
and the ultrasound probe as done in [14][47][48][49][50]. For
the tests presented here and in [31], it was instead installed
at the tip of a 3D printed dummy ultrasound probe to ensure
best possible accuracy. The instrumented dummy ultrasound
probe is shown in Fig. 2.

Both sensors are connected to a PC, referred to as the sensor
PC, which communicates the readings to the HoloLens via
WebRTC, over the local WiFi.

dc

b

a

Fig. 3: Follower side showing the follower wearing a HoloLens
2 (a), the holographic user interface (b), and the different force
rendering schemes: Error-bar (c), and Color (d)

C. Mixed Reality for Pose and Force Tracking

The primary premise of human teleoperation is efficient
tracking of pose and force using MR overlays. The speed
and accuracy for tracking step changes is presented in Section
III-C. For these tests, a virtual ultrasound probe was projected
into the follower’s field of view, as shown in Fig. 3. The
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follower’s goal is to align his/her probe as well as possible
with the virtual one, thus matching the desired pose. In some
lighting conditions, the virtual probe can occlude the real one,
leading to increased position error. Thus, the effectiveness of
a full probe rendering was compared to a scheme in which
the central part of the virtual probe was removed in [31].
Additionally, the full probe’s opacity can be adjusted. For the
step response tests in this study, a full probe rendering was
used.

Forces are also an important part of US imaging, determin-
ing which structures are visible, and ensuring they are not
too deformed. To achieve force tracking, several visual force
rendering methods were developed and tested in [31]. The two
most promising schemes are shown in Fig. 3. First, the expert
applies their desired force to the haptic device. Forces in US
are typically between 0-20 N [48], but the haptic device is
limited to 8 N. Thus, the forces are scaled down, which has the
added benefit of decreasing the load on sonographers, who are
known to suffer from increased incidence of musculoskeletal
injury [51]. The follower’s measured forces are then compared
to the desired ones to generate an error signal. The virtual US
probe then either changes color continuously between blue,
green, and red (Fig. 3 d) or an error-bar grows continuously
towards or away from the patient and changes color (Fig. 3
c) to indicate too little force, good force, or too much force
respectively. The error-bar approach in particular is shown to
be very effective [31], and is used in the step response tests.

In most teleoperation tasks involving contact, forces and
positions are controlled in orthogonal subspaces; i.e. forces are
controlled normal to the surface being contacted, and positions
are controlled in the two tangent directions [52]. This applies
very well to ultrasound procedures as well, so the step response
tests were performed on a flat, rigid surface with forces normal
to the surface and motions tangent to it.
Human Teleoperation: Test Bed Architecture 2 -
Latency

Sercomm Device

POE Adapter
Power POE
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Sensor PC

Ethernet
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Fig. 4: Test setup for testing the communication system.
POE = Power Over Ethernet. The WiFi router can either be
connected to the mobile network or directly to the Internet via
a wired connection. The HoloLens and sensor PC can similarly
connect to the router via WiFi or Ethernet.

D. Communication System Latency Tests

While the human-computer interaction and human tracking
performance are characterized in [31], and the force feedback
and practical use in a clinical environment will be evaluated
carefully in future work, this paper focuses on latency, both
in the communication system and in the human response

time. We performed a number of tests to determine system
performance over different networks and in various conditions.

To perform these tests, the human teleoperation system was
modified to send synthetic data of a specific size, generated
randomly and sent at a set rate. Thus, the throughput could
be adjusted. A diagram of the test setup is shown in Fig. 4.
The data was communicated constantly for 4 minutes during
each test. A separate data channel with timing packets was
set up to measure the latency. In fact, the round trip time
(RTT ) was measured instead of latency because clock drift
between two devices can easily be of the same scale as the
communication latency, making direct measurement of latency
impractical. Instead, a specific procedure was devised to cancel
out the clock drift, as follows.

Every 50 ms, a microsecond-resolution, 64-bit timestamp,
t1, is measured on the follower side and sent to the expert
side. Immediately upon receipt of the message, the expert
side measures its own timestamp, t2, appends it to the packet,
and prepares to send it back. Directly before sending, another
timestamp, t3, is measured and appended. When the follower
receives the response, it immediately measures a fourth times-
tamp, t4. The RTT can then be calculated as

RTT = (t2 − t1) + (t4 − t3) (1)

If we consider a clock drift of δt, and denote times in the
follower clock with a prime (eg. t′), then in the follower clock,
t′2 = t2+δt and t′3 = t3+δt. The RTT from (1) then becomes

RTT = [(t′2 − δt)− t′1] + [t′4 − (t′3 − δt)]

= [t′2 − t′1] + [t′4 − t′3] + δt− δt

= [t′2 − t′1] + [t′4 − t′3]

Thus, the clock drift is effectively canceled out. For an
approximate latency figure, one can take RTT/2. Since most
networks are faster for downlink than uplink, however, this is
not necessarily a good approximation, so we use RTT for the
remainder of the paper.

Different amounts of data were sent over different WebRTC
channels to simulate the data in the teleoperation. In total, 9
different throughputs were tested, each in 7 different network
conditions. These are outlined in Table II and III respectively.
During testing, SINR values varied randomly by a few points.
The different conditions were achieved by testing in different
locations. The expert side was stationary in one building, while
the follower side was moved to a lab two buildings down for
some of the tests.

No test was performed in poor 5G signal because the
network automatically switched to 4G in this case. Indeed,
in an NSA network, as was available for our tests, a given
user equipment (UE) device connects to the nearest base
station via a relatively static LTE primary carrier, but may
dynamically send data over 4G or 5G, depending on the UE’s
current throughput and latency requirements. It is not known
or controllable by the user which network the data is ultimately
sent over. However, in our testing, data was sent at a high rate
and throughput and the 5G carrier had a far higher signal to
interference plus noise ratio (SINR) than the LTE, so it can
safely be assumed that the data was sent over 5G. In the 5G
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TABLE II: Latency tests were performed with these through-
puts. The last 5 rows test possible sizes of US stream,
where 6.69 Mbps constitutes sending the US with just jpeg
compression.

Throughput Description
1.28 Kbps Just timing packets

46.08 Kbps + Force and Pose
1.17 Mbps + Video and Audio (lower quality)
2.17 Mbps + Video and Audio (higher quality)
2.57 Mbps + US (5KB)
2.97 Mbps + US (10KB)
4.17 Mbps + US (25KB)
4.97 Mbps + US (35KB)
6.81 Mbps + US (58KB)

TABLE III: Latency tests were performed in these network
conditions to simulate conditions that would be encountered
in the field. SINR = Signal to Interference plus Noise Ratio,
RSRP = Reference Signal Received Power, RSSI = Received
Signal Strength Indicator.

Network SINR RSRP RSSI Short Name
(dB) (dB) (dB)

Ethernet - - - Ethernet
WiFi - - - WiFi

5G NR 28 -77 -49 NR Good
5G NR 14 -87 -65 NR Mid
4G LTE 27 -63 -33 LTE Good
4G LTE 19 -94 -66 LTE Mid
4G LTE 4 -89 -52 LTE Poor

tests, the LTE SINR was around 2-3dB. To test 4G latency,
the antenna was configured not to connect to 5G. Note, it was
not possible to configure the antenna to connect only to 5G
as no Stand Alone (SA) 5G network was available.

The Ethernet and WiFi tests in Table III refer to the follower
being connected directly to the Internet via Ethernet or WiFi.
The expert PC is always connected via Ethernet. Fig. 4 shows
the path taken by data between the expert and follower. Notice
that when communicating over 4G or 5G with the HoloLens,
there is first a hop over WiFi; i.e. the HoloLens connects to
the RF antenna via WiFi. To establish the delay associated
with this hop, an equivalent C# program was written for the
sensor PC, which was attached to the antenna via Ethernet.
All mobile network tests in Table III were carried out over
Ethernet, and then an additional set of tests was performed to
determine the added latency from the WiFi hop.

When data is sent over a data channel, it is first added
to the channel’s send queue, which tends to fill if there is
network congestion, leading to packet delays. We therefore
experimented with splitting the US channel which had a large
throughput into 2 smaller channels. This test was repeated at
2.17 Mbps and 4.17 Mbps in medium 5G conditions (Table
III) to determine the effect.

Furthermore, as mentioned in Section II-A, the underlying
transmission protocol can be configured as reliable (TCP-
like retransmission of dropped packets), ordered (packets
guaranteed to arrive in order), or none. We performed tests at
46.1Kbps and 2.17 Mbps throughput in medium 5G conditions
(Table III) using each mode to determine the effect on latency.

E. Human Response Tests

Finally, initial results in [1] showed that the system’s latency
was limited not by the communication latency, but rather by
the reaction time of the follower. To quantify this carefully,
a series of step response tests were carried out for force and
position tracking of the follower. Using the experimental setup
described in [31], n = 11 healthy volunteers aged 20-64
(mean age 32) were asked to track the virtual US probe with
the instrumented probe from Section II-B. The step response
consisted simply of a series of step changes in pose or force.
The directions of the position jumps and interval between steps
were randomized to avoid the subject learning and anticipating
where or when the next step would occur. Each input signal
was generated on the expert side and sent via the described
communication system to the follower, where it was rendered
by the MR headset and tracked by the follower. For force, the
error-bar rendering was used (Fig. 3), and the follower held the
dummy probe against a rigid table. The desired forces were
normal to the surface. All desired and measured positions and
forces were logged on the HoloLens with timestamps to allow
precise comparison.

All of the step response tests were performed at a constant
amplitude of 10 cm and 11 N for position and force respec-
tively. However, we expect the response to be slightly different
at different amplitudes. This was tested in a few subjects by
having them perform the step response tests at four different
input amplitudes: 2.5, 5, 10, and 15 cm, and 3, 6, 12, and
18 N.
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Fig. 5: RTT versus throughput in different signal conditions

III. RESULTS

A. Communication System Throughput and Latency

The results of the tests in good network conditions are
found in Table IV, showing the difference between Ethernet,
WiFi, 4G, and 5G. With Ethernet, it would even be possible
to maintain a 1 kHz control loop for bilateral teleoperation
with force feedback. The WiFi link adds about 4-6 ms delay
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Fig. 6: RTT with large and small throughput in different network conditions

TABLE IV: RTT (ms) versus throughput in good signal conditions for different networks.

Ethernet WiFi 4G LTE 5G
1.28 Kbps 1.07± 0.57 5.80± 3.30 38.41± 6.63 26.95± 7.72
46.08 Kbps 0.94± 0.61 5.90± 2.77 38.77± 7.92 27.67± 6.21
1.17 Mbps - - 41.6± 38.06 -
2.17 Mbps 0.93± 0.59 5.87± 1.75 43.49± 30.18 39.61± 6.14
2.57 Mbps - - 57.30± 83.88 40.09± 10.02
2.97 Mbps - - 67.78± 148.30 41.23± 12.85
4.17 Mbps - - 57.13± 78.41 45.61± 21.07
4.97 Mbps - - 52.30± 59.30 47.64± 22.81
6.81 Mbps 1.07± 0.88 7.82± 9.90 66.58± 123.00 70.44± 78.29

on top of the Ethernet but is still very fast. The mobile
networks are slower but still fast, with 5G being about 5-
10ms faster than 4G. Both become significantly slower as
throughput grows very large, but remain for the most part
below the thresholds for human notice in haptic or visual
feedback cited in Section I-A. Further tests in medium to poor
network conditions are shown in Fig. 5.

In these tests the network demonstrates similar behaviour
to good conditions for low throughputs. However, at about
1 Mbps the RTT makes a sudden, large jump of more than an
order of magnitude, then stays relatively constant. In medium
5G, the jump occurs later, at about 2 Mbps. Fig. 6 compares
the different networks and network conditions for the two
distinct cases, before and after the jump in RTT . We see
that at low throughputs, good LTE and medium NR have
similar performance, but that the medium 5G has a long
tail towards large RTT s as throughput increases, though the
median remains relatively low. Good 5G has a significantly
better performance at all throughputs than LTE (p < 0.001),
and within LTE, variance decreases with improving signal
condition.

TABLE V: Effect of splitting high-volume channel into two

Throughput Split RTT Non-split RTT p-value
2.17 Mbps 2491 ms 2478 ms 0.58
4.17 Mbps 2763 ms 2609 ms < 0.001

TABLE VI: Effect of packet reliability on RTT . All pairings
are significantly different with p < 0.001 except None and
Ordered for low throughput.

Throughput None Ordered Reliable
46.1 Kbps 60.66± 69.91 55.34± 20.84 67.53± 77.29
2.17 Mbps 2478.3± 1199.4 2497.7± 4191.5 2634.6± 1809.0

B. Queuing and Reliability

The large latencies are in part due to long queueing delays
in the send buffers as network congestion increases. A test was
performed to determine if splitting the US channel into two
would improve performance by adding a second send buffer.
The results are shown in Table V. Interestingly, splitting leads
to significantly worse performance, and this does not even
take into account the overhead of synchronizing packets and
recombining the image on the expert side.

Finally, the effect of packet reliability was tested and is
shown in Table VI and Fig. 7. At small throughputs there
is relatively little difference, though reliable packets are still
significantly slower than the other two. At large throughputs,
however, there is a marked difference. As seen in Fig. 7, the
reliable mode leads to massive delays which are unacceptable
in this system. Conversely, ordered and unordered means
remain very similar, though with ordered packets the median is
lower and the variance is much larger, as seen by the relatively
large number of outliers. Thus, as hypothesized in II-A, a
UDP-like, communication without retransmission is best for
this system where low latency and high data rate are key.
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C. Human Step Response

In total, 418 step responses, plotted in Fig. 8, were measured
and analyzed. We can define reaction time (RT) as the time
delay between the initiation of the desired step and when the
user starts moving, specifically when the second derivative is
maximum. We define rise time to be the time taken between
starting the motion and finishing it. The reaction times, rise
times, and steady-state errors are listed in Table VII.

The RTs in the down steps are faster on average than on the
up steps (Table VII). In the tests, the probe was moved from a
central position to a point 10 cm away in a random direction,
then always back to the central position. Similarly, the force
always returned to the same low value. Despite differences
in the interval between steps, returning to a more familiar
position or force decreased the reaction time significantly (p =
0.047 for position, p < 0.001 for force). This implies that part
of the reaction time involves processing in which direction to
move, or how hard to press.

On the steps up in particular, the fastest responses also
have larger overshoot and more oscillation. Clearly, these users
adopted more aggressive, higher-gain controllers. All such
users were young (< 25). Indeed, there is a positive correlation
between age and RT in the step responses, with correlation
coefficient 0.5 (p < 0.001). As expected, older participants
reacted more slowly. However, there was no similar correlation
between age and rise time (correlation 0.06), so the limitation
appears to be cognitive, not physical.

The force RTs were much faster than the position RTs (p <
0.001), likely because no motion was required, only a change
in force. On the contrary, rise times were much slower for
forces (p < 0.001), because the followers had to rely entirely
on the visual feedback rather than having an intuitive feel for
whether they had achieved the desired value, unlike for the
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Fig. 8: Step Responses. Dotted line is input signal.

position tracking. This is discussed more in Section IV.
The step responses were repeated in a few subjects at four

different input amplitudes, to determine the effect. At larger
magnitudes, the rise time is of course larger, since the person
has to move further (correlation 0.98, p = 0.018). However,
the RT is also slower (correlation 0.93, p = 0.07). These
are shown in Table VIII and agree well with Fitt’s Law,
which describes a relation between reaction time and motion
amplitude [53]. The same trend is not present in the force step
response, where no physical motion was required.

TABLE VIII: Reaction time versus step amplitude

Magnitude (cm) Reaction Time (ms) Rise Time (ms)
2.5 485.12± 14.14 200.88± 14.15
5 465.42± 14.12 250.76± 56.58
10 525.00± 42.43 270.01± 57.65
15 565± 127.38 280.36± 212.30

TABLE VII: Step response results

Reaction Time (ms) Rise Time (ms) Steady State Error
Force Up

Force Down
201.09± 95.67
141.91± 76.13

1101.23± 361.82
1047.88± 361.54

2.8± 2.1 mm

Position Up
Position Down

535.00± 96.32
521.57± 108.17

199.06± 104.88
186.70± 107.66

0.26± 0.19 N
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IV. DISCUSSION AND CONCLUSIONS

In the original system described in [1], latency tests on the
ROS WebSocket implementation showed on average 11.4 ms
delay for pose and force transmission over a local network.
In contrast, the new system has delays of 1.07 ± 0.57 ms
over Ethernet or 5.80± 3.30 ms over WiFi on average for the
same local network. In addition, the latency of the audio/video
data over WebRTC is about the same whereas with Windows
Device Portal it was found to be ≥ 4 seconds, and with ROS
it was infeasibly slow. Furthermore, the new system can run
remotely over the Internet, is secure, and works on mobile
networks as well. It achieves RTT s of 38 − 67 ms over 4G
LTE and 27− 70 ms over 5G, depending on data throughput.
The presented system is thus a major improvement over the
original prototype.

From the results we can conclude that the communication
should be run without retransmission, and likely without
ordering guarantees. High-volume data channels should not be
split, although the US images require further consideration (see
below). For optimal performance WiFi should be used when
possible, or even over Ethernet via a USB-C adapter on the
HoloLens 2. WiFi adds 4-6 ms latency over the 1 ms latency
achieved by Ethernet. Both 5G and 4G offer high performance
as well when needed, though more care is required. In worse
network connectivity, some parts of the system, for example
the video conference, may have to be turned off, and the
video and US quality should be adjusted dynamically. This
is already the case for the video stream, but it needs to be
implemented for the US. Only in poor LTE connectivity with
SINR < 4dB or so is the teleoperation with transmission of
reasonable quality US images not feasible.

In all cases, for good network conditions the teleoperation
latency is strongly dominated by the human response time,
which is between 150-550 ms. For poor network conditions
and large throughputs, however, this relation can reverse,
which leads to very unintuitive teleoperation. This condition
should be avoided. The step response RTs match well with pre-
viously proposed values for human visual system RT. Badau
et al. describe three different RTs - simple RT, recognition RT,
and cognitive RT - which have significantly different values
[54]. Simple RT is for tasks where the subject sees an indicator
and pushes a button, whereas in recognition RT the user has to
recognize a specific object among a collection of shapes and
locate and click on the object. This explains the difference
between the force and pose RTs in Section III-C. Force is a
simple RT: the user sees the error-bar change and pushes down,
which happens very fast. On the other hand, pose involves a
recognition RT and is thus slower: the user has to recognize
which direction the probe moved in, and follow it. In this
way, much of the processing of where to move occurs before
initiating the motion for pose tracking, while for force tracking
deciding how hard to press occurs during the motion. Hence,
the rise time for pose is much faster than force.

It was also found that younger users were faster and in some
cases adopted a more aggressive controller with overshoot.
This precisely mirrors what is found in [55] and [56]. Finally,
Carlton argues that the reaction time approach to studying

processing delays is not appropriate when visual information
constitutes feedback from continuous motion [53]. This sug-
gests that better performance can be expected during teleop-
eration when motions are relatively smooth and continuous,
as opposed to the large steps shown here. Indeed, our results
regarding tracking delays for continuous motions and force
sequences in [31] are much faster than the discrete reaction
times from the step responses (Table VII), and are more
realistic representations of an ultrasound exam. Nonetheless,
the step response tests presented here represent a worst-case
response time, which is important to know. Furthermore, the
response time and accuracy is dependent on the rendering
method used to show the desired position and force. In [31]
we tested four different rendering schemes and present here
step response results using only the best two. However, better
schemes likely exist, so the results presented here constitute a
baseline.

Although the transmission protocol decided upon in the
above tests achieves its performance by ignoring dropped
packets, there is still retransmission at a lower level. The
mobile network itself can run in acknowledge or non-
acknowledge mode, in which dropped or corrupt packets are
retransmitted or not, respectively. The Rogers network used in
the tests runs using a default “best effort” quality of service
(QoS), which includes acknowledge mode. As it is a public
network, we were unable to change this or test its effect.
Furthermore, again since it is a public network, the tests were
subject to the amount of traffic currently loading the network
from students, faculty, and staff on the university campus. For
this reason, all tests were performed early in the morning
when few students were present. However, configuring the
network to treat packets from this critical medical application
with a different QoS - i.e. with higher priority and without
acknowledge mode - would further increase performance and
reliability. Though performance was already sufficient for
human teleoperation, and thus no special QoS configuration
is required, the performance of haptic feedback could likely
benefit.

A limitation of this study is that all the network tests were
carried out on a single network, which is subject to certain
configurations as explained above. Different networks in dif-
ferent locations will lead to slightly different performance.
Similarly, the expert PC was connected to the Internet via
an institutional enterprise network, which likely adds some
latency. Further, the human study was limited. Though the
volunteers represented a mix of sexes and ages, further tests
should be performed on a larger, more diverse population of
novices and a specialized population of sonographers. While
the tests presented here aimed to ascertain human performance
limitations, specific performance tests should be carried out for
ultrasound, using realistic motion ranges from sonographers
and radiologists for standardized exams [57].

Currently, the US images are streamed with jpeg compres-
sion from the Clarius C3HD3 device to the sensor PC using
the ClariusCast API. From here, they are forwarded to the
expert and follower via WebRTC. However, as seen in the
results, the large amount of throughput required for this can
seriously affect the communication latency. Sending individual
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jpeg images is highly inefficient, especially considering that
the US image does not change much from frame to frame.
Thus, future work will investigate sending difference images
between frames, with video encoding such as H.264 or H.265
and variable quality depending on the connection. This will
dramatically reduce the required throughput.

Future work will also involve performing human trials
with patients in the community and expert sonographers at
Vancouver General Hospital to establish the practicality of
the system. We are also developing miniaturized force sensing
transducers which can be integrated in a low profile shell on
an US probe to provide force feedback without disrupting the
ultrasound imaging. Using the measured forces we can study
stable and transparent force reflection in bilateral teleoperation
under time delays imposed by the human response time.
Furthermore, the human-computer interface can be optimized,
and reinforcement learning for autonomous US guidance can
be explored. This constitutes an exciting avenue for autonomy
since there is no possibility of dangerous or unpredictable
robot actions as the AI would control only the virtual probe.
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