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Abstract

High dimensional data has been a notoriously challenging issue. Existing quantum dimension reduction technology mainly

focuses on quantum principal component analysis. There are only a few works on the direction of quantum feature selection

algorithm which they are not robust. Also, there are few quantum circuits designed for feature selection, in which some steps

are not quantized yet. For example, existing quantum circuits cannot solve the objective function based on sparse learning. To

deal with these issues, this paper proposes a robust quantum feature selection by designing a new quantum circuit. Specifically,

the sparse regularization term and least squares loss are first applied to construct the proposed objective function. And then,

six kinds of quantum registers and their initial states are prepared. In addition, quantum techniques, such as quantum phase

estimation and controlled rotation, are employed to construct an alternating iterative quantum circuit to obtain the final

quantum state of the feature selection variable. Finally, a series of experiments are conducted to verify that the proposed

algorithm can accurately select important features and has good robustness.
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1 INTRODUCTION

Q UANTUM machine learning can further optimize traditional
machine learning algorithms by virtue of the high parallelism

of quantum computing [1] [2]. In recent years, with the devel-
opment of quantum computing technology, a series of quantum
machine learning algorithms have been proposed, such as quantum
support vector machine [3] [4], quantum k nearest neighbor [4]
[5] and quantum ridge regression [6]. The quantum dimension
reduction algorithm is a quantum machine learning algorithm that
can reduce the feature dimension through low time complexity. S-
ince Lloyd proposed quantum principal component analysis (PCA)
in 2014, many researchers have focused on quantum dimension
reduction algorithms [7]. For example, improved quantum PCA
and quantum feature selection based on quantum optimization
technology.

Quantum feature selection combines the characteristics of
quantum computing and feature selection, i.e., it can rapidly (with
low time complexity) reduce the dimensions of high-dimensional
data [8]. At present, there are a few quantum feature selection
algorithms. For example, Desu et al. proposed adiabatic quantum
feature selection [9]. Nembrini et al. proposed quantum feature
selection for recommendation systems [10]. Agrawal proposed
feature selection based on quantum whale optimization algorithm
[11]. These algorithms all use quantum technology to achieve
feature selection. But they only use quantum computing in part
of the algorithm, and there is no complete quantum circuit to
achieve feature selection. Different from the above works, Liu
et al. proposed quantum relief algorithm [12]. Although it enables
quantum feature selection through quantum circuit, it still has part
of the steps that are non quantum, and can not achieve robust
effect.

Among feature selection algorithms, feature selection algo-
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rithms based on sparse learning occupy a very important position
[13]. They learn the sparse solution of feature weight to select
features. However, there is no related work on quantum feature
selection algorithm circuits based on sparse learning. Given a
training dataset X ∈ Rn×d and label Y ∈ Rn×c, where n
represents the number of samples and d represents the number
of features. c represents the number of labels. When c = 1, it
is a single label, otherwise, multi-labels. At present, the objective
function of common feature selection based on sparse learning is
as follows:

min
W
‖Y −XW‖2F + ‖W‖s (1)

where ‖W‖s is the sparse regularization term, such as l2,1, l1
and l2,p norm. W is the final feature selection model. For Eq.
(1), there is no quantum circuit that can properly solve it. In
quantum computing, the only relevant algorithm is HHL [14],
which is a quantum algorithm for solving linear equations. The
HHL algorithm solves the following problems:

Xw = y (2)

where X is a known data matrix and y is a label. Obviously
w = X−1y. In HHL algorithm, phase estimation and controlled
rotation are used to obtain the quantum state |w〉 of w. Compared
with the classical algorithm, HHL has exponential acceleration
[15]. Comparing Eq. (2) and Eq. (1), it is easy to find that the
difference between them is relatively large. Although Eq. (2) can
be solved by quantum circuit, it is still a huge challenge to design
appropriate quantum circuit to solve the sparse learning based
objective function similar to Eq. (1).

To solve these problems, this paper proposes a robust quantum
feature selection algorithm. It can not only use the quantum circuit
to obtain the sparse solution of the feature weight, but also learn
the weight of each sample for robust learning. Specifically, it
first uses sparse learning and least squares loss to construct the
objective function. And then, an alternative iterative quantum
circuit is used to solve the proposed objective function, so as
to obtain the quantum states of final feature weight and sample
weight. Finally, a series of experiments are carried out on IBM
quantum platform to verify the validity of the proposed algorithm.
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The main contributions of this paper are as follows:

• A novel alternately iterative quantum circuit is proposed
for feature selection to obtain quantum states with final
feature weights. This circuit can be used to solve similar
objective functions based on sparse learning.

• Different from the existing quantum feature selection
algorithms, the proposed algorithm can perform robust
quantum feature selection. i.e., when there is noise in the
data, the proposed algorithm can still perform accurate
feature selection.

• In the experiment, a series of experiments are carried out
with IBM’ qiskit and Matlab to verify the validity of the
proposed algorithm. Experiments show that the proposed
algorithm can accurately select important features, and
shows good robustness in the data with gaussian white
noise.

The rest of this paper is organized as follows. Section 2 briefly
reviews previous related work. Section 3 describes our proposed
method in detail, quantum circuit and time complexity analysis.
Section 4 shows the results of algorithm on dataset. Section 5
summarizes the full paper.

2 RELATED WORK

In this section, we first introduce the relevant quantum technolo-
gies used in this paper, and then introduce some existing quantum
dimension reduction algorithms.

2.1 Correlated quantum technology
Quantum fourier transform The discrete fourier transform can
transform a complex vector a0, a1, . . . , aN−1 into a new complex
vector b0, b1, . . . , bN−1. where

bk = 1√
N

N−1∑
j=0

e2πi jkN aj (3)

The quantum fourier transform does the same mapping as the
classical fourier transform [16] [17]. It is defined as a unitary
operator F acting on n quantum bits. Its role is

F (|j〉) = 1√
2n

2n−1∑
k=0

e2πi jk2n |k〉 (4)

where 2n = N . The quantum fourier transform can transform any

n dimensional quantum state
N−1∑
j=0

aj |j〉 into another n dimen-

sional quantum state
N−1∑
k=0

bk |k〉. i.e.,
N−1∑
j=0

aj |j〉 →
N−1∑
k=0

bk |k〉.

where bk is obtained from Eq. (3). After some operations, we can
get the product form of fourier transform as follows:

F (|j〉) = 1√
2n

2n−1∑
k=0

e
2πijk
2n |k〉

= 1√
2n

1∑
kn−1=0

· · ·
1∑

k0=0
e

(2πij
n∑
l=1

kn−l
2l

)
|kn−1 · · · k0〉

= 1√
2n

1∑
kn−1=0

· · ·
1∑

k0=0
⊗nl=1e

(2πij
kn−l

2l
) |kn−l〉

= 1√
2n
⊗nl=1 [

1∑
kn−l=0

e(2πij
kn−l

2l
) |kn−l〉]

= 1√
2n
⊗nl=1 [|0〉+ e(2πij 1

2l
) |1〉]

= 1√
2n

(|0〉+ e(2πi0.j0) |1〉)(|0〉+ e(2πi0.j1j0) |1〉)
· · · (|0〉+ e(2πi0.jn−1jn−2···j1j0) |1〉)

(5)

where j = jn−1jn−2 · · · j1j0 is the binary representation of j
and 0.jljl+1 · · · jm = jl/2 + jl+1

/
22 + · · ·+ jm

/
2m−l+1 is the

binary fractional representation. According to Eq. (5), the circuit
of quantum fourier transform can be easily obtained, as shown in
Fig. 1:
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Fig. 1. Circuit of quantum fourier transform.

where the Rk operator is as follows:

Rk =

[
1 0

0 e(2πi/2k)

]
(6)

From the Fig. 1, we can see that need n quantum bits, n
hadamard gates and n(n− 1)/2 controlled phase shift gates.
Therefore, its time complexity is O(n2), while the time com-
plexity of classical fourier transform is O(n2n). It can be seen
that the quantum fourier transform has an exponential acceleration
compared with the classical fourier transform [18].

Quantum phase estimation Quantum phase estimation [19]
[20] can be used to calculate the phase of the eigenvalue of a given
unitary operator U , i.e., solving ϕ in U |u〉 = e2πiϕ |u〉, where
|u〉 is the eigenvector of U . The specific process can be divided
into the following three steps:

1. It prepares quantum registers with initial states |u〉 and
|0〉⊗t respectively, and transfers the eigenvalue phase decompo-
sition of U to the amplitude of the auxiliary quantum bit by using
a series of rotating quantum gate operations.

2. An inverse quantum fourier transform is performed on the
auxiliary bit (i.e., |0〉⊗t) to transfer the phase of the eigenvalue on
the amplitude to the basis vector.

3. All auxiliary qubits are tested separately to obtain the phase
information of the eigenvalues.

The quantum circuit [21] of quantum phase estimation is as
follows:

H

H

H

QFT
-1

0

0

0

j
0
2

U
2

2
n-

U
1

2
n-

U

Fig. 2. Circuit of quantum phase estimation.

From Fig. 2, we can find that quantum phase estimation
uses inverse quantum fourier transform, which can be seen as
a typical application of quantum fourier transform [22]. Both
quantum fourier transform and quantum phase estimation play
a powerful role. In this paper, the proposed quantum feature
selection algorithm combines them. The specific process will be
detailed in the next section.
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2.2 Quantum dimensionality reduction

According to different core ideas, dimension reduction can be
divided into many types, such as principal components analysis
(PCA) [23], linear discriminant analysis (LDA) [24], locality
preserving projections (LPP) [25], local linear embedding (LLE)
[26] and feature selection [27]. At present, the main quantum
dimension reduction technologies are quantum PCA and quantum
feature selection. Therefore, we focus on introducing some quan-
tum PCA algorithms and quantum feature selection algorithms in
this part.

Quantum principal component analysis Principal compo-
nent analysis is a typical dimension reduction algorithm [28].
It converts a group of variables that may have correlation in-
to a group of linearly unrelated variables through orthogonal
transformation, and the transformed group of variables is called
principal component [29]. i.e., the data after dimension reduction
retains most of the information of the original data [30]. With
the development of quantum technology, Lloyd et al. proposed
the quantum principal component analysis algorithm in 2014
[7]. Specifically, it first replicates copies of quantum states of
multiple data covariance matrices through hamiltonian simulation
technology. Then quantum phase estimation is used to obtain
the eigenvalues and eigenvectors of the quantum state. Finally, it
obtains the eigenvectors corresponding to the larger eigenvalues
through sampling, i.e., the principal components. This method
obtains all eigenvalues and eigenvectors of the covariance matrix,
so a large number of samples are required. In order to solve this
problem, Lin et al. proposed a quantum PCA algorithm based on
singular value thresholding (qsvt), which does not need to extract
all eigenvalues and sample a lot, greatly reducing the number
of samples [31]. However, its quantum circuit has two unitary
operations of estimation, and the accuracy is low. Later, Daskin
proposed a quantum PCA algorithm, which combines amplitude
amplification and quantum phase estimation to estimate eigenval-
ues in the interval [a, b] [32]. Subsequently, Yu et al. proposed
a new quantum PCA algorithm, which uses the quantum state of
high-dimensional data and the basic quantum state to do quantum
exchange tests to obtain the process of mapping high-dimensional
data to low dimensional data, so as to reduce the dimension of
high-dimensional data [33].

To sum up, we find that the existing quantum PCA algorithm
mainly uses quantum phase estimation technology and sampling.
This reveals the direction for the subsequent quantum dimension
reduction algorithm.

Quantum feature selection Feature selection is also a di-
mension reduction algorithm [34]. Its core is to select the feature
subset that best represents the overall data information through
loss function and sparse regular term. It can be seen as a data
preprocessing method [35] [36]. This is different from the core
technology of principal component analysis. the weight of each
feature is learnt, so as to further select the feature subset. PCA
obtains the eigenvalues and eigenvectors according to the singular
value decomposition of the covariance matrix to obtain the princi-
pal components, so as to achieve dimension reduction [37].

Quantum feature selection is a quantum algorithm that quan-
tizes all or some steps in the process of feature selection algorithm,
and further realizes accelerated dimensionality reduction [38]
[39]. Chakraborty et al. proposed a feature selection algorithm
based on quantum heuristic graph theory [40]. Specifically, it first
uses the distance function to build an undirected graph of data,

which belongs to the classical part. And then, it uses pearson
coefficient to calculate the relationship between features and
construct similarity matrix. Finally, it designs a quantum oracle to
obtain the adjacency matrix of features, and uses quantum parallel
amplitude estimation amplification technology to obtain highly
correlated features. This method transforms data into graph form
and combines quantum technology to select features. However, the
first two steps are classical calculations, not involving quantum
computation. Wang et al. proposed a quantum feature selection al-
gorithm based on the quantum grasshopper optimization algorithm
[41]. It first introduced quantum computing into the grasshopper
optimization algorithm, and obtained the quantum version of the
grasshopper optimization algorithm. Then mutual information is
introduced into the objective function to learn the relationship
between the selected feature subset and the unselected feature.
Finally, it compares the local optimal solution under each quantum
grasshopper to obtain an approximate global optimal solution.
Otgonbaatar and Datcu proposed a quantum annealing algorithm
for feature selection and classification [42]. This method selects
informative features for each category in the hyperspectral image
and applies the quantum classifier to the dataset on the D-wave
quantum annealer. The feature selection process of this method
does not use quantum computing, i.e., only part of the steps
still use quantum technology. Desu et al. proposed an adiabatic
quantum feature selection algorithm [9]. Specifically, it first uses
the least squares loss function and l0 norm to construct the
objective function. Then it uses adiabatic quantum computation to
solve the proposed sparse linear objective function. Finally, it uses
a D-wave adiabatic quantum computer to solve the quadratic un-
constrained quadratic optimization problem. Although this method
can solve the sparse problem with quantum technology, it does
not give a complete quantum circuit diagram. Li et al. proposed a
quantum approximation algorithm to achieve feature selection in
graph theory [43]. Specifically, it first uses similarity calculation
to build three graphs on the original data, in which features
represent nodes in the graph, and the relationship between features
represents edges. Then, it uses quantum approximate optimization
algorithm (QAOA) to derive a subgraph from the established
graph to generate feature subsets. Finally, it combines tabu search
algorithm to use finite qubits for large-scale feature selection of
graph theory. In this method, the used core quantum technology is
QAOA, part of which is still non quantized. Liu et al. proposed the
quantum relief algorithm [12]. This algorithm can be regarded as
a quantum version of the classical relief algorithm. Specifically,
it first converts the dataset into a quantum superposition state
and prepares the initial state. The core technology of this step
is hadamard operation and rotary unitary operation. Then it uses
swap to test quantum operation for obtaining quantum state, and
uses inner product to obtain similarity. In addition, it also uses
the classical maximum search algorithm to find the sample with
the largest similarity. Finally, it updates the weights and selects
features by iteration. Although quantum technology is applied in
the initial process and some intermediate steps of the algorithm,
some steps are still non quantized.

3 OUR APPROACH

In this section, we first build the objective function of the proposed
feature selection algorithm step by step. Then we construct a
quantum circuit to solve the objective function. Finally, the time
complexity of the proposed algorithm is analyzed.
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TABLE 1
The detail of the notations used in this paper.

X training data
y label of training data
Xi the i-th row of X
Xj the j-th column of X

‖X‖F the frobenius norm of X , i.e., ||X||F =
√∑

i,j x
2
i,j

‖X‖2,1 the l2,1 norm of X , i.e., ‖X‖2,1 =
∑

i (
∑

j x
2
ij)

1/2

‖X‖1 the l1 -norm of X , i.e., ‖X‖1 =
∑

i

∑
j |xij |

XT the transpose of X
X−1 the inverse of X
tr(X) the trace of X
W feature weight variable
Θ sample weight variable
k() kernel function
H hadamard gate

RY (η) RY (η) gate
FT quantum fourier transform
FT−1 inverse quantum fourier transform

In this paper, we use X ∈ Rn×d to represent the data matrix,
which contains n samples and each sample contains d features.
The frobenius norm, l2,1 norm and l1 norm of X are expressed
as ‖X‖F = (

∑
j ‖xj‖

2
2)1/2, ‖X‖2,1 =

∑
i (
∑
j x

2
ij)

1/2 and
‖X‖1 =

∑
i

∑
j |xij | respectively. The trace, transpose and

inverse of matrix X are expressed as tr(X), XT and X−1 re-
spectively. In addition, we also use H to represent hadamard gate,
R represents controlled rotation operation, and FT represents
quantum fourier transform.

We summarize these notations used in our paper in Table 1.

3.1 Robust quantum feature selection

Since Lloyd proposed the quantum principal component analysis
algorithm, some researchers have proposed its improved version.
Their core is to use phase estimation to solve the eigenvalues
and eigenvectors of the data covariance matrix and select the
eigenvectors corresponding to the first few larger eigenvalues to
form the principal component, so as to achieve the effect of dimen-
sionality reduction on the data. Feature selection is to select the
subset of features that can best represent the overall information
of data, and it will not change the form of features [44]. As
PCA is an unsupervised dimensionality reduction technology, it
is possible to hide feature elements that contribute little to data
differences, thereby mistakenly eliminating small and important
differentiation factors that affect model performance [45]. In
this section, we propose a supervised quantum feature selection
algorithm. Given a data matrix X . We can get its reduced singular
value decomposition form, as shown below:

X =
A∑
i=1

λi |ui〉 〈vi| (7)

where λi is singular value, |ui〉 and 〈vi| are left and right singular
vectors respectively, and A is the rank of matrix X .

On this basis, since the class label y corresponds to data X , it
can be written as a combination of |ui〉, as shown below:

y = ‖y‖
∑
i
σi |ui〉 (8)

Eq. (8) can be seen as the representation of label y on |ui〉.
Next, we use the data to fit the label through the least squares loss
to obtain the coefficient matrix. As follows:

min
W

∥∥∥∥ A∑
i=1

λi |ui〉 〈vi|W − ‖y‖
∑
i
σi |ui〉

∥∥∥∥2

F

(9)

where W is the fitting coefficient matrix, which records the
relationship between data and labels. For feature selection, we
perform l2,1 sparse restriction on it. Further, we can get the
following formula:

min
W

∥∥∥∥ A∑
i=1

λi |ui〉 〈vi|W − ‖y‖
∑
i
σi |ui〉

∥∥∥∥2

F

+ α‖W‖2,1
(10)

Eq. (10) can perform feature selection, but it can not eliminate
the influence of outliers and noise samples, resulting in the model
is not robust. Therefore, we further reconstruct the data to learn the
weight of each sample. The final objective function is as follows:

min
W,Θ

∥∥∥∥ A∑
i=1

λi |ui〉 〈vi|[W,Θ]− [‖y‖
∑
i
σi |ui〉, k(X)]

∥∥∥∥2

F
+α‖W‖2,1 + β‖Θ‖1

(11)
where Θ records the weight of each sample, and the weights of
outliers and noise samples are relatively small, thus reducing their
impact on the model and making the model more robust.

For Eq. (11), we propose an alternate iterative method to solve
it. In the next section, we will show its quantum circuit. In iteration
(t+1), we have obtained the value of Θ(t) in iteration t. Therefore,
when variable Θ is fixed, Eq. (11) can be rewritten as follows:

min
W

tr

 (WT
A∑
i=1
|vi〉 〈ui| − ‖y‖

∑
i
σi 〈ui|)

(
A∑
i=1

λi |ui〉 〈vi|W − ‖y‖
∑
i
σi |ui〉)


+αtr(WTNW )

(12)

Further, Eq. (12) is expanded to obtain the following formula:

min
W

tr



WT
A∑
i=1
|vi〉 〈ui|

A∑
i=1

λi |ui〉 〈vi|W

−WT
A∑
i=1
|vi〉 〈ui| ‖y‖

∑
i
σi |ui〉

− ‖y‖
∑
i
σi 〈ui|

A∑
i=1

λi |ui〉 〈vi|W

+ ‖y‖
∑
i
σi 〈ui|

A∑
i=1

λi |ui〉 〈vi|


+αtr(WTNW )

(13)

Next, we use Eq. (13) to take the derivative of Wi, and make
the derivative equal to 0, we can get the following formula:

Wi = (
A∑
i=1

λi |vi〉 〈ui|
A∑
i=1

λi |ui〉 〈vi|+ αN)−1

(‖y‖
∑
i
σi 〈ui|

A∑
i=1

λi |ui〉 〈vi|)

=
A∑
i=1

λi
λ2
i+αNii

‖y‖σi 〈vi|

(14)

where N ii = 1
2‖W i‖2

i = (1, 2, . . . , d). After obtaining each Wi,
we can splice them together to get W . Similarly, in iteration (t+
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1), we have obtained the value of W (t) in iteration t. Therefore,
when the variable W is fixed, Eq. (11) can be rewritten as follows:

min
W,Θ

∥∥∥∥ A∑
i=1

λi |ui〉 〈vi|Θ−
A∑
i=1

λi |ui〉 〈vi|
A∑
i=1

λi |vi〉 〈ui|
∥∥∥∥2

F
+β‖Θ‖1

(15)
When we write Eq. (15) in the form of trace, we can get the

following formula:

min
Θ

tr



(ΘT
A∑
i=1

λi |vi〉 〈ui|

−
A∑
i=1

λi |ui〉 〈vi|
A∑
i=1

λi |vi〉 〈ui|)

(
A∑
i=1

λi |ui〉 〈vi|Θ

−
A∑
i=1

λi |ui〉 〈vi|
A∑
i=1

λi |vi〉 〈ui|)


+βtr(ΘTMΘ)

(16)

Further, Eq. (16) can be rewritten as follows:

min
Θ

tr



ΘT
A∑
i=1

λi |vi〉 〈ui|
A∑
i=1

λi |ui〉 〈vi|Θ

−ΘT
A∑
i=1

λi |vi〉 〈ui|
A∑
i=1

λi |ui〉 〈vi|
A∑
i=1

λi |vi〉 〈ui|

−
A∑
i=1

λi |ui〉 〈vi|
A∑
i=1

λi |vi〉 〈ui|
A∑
i=1

λi |ui〉 〈vi|Θ

+
A∑
i=1

λi |ui〉 〈vi|
A∑
i=1

λi |vi〉 〈ui|
A∑
i=1

λi |ui〉 〈vi|
A∑
i=1

λi |vi〉 〈ui|


+βtr(ΘTMΘ)

(17)

We use Eq. (17) to take the derivative of Θi, and let the
derivative be 0, we can get the following formula:

Θi = (
A∑
i=1

λi |vi〉 〈ui|
A∑
i=1

λi |ui〉 〈vi|+ βM)−1

(
A∑
i=1

λi |vi〉 〈ui|
A∑
i=1

λi |ui〉 〈vi|
A∑
i=1

ςi |ui〉)

=
A∑
i=1

λi
λ2
i+βMii

ςi |ui〉

(18)

where M ii
j = 1

2|Θij | i = (1, 2, . . . , d). After getting each Θi,
we splice them together to get Θ. So far, we can obtain the
final feature selection variable W and sample weight variable
Θ. Different from other quantum feature selection algorithms,
our proposed algorithm requires alternate iterations to obtain the
final stable feature selection variable. Its specific corresponding
quantum circuit will be shown in the next section.

3.2 Quantum circuit for robust quantum feature selec-
tion
In this section, we use the quantum circuit to solve the proposed
objective function, i.e., Eq. (11), to obtain the final feature selec-
tion matrixW and sample weight matrix Θ. The detailed quantum
circuits are shown in Figs. 4 and 5.

In Figs. 4 and 5, we show the detailed quantum computing
process. Specifically, we first prepare six registers (from bottom to
top, they are quantum registers of type 1 to 6.), whose initial state
is (|0〉 |y〉)(|0〉⊗n0)(|0〉)(|u〉)(|0〉⊗n0)(|0〉), i.e., The initial state
of the first register is |0〉 |y1〉 , |0〉 |y2〉 , . . . , |0〉 |yc〉, the initial
state of the second register is |0〉⊗n0 , the initial state of the
third register is |0〉 , |0〉 , . . . , |0〉, the initial state of the fourth
register is |0〉 |u〉 , |0〉 |u〉 , . . . , |0〉 |u〉, the initial state of the fifth
register is |0〉⊗n0 , and the initial state of the sixth register is
|0〉 , |0〉 , . . . , |0〉, where n0 represents the number of quantum
bits used to store eigenvalues. and

|0〉 |y〉 = |0〉
(
A∑
i=1

σi |ui〉
)

(19)

The preparation of |y〉 state can refer to [6]. After the initial
state (|0〉 |y〉)(|0〉⊗n0)(|0〉)(|u〉)(|0〉⊗n0)(|0〉) is prepared, we
perform the phase estimation operation. In machine learning, data
matrix X is generally not hermitian, so we convert it into the
following form:

X̂ =

[
0 X
XT 0

]
∈ R(n+d)×(n+d) (20)

After obtaining Eq. (20), we will perform phase estimation on
the 1st, 2nd, 4th and 5th registers. At this time, the quantum state
of the system is:

A∑
i=1

σi(|ui〉 |λi〉) |0〉 (21)

A∑
i=1

ςi |ui〉 |λi〉 |0〉 (22)

After obtaining the eigenvalues of matrix X̂ through the
phase estimation operation, we perform the controlled ro-
tation operation. Specifically, we make the qubit of the
third register controlled by

∣∣∣±λin+d

〉
to rotate it from |0〉 to√

1− C2
1h

2
1(±λi, α) |0〉 + C1h1(±λi, α) |1〉. Where C1 =

O(maxλih1(λi, α))−1, h1(λ, α) := (n+d)λ
λ2+αNii

. The qubit of

the sixth register is controlled by
∣∣∣±λin+d

〉
to rotate it from |0〉

to
√

1− C2
2h

2
2(±λi, β) |0〉 + C2h2(±λi, β) |1〉. Where C2 =

O(maxλih2(λi, β))−1, h2(λ, β) := (n+d)λ
λ2+βMii

. At this time, the
quantum state of the whole system is:

A∑
i=1

σi |ui〉 |λi〉
(
C1(n+d)λi
λ2
i+αN11

)
|1〉+

√
1−

(
C1(n+d)λi
λ2
i+αN11

)2
|0〉

A∑
i=1

σi |ui〉 |λi〉
(
C1(n+d)λi
λ2
i+αN22

)
|1〉+

√
1−

(
C1(n+d)λi
λ2
i+αN22

)2
|0〉

...
A∑
i=1

σi |ui〉 |λi〉
(
C1(n+d)λi
λ2
i+αNcc

)
|1〉+

√
1−

(
C1(n+d)λi
λ2
i+αNcc

)2
|0〉

(23)

A∑
i=1

ςi |ui〉 |λi〉
(
C2(n+d)λi
λ2
i+βM11

)
|1〉+

√
1−

(
C2(n+d)λi
λ2
i+βM11

)2
|0〉

A∑
i=1

ςi |ui〉 |λi〉
(
C2(n+d)λi
λ2
i+βM22

)
|1〉+

√
1−

(
C2(n+d)λi
λ2
i+βM22

)2
|0〉

...
A∑
i=1

ςi |ui〉 |λi〉
(
C2(n+d)λi
λ2
i+βMnn

)
|1〉+

√
1−

(
C2(n+d)λi
λ2
i+βMnn

)2
|0〉

(24)
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Fig. 3. Flow chart of proposed quantum feature selection algorithm.

|0〉 Rc |1〉
...

. . .
...

|0〉 R2 |1〉

|0〉 R1 |1〉

|0〉⊗n0 H⊗n0 • FT−1 • • • FT • H⊗s |0〉⊗n0

|0〉 |y1〉

e
− iX̂it

(n+d)2n0 e
iX̂it

(n+d)2n0

|W1〉
|0〉 |y2〉 |W2〉

...
...|0〉 |yc〉 |Wc〉

Fig. 4. Quantum circuit for solving |W 〉

The controlled rotation angles of the third register and the sixth
register are:



ϑ(λi) = arcsin
(
C1(n+d)λi
λ2
i+αN11

)
ϑ(λi) = arcsin

(
C1(n+d)λi
λ2
i+αN22

)
...

ϑ(λi) = arcsin
(
C1(n+d)λi
λ2
i+αNcc

) (25)



ϑ(λi) = arcsin
(
C2(n+d)λi
λ2
i+βM11

)
ϑ(λi) = arcsin

(
C2(n+d)λi
λ2
i+βM22

)
...

ϑ(λi) = arcsin
(
C2(n+d)λi
λ2
i+βMnn

) (26)

After that, we perform the inverse operation of phase estima-
tion and test the qubits in the third and sixth registers to obtain
test result |1〉. At this point, we can obtain the quantum state of

the first and fourth quantum registers:

|1〉
(

A∑
i=1

C1σi(n+d)λi
λ2
i+αN11

|vi〉
/√

A∑
i=1

(
C1σi(n+d)λi
λ2
i+αN11

)2
)

|1〉
(

A∑
i=1

C1σi(n+d)λi
λ2
i+αN22

|vi〉
/√

A∑
i=1

(
C1σi(n+d)λi
λ2
i+αN22

)2
)

...

|1〉
(

A∑
i=1

C1σi(n+d)λi
λ2
i+αNcc

|vi〉
/√

A∑
i=1

(
C1σi(n+d)λi
λ2
i+αNcc

)2
)

(27)

|1〉
(

A∑
i=1

C2ςi(n+d)λi
λ2
i+βM11

|vi〉
/√

A∑
i=1

(
C2ςi(n+d)λi
λ2
i+βM11

)2
)

|1〉
(

A∑
i=1

C2ςi(n+d)λi
λ2
i+βM22

|vi〉
/√

A∑
i=1

(
C2ςi(n+d)λi
λ2
i+βM22

)2
)

...

|1〉
(

A∑
i=1

C2ςi(n+d)λi
λ2
i+βMnn

|vi〉
/√

A∑
i=1

(
C2ςi(n+d)λi
λ2
i+βMn

)2
)

(28)
After removing |1〉, we can obtain the quantum states of W

and Θ respectively: |W 〉 and |Θ〉.
To facilitate readers’ understanding, we write the pseudo code

of the algorithm in Algorithm 1, and show the whole algorith-
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|0〉 R̂c |1〉
...

. . .
...

|0〉 R̂2 |1〉

|0〉 R̂1 |1〉

|0〉⊗n0 H⊗n0 • FT−1 • • • FT • H⊗s |0〉⊗n0

|0〉 |u〉

e
− iX̂it

(n+d)2n0 e
iX̂it

(n+d)2n0

|Θ1〉
|0〉 |u〉 |Θ2〉

...
...|0〉 |u〉 |Θn〉

Fig. 5. Quantum circuit for solving |Θ〉

m flow in Fig. 3. In algorithm 1, we first initialize variables
W (0) and Θ(0), and then update the quantum states of W (t+1)

and Θ(t+1) by alternating iterations, where t is the number of
iterations. Finally, until the algorithm converges, we obtain the
final W and Θ. The convergence condition of the algorithm is
|obj(t+1)−obj(t)|

obj(t) ≤ 10−5, where obj(t) and obj(t+ 1) represent
the values of the objective function in iteration t and iteration
(t+ 1) respectively. The core of the algorithm is to use phase es-
timation and controlled rotation operation in quantum computing.
After obtaining the final W and Θ, we can use W to obtain the
weight of each feature, so as to select features.

Algorithm 1: Pseudo code for proposed method.

Input: Training set X ∈ Rn×d, Labels Y of the training
data set, Adjustable parameters α and β;;

Output: |W 〉 and |Θ〉;
1 Initialize t=0;
2 repeat
3 Compute N (t) via N ii = 1

2‖W i‖2
i = (1, 2, . . . , d);

4 The quantum state of W (t+1) is obtained by Fig. 4
i.e., Eq. (14);

5 Compute M (t) via M ii
j = 1

2|Θij | i = (1, 2, . . . , d);
6 The quantum state of Θ(t+1) is obtained by Fig. 5

i.e., Eq. (18);
7 t = t+1 ;
8 until converge;

3.3 Time complexity analysis

Through our algorithm process, we can find that its op-
eration cost mainly consists of phase estimation, ampli-
tude amplification and iteration times. According to refer-
ence [46], we can get the time complexity of phase es-
timation is: O(‖X‖2max poly log (n+ d)κ2

/
ε3). By adding

the time complexity of amplitude amplification and itera-
tion, we can know that the time complexity of |Wi〉 is
O(t ‖X‖2max poly log (n+ d)κ3

/
ε3). Where t is the number

of iterations and κ is the condition number (i.e., the ra-
tio of the maximum singular value to the minimum singu-
lar value of X). ε is the error term. Similarly, the time
complexity of |Θi〉 is O(t ‖X‖2max poly log (n+ d)κ3

/
ε3).

Therefore, the total time complexity of our algorithm is

TABLE 2
Time complexity comparison between quantum feature selection and

non quantum feature selection.

Condition Traditional feature selection Proposed

κ = O(
√
n) O(poly log(n)n3) O(poly log(n)n3/2)

κ = poly log(n) O(poly log(n)n2) O(poly log(n))

O(2t ‖X‖2max poly log (n+ d)κ3
/
ε3). Compared with the tra-

ditional feature selection algorithm, the time complexity is
O(t(nd + n2d log (Aε )

/
ε2)). Assuming d = O(n), ‖X‖max =

O(1) and 1/ε = O(poly log n), the time complexity of the
proposed algorithm can be further written as: O(tpoly log(n)κ3).
The time complexity of traditional feature selection algorithm
can be further written as O(tpoly log(n)n2A). When κ satisfies
different conditions, the time complexity comparison between the
proposed quantum feature selection algorithm and the traditional
feature selection algorithm is shown in Table 2.

From Table 2, we can see that the proposed quantum feature
selection can achieve exponential acceleration when certain con-
ditions are met. i.e., when X is full rank, the proposed method
can achieve approximate square acceleration. When X is low
rank, the proposed method can achieve approximate exponential
acceleration.
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Fig. 10. The value of the objective function in each iteration.
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Fig. 6. Measurement results of |W 〉 at each iteration.
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Fig. 7. Quantum circuit for solving |W 〉 in experiment.

4 EXPERIMENTS

At present, IBM has announced the world’s largest superconduct-
ing quantum computer, which contains 127 quantum bits. But,
for big data, it is still not enough. In this paper, because the
whole algorithm process is quantized, if n and d in a dataset
X ∈ Rn×d are large, ordinary computers cannot run it. Therefore,
the existing computer hardware capability limits the operation of
the algorithm. Especially for big data oriented machine learning

algorithms. Therefore, we use a small data set to verify that the
proposed algorithm has good feature selection performance in
IBM quantum platform and Matlab.

4.1 Experimental setting
In order to verify the validity of the proposed quantum feature
selection algorithm, we first do some preliminary work. According

to algorithm 1, we construct a training data X =

[
1 − 1

3
− 1

3 1

]
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Fig. 8. Measurement results of |Θ1〉 at each iteration.

TABLE 3
Value of W and Θ in each iteration.

iteration 1 2 3 4 5 6 7 8 9

W 0.3615
0.4973

0.3758
0.9058

0.4605
1.1868

0.5551
1.3291

0.6307
1.4033

0.6811
1.4452

0.7116
1.4694

0.7289
1.4831

0.7385
1.4908

Θ1 0.3440
-0.4180

0.3699
-0.3739

0.3913
-0.3547

0.4047
-0.3441

0.4126
-0.3380

0.4172
-0.3344

0.4199
-0.3323

0.4214
-0.3311

0.4223
-0.3303

Θ2 -0.2035
0.6197

-0.2267
0.5592

-0.2426
0.5354

-0.2525
0.5226

-0.2583
0.5151

-0.2618
0.5107

-0.2638
0.5080

-0.2649
0.5065

-0.2656
0.5056

limited by quantum bits, corresponding class label y = [1; 2], and
adjustable parameter α = β = 1. Based on these data informa-
tion, we need to obtain some other auxiliary information needed in
the algorithm process. We can easily get that the eigenvalues of X
are λ1 = 2

3 and λ2 = 4
3 , and the corresponding eigenvectors are

u1 =

( −1√
2
−1√

2

)
and u2 =

( −1√
2

1√
2

)
. Then, we can use n0 = 2

quantum bits to encode the eigenvalues, namely |01〉 and |10〉.
Since |01〉 = |1〉 = |Nλ1t/2π〉 and |10〉 = |2〉 = |Nλ2t/2π〉,
where N = 2n0 = 4, we set t = 3

4π. After obtaining the values

of these parameters, we set our experiment as follows:

1. Using the proposed quantum circuit to run on IBM quantum
platform, calculate the quantum state |W 〉 of feature selection
variable W and the quantum state |Θ〉 of sample weight Θ
under each iteration. In addition, measure the quantum registers
of auxiliary bits, |y〉 and |u〉 to obtain the measurement ratio of
each iteration.

2. Run the quantum circuit diagram of the last iteration of the
proposed algorithm on the IBM quantum platform, and obtain the
controlled rotation angle required by different variables in each
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Fig. 9. Measurement results of |Θ2〉 at each iteration.

TABLE 4
The angle of rotation of auxiliary bits for different variables in each iteration.

iteration 1 2 3 4 5 6 7 8 9

W1 1.2342 0.8661 0.8869 1.0001 1.1080 1.1834 1.2293 1.2555 1.2699

W2 0.6040 0.8221 0.9098 0.9388 0.9493 0.9540 0.9564 0.9578 0.9585

Θ11 0.8763 0.8396 0.8784 0.9090 0.9276 0.9383 0.9445 0.9480 0.9501

Θ12 0.8597 0.7902 0.7682 0.7574 0.7511 0.7473 0.7450 0.7437 0.7429

Θ21 0.6905 0.7251 0.7611 0.7843 0.7980 0.8059 0.8104 0.8131 0.8146

Θ22 0.8555 0.8225 0.8098 0.8029 0.7988 0.7963 0.7949 0.7940 0.7935

iteration.
3. The convergence experiment of the proposed algorithm is

carried out on Matlab software to obtain the results of feature
selection variable W and sample weight Θ of the final iteration,
and compare them with the results of quantum computation. In
addition, the robustness of the algorithm is also tested.

It should be noted that our algorithm has reached convergence
in the first 9 iterations. Therefore, we only show the experimental
results of the first 9 iterations in part of the experimental results.

4.2 Analysis of experimental results

Fig. 6 shows the quantum results of the first 9 iterations of the fea-
ture selection variable W . Because we only measure two quantum
bits, and only when the auxiliary measurement bit is |1〉, can we
obtain the quantum state |W 〉. Therefore, we need to observe the
values of |0〉 |1〉 and |1〉 |1〉. From Fig. 6, we can see that in the
first iteration, the result is 0.102 : 0.212 = 1 : 2.0784. In the 2nd
to 9th iteration, the result obtained is between 1 : 3.5± 0.7. This
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TABLE 5
The values of W and Θ in each iteration after adding gaussian white noise.

iteration 1 2 3 4 5 6 7 8 9

W 0.5950
1.0984

0.5950
1.2118

0.6098
1.2434

0.6237
1.2551

0.6345
1.2614

0.6424
1.2656

0.6481
1.2685

0.6522
1.2706

0.6551
1.2721

Θ1 0.1073
-0.4885

0.0616
-0.4914

0.0377
-0.5013

0.0236
-0.5080

0.0150
-0.5122

0.0097
-0.5148

0.0062
-0.5164

0.0040
-0.5174

0.0026
-0.5181

Θ2 -0.0988
0.9738

-0.0582
0.9630

-0.0355
0.9745

-0.0221
0.9829

-0.0141
0.9881

-0.0090
0.9913

-0.0058
0.9934

-0.0038
0.9946

-0.0024
0.9955
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Fig. 11. The value of the objective function in each iteration after adding
gaussian white noise.

shows that the weight of the first feature is obviously less than
the weight of the second feature, and the final feature selection
variable selects the second feature.

Table 3 also shows the final value of W obtained by running
the proposed algorithm in matlab. From Table 3, we can find that
in each iteration, the results of quantum computation are basically
consistent with the results of non quantum operation, and the
second feature is given a larger weight. Unfortunately, the specific
value of the results is still a little biased. i.e., the final result in
Matlab is |0.7385|2 : |1.4908|2 = 1 : 4.0751. The result of
quantum circuit operation is 0.088:0.252=1:2.8636. The reason
for this phenomenon is the noise in the quantum circuit.

Similarly, Figs. 8 and 9 show the quantum results of the
variable Θ in the first nine iterations respectively. It is different
from the quantum circuit for solving W . When solving each
column of Θ, the variables to be fitted are different. Therefore,
the results of column 1 and column 2 of Θ (i.e., Figs. 8 and 9)
are different. In addition, the controlled rotation angle of auxiliary
bits in each iteration is also different. From Figs. 8 and 9, we can
see that in most iterations, the obtained results have little change,
i.e., the ratio of |0〉 |1〉 to |1〉 |1〉 has little change. This shows
that in the proposed quantum algorithm, the quantum state of Θ is
relatively stable in each iteration.

4.2.1 Controlled rotational variation of auxiliary bits

From Eqs. (23) and (24), we can see that the angle of auxiliary bit
rotation is different for each iteration. It is equivalent to RY (η)

rotation, as shown in the following formula:

RY (η) =

(
cos(η2 ) − sin(η2 )
sin(η2 ) cos(η2 )

)
(29)

where η = 2 arcsin( λi
λ2
i+αNii

) or η = 2 arcsin( λi
λ2
i+βMii

), they
correspond to variables W and Θ respectively. On the one hand,
we need to solve two variables W and Θ, and Θ has two columns
(only one column of quantum state is output at a time). On
the other hand, the data has two eigenvalues. Therefore, in each
iteration, we need to calculate the controlled rotation angle of six
auxiliary bits. Their rotation angles are shown in Table 4. From
Table 4, we can see that in the first five iterations, the rotation angle
η changes greatly. After the fifth time, the rotation angle changes
little. For example, for variable W , after the fifth iteration, the two
rotations are concentrated on 1.2± 0.03 and 0.95± 0.01. For the
first column of Θ, after the fifth iteration, the angles of the two
rotations are concentrated at 0.94±0.02 and 0.74±0.01. For the
second column of Θ, after the fifth iteration, the angles of the two
rotations are concentrated at 0.81± 0.01 and 0.79± 0.007. From
these results, we can also simply see that the final results of the
algorithm have almost no change since the sixth iteration.

4.2.2 Convergence and quantum circuit
Fig. 10 shows the change of the objective function value of the
proposed algorithm with the number of iterations. From Fig. 10,
we can find that the proposed algorithm is convergent, and the
convergence speed is fast. In addition, we also show the quantum
circuit diagram for specific data, because the solution of W is
similar to Θ. i.e., the middle fourier technology is the same, but
the difference lies in the initial state setting and the angle of
controlled rotation of auxiliary bits. Therefore, we only show the
quantum circuit diagram for solving the feature selection variable
W . As shown in Fig. 7, we use one qubit to encode label y, two
qubits to encode eigenvalues, and one auxiliary qubit. It should
be noted that the angle of controlled rotation of auxiliary bits is
related to Eqs. (25) and (26). From Fig. 7, we can see that after
phase estimation and controlled rotation, when the auxiliary bit is
measured to obtain |1〉, the quantum state |W 〉 can be obtained.

4.2.3 Robustness analysis
Different from the existing quantum feature selection algorith-
m, the proposed quantum feature selection algorithm is robust.
Specifically, we compared the characteristics of the proposed al-
gorithm and other quantum feature selection algorithms, as shown
in Table 6. From Table 6, we can see that after the parameters are
initialized, the proposed quantum feature selection is quantized in
the whole process of learning the quantum state of the feature
weight. This is different from other quantum feature selection
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TABLE 6
Characteristics comparison of quantum feature selection algorithms.

method Quantization
of all steps

Whether there is
quantum circuit

Exponential
acceleration or not

Square acceleration
or not

Whether dimension
can be reduced Robustness

Chakraborty et al. [40] × X × X X ×
Wang et al. [41] × × × × X ×

Otgonbaatar
and Datcu [42] × × × × X ×
Desu et al. [9] × × × × X ×
Li et al. [43] × X X × X ×
Liu et al. [12] × X × X X ×

Proposed X X X × X X

algorithms, which are only partially quantized. In addition, the
proposed algorithm can achieve exponential acceleration when the
dataset is low rank, and it is robust.

In Table 5, we show the values of feature selection variables
W and Θ obtained by the algorithm in each iteration after adding
gaussian white noise to the data. We can find that, compared
with Table 3, the values of W and Θ have changed after adding
gaussian white noise. However, the final feature selection result is
not affected. From the value of each iteration of feature selection
variable W , we can find that it does not change significantly.
Compared with the experiment without gaussian white noise, the
final value of W obtained is still about 1 : 2, which indicates that
the weight of the second feature is greater than that of the first
feature and the weight ratio is almost unchanged.. In addition,
we also performed the convergence experiment of the algorithm
after adding gaussian white noise, as shown in Fig. 11. From Fig.
11, we can see that the algorithm still converges around the fifth
iteration. All these results show that the proposed algorithm has
good robustness.

5 CONCLUSION

In this paper, a robust quantum feature selection algorithm has
been proposed. Specifically, it first prepares the initial quantum
state of the whole system through quantum technology. Then it
uses quantum phase estimation technology to obtain the eigenval-
ues and eigenvectors corresponding for the data matrix. Finally, it
uses the quantum controlled rotation technology to combine the
eigenvalues on the amplitude of the auxiliary bit to the |y〉 bit.
When the auxiliary bit is measured to a specific state, the final
quantum state of the feature selection variable is obtained. In the
experiment, the proposed algorithm is implemented by using the
quantum circuit programmed with qiskit, and the experiment is
carried out on IBM quantum platform.

In the future work, we plan to study more quantum machine
learning algorithms. For example, Quantum spectral clustering,
quantum ensemble learning and quantum random forest.
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