Orthogonal Multi-frequency Fusion Based Image Reconstruction and Diagnosis in Diffuse Optical Tomography

Han
ene Ben Yedder ¹, Ghassan Hamarneh ², and Ben Cardo
en ²

 $^{1}\mathrm{SFU}$ $^{2}\mathrm{Affiliation}$ not available

October 30, 2023

Abstract

Identifying breast cancer lesions with a portable diffuse optical tomography (DOT) device improves early detection, while avoiding otherwise unnecessarily invasive, ionizing, and expensive modalities such as CT, as well as enabling first line of care treatment efficacy. Critical to this capability is not just identification of lesions, but rather the complex problem of discriminating between malignant and benign lesions. To accurately capture the highly heterogeneous tissue of a cancer lesion embedded in healthy breast tissue with non-invasive DOT, multiple frequencies can be combined to optimize signal penetration and reduce sensitivity to noise. However, these frequency responses can overlap, capture common information, and correlate, potentially confounding reconstruction and downstream end tasks. We show that an orthogonal fusion loss of multi-frequency DOT can improve reconstruction. More importantly, the orthogonal fusion leads to more accurate end-to-end identification of malignant versus benign lesions, illustrating its regularization properties on the multi-frequency input space. With the line-ofcare deployment of portable DOT probes requiring a severely constrained computational budget, we show that our raw-to-task model, for direct prediction of end task from signal, significantly reduces computational complexity without sacrificing accuracy, enabling lower latency and higher, real-time throughput in medical settings.

Orthogonal Multi-frequency Fusion Based Image Reconstruction and Diagnosis in Diffuse Optical Tomography

Hanene Ben Yedder, Ben Cardoen, *Student member, IEEE*, Majid Shokoufi, Farid Golnaraghi, and Ghassan Hamarneh, *Senior Member, IEEE*

Abstract-Identifying breast cancer lesions with a portable diffuse optical tomography (DOT) device improves early detection, while avoiding otherwise unnecessarily invasive, ionizing, and expensive modalities such as CT, as well as enabling first line of care treatment efficacy. Critical to this capability is not just identification of lesions, but rather the complex problem of discriminating between malignant and benign lesions. To accurately capture the highly heterogeneous tissue of a cancer lesion embedded in healthy breast tissue with non-invasive DOT, multiple frequencies can be combined to optimize signal penetration and reduce sensitivity to noise. However, these frequency responses can overlap, capture common information, and correlate, potentially confounding reconstruction and downstream end tasks. We show that an orthogonal fusion loss of multi-frequency DOT can improve reconstruction. More importantly, the orthogonal fusion leads to more accurate end-to-end identification of malignant versus benign lesions, illustrating its regularization properties on the multi-frequency input space. With the line-of-care deployment of portable DOT probes requiring a severely constrained computational budget, we show that our rawto-task model, for direct prediction of end task from signal, significantly reduces computational complexity without sacrificing accuracy, enabling lower latency and higher, real-time throughput in medical settings.

Index Terms—Diffuse optical tomography, image reconstruction, deep learning, multi-frequency, tissue estimation, lesion classification, diagnosis, multitask learning, transfer learning, handheld probe.

I. INTRODUCTION

 ${f B}$ REAST cancer is the most frequently diagnosed cancer among women. With the most common symptoms are

Correspondence to be addressed to {hbenyedd, hamarneh}@sfu.ca This study was conducted through the Fraser Health-ethical approval reference number FHREB 2014-065 – PI Dr. Farid Golnaraghi and supported in part by grants from Natural Sciences and Engineering Research Council of Canada (NSERC). The authors thank Weina Jin, from the Medical Image Analysis Lab, for her suggestions during paper preparation.

Hanene Ben Yedder, Ben Cardoen, and Ghassan Hamarneh are with the Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, BC Canada V5A 1S6. e-mail: {hbenyedd, bcardoen, hamarneh}@sfu.ca

Farid Golnaraghi is with School of Mechatronic Systems Engineering, Simon Fraser University, BC Canada V5A 1S6. Majid Shokoufi is with School of Mechatronic Systems Engineering, Simon Fraser University, BC Canada V5A 1S6. e-mail: {mfgolnar, mshokouf}@sfu.ca nipple discharge, lump formation, breast pain, and part of breast thickening, pre-screening is usually carried out using self-breast examinations, which can suffer from high falsepositive rates, or clinical breast examinations [1]. Although breast lumps are often benign, such as lipoma, cyst, or hamartoma, lesion malignancies may appear with a nonpalpable sign; hence regular screenings are critical. While mammography is the most commonly used screening tool today, it is an invasive exam with potential cumulative health risks due to the reliance on ionizing radiation [2]. Furthermore, the acquisition device's complexity and the size limit patient screening throughput.

Imaging modalities based on near-infrared light are emerging as tools for biomedical diagnosis, given that infrared light is well tolerated, even in large doses, and it easily penetrates through structures such as the skull, brain, and breast [3]. The recent progress of optical sensors makes optical-based modalities increasingly attractive. Near-infrared diffusion optical tomography (DOT) [4] uses diffuse light to image soft tissues, offering several advantages in terms of safety, costs, portability, and sensitivity to functional changes. This technique has shown great potential in investigating functional brain imaging [5], [6] and breast cancer screening [7], [8] with a wavelength allowing non-ionizing penetration of several centimeters into human soft tissue. Typically deployed as a handheld device in line-of-care settings, a DOT scanner is comprised of an array of emitters and receivers using lowpowered LEDs or lasers.

Because a photon can experience many alterations of its path in random directions until it is absorbed, DOT image reconstruction is a non-linear ill-posed inverse problem, subject to artifacts [9]. To complicate matters further, the portable nature and limited power budget of DOT deployments significantly reduce the number of available sensors-detectors pairs and the available computational envelope for reconstruction. Because DOT can effectively pre-screen patients, saving them from unnecessary exposure to more precise but potentially harmful ionizing modalities such as CT, there is a clear need for low latency, preferably real-time, and accurate reconstruction.

Reconstruction quality and depth sensitivity are inversely proportional to the distance between source and detector and noise level, and strongly depend on the reconstruction method [10]. In addition, the highly heterogeneous nature of malignant cancerous tissue further complicates the reconstruction task [2]. Recent studies [11]–[13] have shown that data processing and image reconstruction are faster and more accurate when deep learning algorithms are used instead of conventional reconstruction methods. One advantage deep learning based algorithms have over classical reconstruction methods is that they can exploit implicitly learned feature encodings from the DOT sensor data, whereas classical reconstruction algorithms can exploit only priors encoded by human designers [14].

DOT can be classified into three modes: continuous wave, frequency domain, and time domain. In continuous wave mode, light is usually time-invariant or modulated at a low frequency (few kHz), while in frequency domain mode, light intensity is amplitude-modulated (hundreds of MHz). In time domain mode, an ultra-short light pulse is considered, where the temporal response allows improved spatial resolution and rich depth information [15]. Given the tradeoff between imaging performance and cost, frequency domain methods tend to be the most cost-effective mode where tissue optical properties can be directly inferred from the back-scattered signal's amplitude and phase. Furthermore, sampling at different frequencies in a sufficiently broad bandwidth enables converting frequency domain signals to the time domain using the inverse Fourier transformation [15]. In this work, we focus on the frequency domain DOT.

Depending on the sources versus detector position, reflectance (same side, e.g., probe [7]) or transmittance (the opposite side, e.g., parallel plate [16]) of light beamed into the tissue are measured [4]. While a probe design allows a lower hardware complexity and better portability, it increases the hardness of the reconstruction task, especially when the number of sources is limited [12].

A. Optical Properties Based Lesion Identification

DOT measures the distribution of tissue optical properties as a function of absorption and scattering coefficients. These properties are closely correlated to physiological markers and allow indirect quantitative assessment of tissue malignancy [17]. Indeed, marked variations between healthy and tumor tissue are observed in terms of optical properties and chromophore components (e.g., oxy/deoxy hemoglobin and collagen). In particular, benign and malignant lesions can be separated in terms of absorption at several wavelengths.

B. Multi-frequency DOT

Frequency-domain systems use intensity-modulated sources, ranging from a few MHz to 1 GHz, to illuminate the tissue and collect the amplitude and phase of diffusing waves. A multi-spectral image can be obtained using several LEDs or lasers using multiple wavelengths as illumination. The different LEDs are used consecutively to capture an image per wavelength or combined as one multi-spectral image [9].

The primary motivation for multi-frequency DOT is to exploit the different but complementary responses of the tissue under study to chromophore components excitation, given that chromophores absorb photons at different rates at different modulation frequencies. This wavelength sensitivity is leveraged to analyze optical spectra and reconstruct images of the exposed tissue for diagnostic purposes, given that recovered chromophore concentration changes can convey information about functional brain vascular events and the characterization and monitoring of breast lesions [10]. The captured multifrequency data can provide more spatial and contextual information, enabling more robust and accurate identification and discrimination of disease-correlated biological anomalies.

While higher frequencies allow for a better separation of optical properties, such as absorption and scattering coefficients, as well as a better detection of small and shallow objects, the limit of the signal-to-noise ratio (SNR) decreases with increased modulation frequency [18], [19], and penetration decreases as frequency increases. Utilizing multi-frequency data for improving DOT image reconstruction and diagnosis has been an active field of research, illustrating that the accuracy of the optical coefficient can be improved using measurements with multiple modulation frequencies [20]–[23]. For instance, motivated by the clustered appearance of anomalies in brain imaging, Chen et al. [24] addressed the joint reconstruction of absorption and scattering coefficients using a clustered sparsity reconstruction method. Numerical simulation performed on multi-frequency (100-250 MHz) modulation concluded that the combination of two frequencies results in improved recovery of optical coefficients and provides the highest SNR and lowest error, negating the increasing noise in high frequency data. In a prototype study, Shifa et al. [22] analyzed the merits of multi-frequency on reconstruction quality by exploring the combination of a variety of frequencies within a larger range (100-1000 MHz) to reconstruct a single image, showing improvement in optical properties' reconstruction. Multi-frequency high-density DOT has also been leveraged in the context of 3D reconstruction for brain imaging [25] using a difference method, relying on measurements before and after the change to recover tissue optical properties, to compensate for physiological and noise interference. Frequency shifting, wherein multiple frequencies steps equally distanced are used, has been proposed by Kazanci et al [26] as a promising method to reduce the ill-posedness of the problem on in silico data. A center modulation frequency was augmented with a total of 100 frequency shifts, sampled at 5 Hz frequency steps, showed an improvement in multiple-lesion reconstruction. In a similar direction, Applegate et al. [23] evaluated different modulation frequency selection schemes' impact on the image reconstruction task and concluded that, despite requiring careful tuning of the inverse algorithm parameters to achieve good results, adding modulation frequencies can lead to worse performance depending on the instrument given the specific noise impact. The perhaps counter-intuitive finding that more frequencies can hurt performance is supported by Zimek et al [27], who reported that adding dimensions can harm discriminative potential if those dimensions do not improve the signal-tonoise ratio.

In a study performed on patients with diagnosed breast lesions, Taroni et al. [28] investigated the potential effectiveness of optically derived tissue composition and absorption properties to discriminate between malignant and benign tissue. A difference based approach reconstructed optical properties and estimated tissue composition for seven collected wavelengths (635–1060 nm) followed by a discrete AdaBoost classifier. Augmenting DOT with ultrasound is finding recent adoption as well, an example of multi-modal fusion [29], [30]. The aforementioned art is based on conventional reconstruction algorithms. To the best of our knowledge, no deep learning-based method has explored the merit of exploiting multiple frequencies in DOT-reconstruction and diagnosis.

C. DOT Reconstruction Algorithms

Traditional image reconstruction techniques commonly rely on non-linear methods minimizing an objective function, iteratively until convergence, e.g., gradient and Newton-type methods [31]. Based on an initial homogeneous tissue optical properties estimate, the difference between the measured signal and the modelled data is used to iteratively update the estimate until achieving convergence within acceptable limits with the measured data. Given the ill-posed nature of the problem, regularization terms are leveraged to ensure convergence by restricting the space of all possible solutions into only a subset of physically plausible ones. A comprehensive review is presented in [32].

Even though non-linear methods follow directly from the underlying mathematical problem formulation, in practice they have high computational cost as each iteration needs to be optimized independently at reconstruction time, prohibiting real-time or low-latency reconstruction. Furthermore, the reconstruction accuracy is easily compromised as the number of sources and detectors is reduced, and reconstruction of complex shapes can become challenging [33]. To address these shortcomings, researchers have explored deep learning as an alternative approach [4], [14]. A deep learning model for DOT reconstruction is typically trained in a supervised setting on in silico or phantom training data pairs. By incorporating complex and diversified data samples, the model can selectively enrich its feature space to improve performance on realworld data. Our recently developed deep image reconstruction framework [12], based on a deep spatial attention learning network and a similarity loss function, reduces computational complexity to the real-time range of few milliseconds per frame, while improving lesion localization accuracy.

D. Multi-frequency as Data Fusion

Data fusion models mimic higher cognitive abstraction in the human brain by synthesizing information from multiple sources for improved decision-making. While data fusion is non-trivial, the resulting contribution of multiple data sources or multimodal data can significantly improve the performance of deep learning models [34], [35]. The underlying motivation for collecting multi-modal data is to learn the optimal joint representation from rich and complementary features of the same object or scene. In the context of combining multiple information sources to learn more powerful representations, the terms 'early' and 'late' fusion are commonly used [36]. Early fusion refers to concatenating input data from multiple sources in separate channels before presenting it as input to the network, while late fusion involves processing each input data individually and aggregating their output. Mid-fusion restricts cross-data flow to later layers of the network, allowing early layers to specialize in learning and extracting data-specific patterns [37].

Attention mechanisms have been shown to be suitable for the fusion of features that usually suffer from confounding issues such as conflicting or cancelling information, correlation, and noise. Attention provides an approach to learn to select informative subsets of the data, as well as the relationship between data streams, before fusing them into a single comprehensive representation [35], [38]. Transformer based models, based on a multi-head attention architecture, have recently gained increased adoption [37], [39]. However, the high computational cost and complexity, scaling adversely with input sequence length, remain a significant challenge, especially given the real-time requirement.

Self-supervised learning (SSL) based on a joint embedding architecture, driven by the maximization of the information content of the network branches' embedding, opened the door to the application of joint-embedding SSL to multimodal signals [40]. The idea is to produce independent embedding variables, removing confounding effects such as partial correlation. However, modal collapse between data streams should be avoided, where network branches ignore the inputs and produce identical and constant output embedding vectors. Zbontar et al. [41] use a loss term that minimizes the difference between the identity matrix and the normalized cross-correlation matrix of branch embeddings to encourage independence. Bardes et al. [40] use a decorrelation mechanism while relaxing the normalization constraint via an explicit variance-preservation term for each embedding. Consequently, it allows architecture diversity between branches given that no shared structure or parameters are enforced.

Imposing orthogonal constraints in linear and convolutional neural network layers can act as a form of regularization that can help improve task performance and be beneficial for the network's generalization [42], [43]. Orthogonality in feature space was proposed to encourage intra-class compactness and inter-class separation of the deep features, and has shown improvement in classification tasks [44]. Multi-modal orthogonalization has been used to force uni-modal embeddings to provide independent and complementary information to the fused prediction [45]. Another advantage is that an orthogonal encoding can enforce the learning of a more sparse correlationfree representation. The resulting smaller encoding can reduce architecture dimensions, and serve as an implicit regularization.

E. Towards Direct Medical Image Analysis in DOT

Traditional computational pipelines in biomedical imaging involve solving tasks sequentially (e.g., segmentation followed by classification or detection). Although each of these two tasks is usually solved separately, the useful clinical information extracted by the second task is highly dependent on the first task's results. While a 'joint' or multistage model where different tasks are lumped together, for example, image reconstruction then classifying diagnosis, can benefit from feature sharing and joint parameters tuning for both tasks, significant computational resources are required to optimize sub-tasks that may not necessarily lead to endtask improvements. In contrast, in the direct medical image analysis [46] (DMIA) paradigm, end task results are directly inferred from raw/original data (e.g., raw sensors or whole image/volume). Therefore, the model can focus solely on the end task, reclaiming some of the computational resources for improved results while requiring fewer resources. For instance, Wu et al. [47] trained a neural network for joint reconstruction and lung nodule detection from raw acquisitions and showed performance improvement compared to a two-stage approach. Hussain et al. [48] had shown that a segmentation-free kidney volume estimation can help overcome segmentation errors and limitations and reduce the false-positive area estimates. In a similar perspective, Taghanaki et al. [49] investigated a segmentation-free tumor's volume and activity estimation in PET images. Recently, Abhishek et al. [50] illustrated that, in the context of cancerous skin lesions, predicting the management decisions directly can be a simpler problem to address than predicting the diagnosis followed by management decisions, as one action can be prescribed to multiple subsets of disease classes.

F. Contributions

We make the following contributions in this paper:

(i) We investigate the benefit of multi-frequency data on the quality of DOT reconstruction and breast lesion diagnosis. Previously, many works have addressed the multi-frequency reconstruction problem or diagnosis, albeit using conventional methods. Despite the importance of multi-frequency acquisition for chromophore reconstruction, no deep learning framework has investigated multi-frequency fusion nor joint reconstruction and diagnosis to date. Here, we present a novel approach designed to recover the optical properties of breast tissue from multi-frequency data with a deep orthogonal fusion model followed by a diagnosis.

(ii) To the best of our knowledge, this is the first deep learning-based method that investigates the merits of tackling the diagnosis prediction task from raw sensor data directly without image reconstruction in DOT (direct prediction). Results with and without reconstruction are contrasted using a modular pipeline, highlighting the potential of the raw-to-task model for improved accuracy, while reducing computational complexity.

(iii) We extend a fusion network [38] by training models using an orthogonalization loss function [44] to maximize the independent contribution of each modulation frequency data and emphasize their collective strength, with improved predictive performance compared to a single frequency model.

Section II, introduces our proposed model for multifrequency DOT fusion and defines the two prediction pipelines (raw-to-task and joint reconstruction and diagnosis). Physicsbased computational simulation and real patient datasets are detailed in Section III-A.1. In silico performance results are presented in Section III-B and results on real-world data in Section III-C. We conclude the paper by discussing insights and limitations on interpretability, speed, and adaptive dynamic treatment in Section IV.

II. METHODOLOGY

Solving the inverse problem in DOT recovers the spatial distribution of a tissue's optical properties $x \in \mathbb{R}^{W \times H}$ based on the measured boundary data $y^i \in \mathbb{R}^{S \times D \times N}$, from S sources (emitters) with D sensors (detectors) at different modulation frequencies $i \in \{1, N\}$. The learned inverse function $\mathcal{F}^{-1}(\cdot)$ maps the raw measurements y to an image estimate \hat{x} while remaining faithful to the underlying physics constraints. Learning the inverse function $\mathcal{F}^{-1}(\cdot)$ is carried out by solving:

$$\theta^* = \operatorname*{argmin}_{\theta} \mathcal{L}\left(\mathcal{F}^{-1}(y^i;\theta);x\right) + \lambda \mathcal{R}(\mathcal{F}^{-1}(y^i;\theta)), \quad (1)$$

where \mathcal{L} and \mathcal{R} are the network loss function and the regularization, θ are the optimized network weights that parameterize \mathcal{F}^{-1} . The reconstruction of an image based on the fusion of all raw signals from diverse modulation frequencies is considered as well by using the fusion network described in Section II-A. While reconstructing an accurate 2D/3D image/volume from collected measurements has been the mainstream task in DOT, in a clinical setting, the ultimate purpose is not necessarily obtaining the image itself but rather making an informed clinical diagnosis or management decision, such as lesion detection and classification into predefined classes. To compare the impact of omitting the reconstruction and directly predicting the end task, we implemented two architectures: The first reflects classical approaches, i.e., a classification module is appended to the output of the reconstruction layer to make a prediction, where the result of the multi-spectral reconstruction is used to supervise the classification task (Section II-B). Whereas the second uses the same classification module to make a prediction based on the fused raw data directly, i.e., no reconstruction is considered in between. The ultimate goal is to study the ability of deep learning to provide superior prediction based on the raw signal only while reducing model complexity and computational cost (Section II-C).

A. Fusion Network

Given multi-frequency raw data paired with known diagnosis outcomes, the objective is to learn a robust multi-frequency representation in a supervised learning setting. While many fusion strategies have been proposed in computer vision, natural language processing, and multimodal biomedical data, strategies for fusing data in multi-frequency DOT data remain unexplored in deep learning-based approaches. Inspired by recent methods for multimodal data fusion [38], [45], we adopt a similar attention-based mechanism to control the expressiveness of features from each input frequency before constructing the multi-frequency embedding, while uniquely feeding the raw data directly with no further pre-processing. Let $Y \in \mathbb{R}^{S \times D \times N \times M}$ be a training mini-batch including M tissue samples, each collected using N frequencies such that $Y = [Y_1, Y_2, ..., Y_N]$ where for each frequency $i, Y_i =$ $[y_1^i, \dots, y_M^i]$ includes data for M samples. When N > 1, input

Fig. 1. Architecture overview of the proposed DOT image reconstruction and diagnosis method. (A) single-frequency and (B) multi-frequency signals (y) along with corresponding ground truth diagnosis labels (l_{diag}) and images (x) are used to train the model. In the single-frequency variant of our method (A), y, is used as input to the image reconstruction, then the resulting image is used for diagnosis prediction. In multi-frequency, note the two variants: (B.1) per-frequency reconstruction and (B.2) multi-spectral reconstruction and diagnosis. For both single and multi-frequency, the red dashed lines depict the raw-to-task flow, where the image reconstruction is skipped and the diagnosis is predicted directly from y. The bottom panel shows the details of the multi-frequency fusion, reconstruction, and prediction modules.

measurements from each frequency are combined using the fusion branch (Fusion, Fig1-i). To reduce the impact of noisy input features and compress the size of the feature space, each Y_i is first passed through a fully connected layer of length l, with ReLU activation, outputting $Y_i^s \in \mathbb{R}^{l \times 1 \times M}$, followed by an attention mechanism that scores the relevance of each feature in Y_i . We define frequencies i as the set $\{j\}$ such that $j \in \{1, N\} \setminus \{i\}$, i.e., for frequencies other than i. A linear transformation W_A of frequencies Y_{ij} that would score the relative importance of each feature in i, is learned. W_A is a learned weight matrix parameters for feature gating. The attention weights vector a_i is then applied to Y_i^s , an element-wise product of scores and features, to form the attention-weighted embedding $Y_i^{s'} \in \mathbb{R}^{l \times 1 \times M}$:

$$Y_i^{s'} = a_i * Y_i^s = \sigma \left(W_A * [Y_{ij}] \right) * Y_i^s.$$
⁽²⁾

Finally, attention-weighted embeddings are passed through a fully connected layer of length l2, with ReLU activation, then combined through a Kronecker product between all frequency embeddings to capture possible interactions. Each vector is appended by 1 to capture partial interactions between frequencies [38]. The final fused embedding is then defined

$$F = \begin{bmatrix} 1\\ Y_1^{s'} \end{bmatrix} \otimes \begin{bmatrix} 1\\ Y_2^{s'} \end{bmatrix} \otimes \dots \otimes \begin{bmatrix} 1\\ Y_N^{s'} \end{bmatrix}.$$
(3)

 $F \in \mathbb{R}^{l' \times l' \times l' \times M}$, for N = 3 and l' = l2 + 1, is a N-dimensional hypercube of all frequency interactions.

as:

B. Joint Multi-frequency Reconstruction and Diagnosis

The task is to recover tissue optical properties and diagnosis outcome given raw signal data. While a single frequency model (Fig. 1-A), used as a baseline, relies on a single frequency measurements to reconstruct spatially distributed optical coefficients and predict diagnosis, a multi-frequency model (FuseNet) relies on a joint representation from multiple frequency measurements (Fig. 1-B). A multi-spectral image that combines all frequency measurements, using the fusion branch encoding (Fig. 1-B.2), is reconstructed and passed to a classification module for diagnosis prediction. Furthermore, a per-frequency image is reconstructed using each modulated frequency signal. As depicted in (Fig. 1-B), the FuseNet model outputs are $x_{Rec}^{(i)}$ $i \in \{1, N\}$, x_{Rec}^{Fusion} , and y_{diag} which denote the per-frequency reconstructed image (Fig. 1-B.1), the multi-spectral reconstructed image, and the predicted diagnosis label (Fig. 1-B.2), respectively, for N modulation frequencies.

Using multiple inputs, we train diverse subnetworks (Fig. 1-B) to learn independent representations, where features derived from each input (Y_i) are only useful for the corresponding output. Furthermore, given the differences in initialization, the subnetworks can converge to disconnected modes in weight space, thereby behaving as independently trained neural networks. Empirically, we observe that they converge to distinct optima. For this multi-task reconstruction and prediction model, we extend the multi-task framework [12] and train a model to simultaneously reconstruct a per-frequency image, localize the lesion, and predict the diagnosis. The reconstruction branch (Fig. 1) implements the design detailed in the multi-task framework [12] with a fully connected layer, 128×128 , followed by a convolutional layer and 6 residual attention blocks with 32 channels, filters of size of 3 and ReLU activation, to produce the final reconstruction image. While the first and last layers are shallow feature extractors, the attention blocks extract hierarchical attention-aware features with modules of the form: two convolutions followed by squeeze and excite modules. The prediction branch (Fig. 1) includes 3 convolutional layers with max pooling and two final classification layers. Raw data from different frequencies are passed to the reconstruction branch except for the multispectral subnetwork, where raw data from different frequencies are first fused via the fusion branch. The fused features are passed to the reconstruction branch, which outputs a multispectral image followed by a classification layer to output the final classification prediction. The multi-task loss (L_{MULTI}) encompasses all three tasks: reconstruction, lesion localization, and diagnosis as a sum of losses for each task is defined as follows:

$$L_{MULTI} = L_{REC} + L_{DIAG} \tag{4}$$

where L_{REC} and L_{DIAG} denote the reconstruction loss and the diagnosis losses, respectively.

1) Reconstruction loss: We adopt the reconstruction loss defined by Ben Yedder et al. [12]. The mean square error loss L_{MSE} combined with the location loss L_{LOC} guide the image reconstruction and lesion localization of the network as per (5). L_{MSE} recovers the pixel-wise representation of the image.

$$L_{\text{REC}} = L_{\text{MSE}} + \beta L_{\text{LOC}},$$

$$L_{\text{LOC}} = ||DT(\mathcal{F}^{-1}(y_i, \theta), x) - DT(x)||,$$
(5)

where DT denotes the distance transform and computes the Euclidean distance between the image pixel location and the lesion boundaries, θ denotes the parameters of the multi-task model, and $\beta \in [0, 1]$ is a hyper-parameter controlling the contribution of L_{LOC} .

2) Diagnosis loss: The diagnosis loss, L_{DIAG} , is a weighted sum of the categorical cross entropy loss L_{CE} , and the orthogonal projection loss L_{OPL} :

$$L_{\text{DIAG}} = L_{CE} + \gamma L_{OPL},\tag{6}$$

where:
$$L_{CE} = L_{CE} (x, l_{\text{diag}} | \Theta)$$
$$= -\sum_{j=1}^{n_{\text{diag}}} l_{\text{diag},j} \cdot \log \left(\phi (x | \Theta)_j \right),$$
$$L_{OPL} = (1 - s) + |d|$$
$$s = \sum_{\substack{i,j \in B \\ y_i = y_j}} \langle \mathbf{f}_i, \mathbf{f}_j \rangle, d = \sum_{\substack{i,k \in B \\ y_i \neq y_k}} \langle \mathbf{f}_i, \mathbf{f}_k \rangle,$$
(7)

 n_{diag} , l_{diag} denote the number of classes in the diagnosis prediction tasks and ground truth label, respectively. $\phi(x|\Theta)_j$ denotes the predicted probability for the j^{th} class by the model parameterized by Θ . $\gamma \in [0,1]$ is a hyper-parameter balancing the contribution of the L_{OPL} . |x| is the absolute value operator, $\langle x, y \rangle$ the cosine similarity operator applied on two vectors, and B denotes the mini-batch size.

The orthogonal projection loss L_{OPL} , as defined in [44], is used to maximize separability between classes by enforcing class-wise orthogonality in the intermediate feature space and simultaneously ensuring inter-class orthogonality (d term) and intra-class clustering ((1-s) term) within a mini-batch.

C. Direct Prediction: Raw to Task Model

The ultimate aim of DOT-based screening is the early identification and classification of breast cancer lesions. Therefore, we investigate if focusing exclusively on the end task, at the cost of omitting the reconstruction of a 2D image, can perform better or worse compared to classification with the intermediate reconstruction. Without the need to reconstruct a 2D image, the architecture and computational complexity reduce significantly, leading to line-of-care deployment improvements in reducing power consumption and data computation latency. The classification module is used to make predictions based on the fused raw data, where combined features, extracted from different frequencies using the fusion branch (Section II-A), are passed to a convolutional layer for the prediction task and a final classification layer with the associated loss (Fig. 1dashed lines). The diagnosis loss function, L_{DIAG} , is used to

 TABLE I

 OPTICAL COEFFICIENTS DISTRIBUTIONS ON THE IN SILICO DATASET

	Absorption	Scattering		
	$\nu_a(cm^{-1})$	$\nu_s(cm^{-1})$		
Healthy tissue	0.032 ± 0.011	09.50 ± 1.01		
Benign	0.080 ± 0.021	10.53 ± 1.20		
Malignant	0.118 ± 0.096	12.50 ± 1.70		

train the model given the raw input measurement where:

$$L_{\text{CE}} = L_{\text{CE}}\left(\left(y_{i}, ..., y_{N}\right), l_{\text{diag}} \mid \Theta\right)$$
$$= -\sum_{j=1}^{n_{\text{diag}}} l_{\text{diag}, j} \cdot \log\left(\phi\left(y \mid \Theta\right)_{j}\right), \tag{8}$$

 y_i denotes the i^{th} measurement of the raw data and $\phi(y^{(i)}|\Theta)_j$ denotes the predicted probability for the j^{th} class given an input $y^{(i)}$ by the model parameterized by Θ . The orthogonal projection loss L_{OPL} (7) is used to maximize separability between classes in the feature space.

III. RESULTS

We present results on both in-silico and clinical data. Results were obtained by training the model on the in-silico data. A transfer learning network, adapted from [12] and trained on a phantom dataset, bridges the distributions shift that is unavoidable when switching between in silico and real world data. A Gaussian noise was added to the signal, mimicking real world signal fluctuation, to improve model robustness to noise. Performance evaluation captures image reconstruction quality, diagnosis accuracy, and speed. The next section provides details.

A. Experimental Design

1) Dataset: We simulate light propagation into tissue at different light wavelengths using the physics-based Toast++ [51] software. Probe geometries were configured to reflect real physical DOT Probe geometry [12]. We collect training samples from synthesized tissues with known optical properties and labels. Lesions are modelled as tissue with perturbed optical coefficients embedded in an otherwise homogeneous diffusive medium. In order to mimic real breast tissue optical parameters', we base the optical properties on realistic values [28], [52] (Table I). A total of 4000 sample data pairs are used to train and test our method. Each sample includes the collected measurement vectors, one per-frequency, the ground truth image, and the diagnosis label.

Our recently developed hand-held breast scanner (DOBprobe) [7], [53] was used to collect real patient data to test our method. The probe includes two source LEDs, with wavelengths of 690 nm, 750 nm, 800 nm, and 850 nm illuminating the tissue consecutively and 128 co-linear detectors. Note that the frequencies share variable overlap in the spectrum [28], motivating further the need for orthogonal encoding. Following the ethics and institutional review board approval protocol, clinical data were collected from 9 participants diagnosed with breast tumors [54]. For each patient, with information briefly summarized in Table II, different sweeps over the lesion location and opposite healthy breast are collected. Even though no

Tumor Position Tumor size (cm) Tumor Type $1 \times 0.8 \times 0.7$ Left Breast **BI-RADS** 7 Patient 1 $2.5\times0.8\times0.8$ **Right Breast** $1.1\times0.8\times0.7$ Benign Patient 2 Left Breast $2.2 \times 1.7 \times 1.7$ **BI-RADS** 4 Left Breast $1\times1\times1$ Non-invasive ductal Patient 3 $2.5 \times 1.7 \times 3.5$ Patient 4 Left Breast BI-RADS 5 Patient 5 Right Breast 2.4**BI-RADS** 4 $2.3 \times 2.2 \times 1.5$ Patient 6 **Right Breast BI-RADS** 4 Patient 7 $1.7 \times 1.4 \times 1.2$ **BI-RADS 5** Left Breast Left Breast $1.6\times0.8\times0.8$ **BI-RADS 5** Patient 8 Patient 9 Right Breast $2.2\times2.1\times2.3$ Invasive ductal

TABLE II SUMMARY OF CLINICAL DATA

reconstruction ground truth is available for real-world data, it is invaluable to detect robustness and real-world performance, with partial ground truth known from other modalities on the same patients. The precise location, size, and type of the tumor lesion were determined via mammography, ultrasound, or biopsy. Another advantage of our direct prediction approach is that the absence of pixel-wise ground truth is less problematic compared to reconstruction based classification, as only the diagnosis label is required.

2) Implementation: Models were implemented in the Keras TensorFlow framework and trained for 100 epochs on an NVIDIA Titan X GPU. By optimizing the model's performance on the validation set, we set all hyper-parameters as follows: batch size to 16, learning rate to 10^{-4} , optimizer set to Adam, and initialization to Xavier. Early stopping was used if the validation loss had not improved within 10 epochs. The in silico data was divided in a 80/10/10% training/validation/test split, and hyper-parameters β (5) and γ (6) were set to 0.2 and 0.5, respectively. The fully connected units for the fusion branch were set to 32 and 16 for 1 and 12, respectively.

3) Evaluation metrics: To quantify the models' robustness, we look at (i) lesion localization error; (ii) peak signal-to-noise ratio (PSNR); (iii) structural similarity index (SSIM); and (iv) Fuzzy Jaccard for reconstruction quantification, while the balanced accuracy, F1 score, precision, recall, Matthews correlation coefficients (MCC) and confusion matrix are reported for the classification task quantification. For the computational cost, we quantify the forward pass of the model, measured in ms per example. To evaluate the performance of our models, we contrast the results when using one frequency with many frequencies in the FuseNet and the Raw-to-task model. We present results on in-silico data and clinical data.

B. Results on Synthetic Data

Trained on the in silico data and tested on a separate test set of 240 images, we compare the reconstruction and prediction performance of our FuseNet and the prediction performance with the Raw-to-Task counterpart.

1) Joint reconstruction and diagnosis: Figure 2, illustrates reconstruction results on selected in silico samples with different lesion sizes, numbers, locations, and depths. In order to offer clinicians more details, results based on each frequency separately (R_i) as well as results that use all frequencies are shown, with the latter showing more consistent performance. The joint model successfully exploits the presence of

Fig. 2. Qualitative reconstruction performance of the FuseNet++ on in silico samples with varying ground truth lesion sizes, locations, and numbers. Our multi-spectral results (R_{Fusion}) show an overall superiority in terms of generally improved background/foreground contrast and a better differentiation between lesion sizes and lesion localization compared to per-frequency reconstruction results (R_1 to R_4).

the different frequencies and generally shows an improved background/foreground contrast. For example, the difference in signature for 3 small but proximate lesions is marked in different frequency results (R_1 to R_4) (row c), while a more accurately reconstructed sphere size is provided by the fusion result R_{Fusion} in row (d). Detecting heterogeneity in lesions is critical for correct treatment estimation given that it is a proxy indicator of evolutionary pressure in the lesion, selecting for more resistant cancer sub-populations.

Table III presents the quantitative results of the ablation study, where different losses and modular choices of the architecture are contrasted. Rows 1 to 4 highlight the benefit of using multi-frequency fusion on the reconstruction task. A naive multiple frequencies concatenation will not necessarily improve results, which agrees with the findings reported by Applegate et al. [23], illustrating the impact of adding noisy dimensions on performances. Nonetheless, we see improved results for FuseNet. When fusion branch and L_{OPL} are used jointly (FuseNet++), the features contribution from each frequency is maximized in contrast to simple features concatenation (Concat-All) at the price of a minimal computational increase (only 9%).

Prediction performance highlighted in Table III and Fig. 3 show an overall improvement when more input frequencies are available, with a boost in performance when FuseNet and FuseNet++ are used. Confusion matrices (Fig. 4-A,B) show a clear discrimination between healthy and lesion features when more data, in the form of more frequencies, is available. Further, improved benign and malignant discrimination is observed when feature orthogonality is leveraged (Fig 4-B) as well as a reduction in healthy false negative.

2) Raw-to-Task: In Figure 4, similarly to the joint model, the raw-to-task model prediction results using a single frequency input (Fig 4-A) are contrasted with raw-to-task prediction results using multiple frequencies as input (Fig 4-B). A clear discrimination between features is apparent when more data, in the form of multiple frequencies, is available,

Fig. 3. Quantitative diagnosis performance of different models when one vs multi-frequency are used. Overall results show improved prediction performances in multi-frequency models. Note the significant improvement when FuseNet is used compared to a simple concatenation (Concat-All). Results using the FuseNet++ enforce the benefit of feature space orthogonality. Raw-to-task++, in which all network capacity is dedicated to the end task, shows an overall performance gain.

 TABLE III

 QUANTITATIVE RESULTS ON IN SILICO TEST DATASET. †: VALUE NOT SUPPORTED BY METHOD, \$\$\$: IMAGE RECONSTRUCTION SKIPPED.

		Loss		Loc. Error	PSNR	SSIM	Fuzzy Jaccard	Runtime	BA	F1
	L_{REC}	L_{CE}	L_{OPL}	(pixel, ↑)	(dB, ↑)	(†)	(†)	(ms,\downarrow)	1	↑
Single-Freq	\checkmark	\checkmark	†	17.7 ± 21.9	19.1 ± 4.8	0.80 ± 0.05	0.60 ± 0.17	23	0.65	0.65
Concat-All	\checkmark	\checkmark	†	20.4 ± 18.4	19.6 ± 6.2	0.73 ± 0.17	0.61 ± 0.18	28	0.63	0.65
FuseNet	\checkmark	\checkmark	-	17.6 ± 23.3	20.2 ± 4.1	0.88 ± 0.05	0.62 ± 0.19	31	0.72	0.72
FuseNet++	\checkmark	\checkmark	\checkmark	15.7 ± 12.7	21.2 ± 4.4	0.89 ± 0.03	0.64 ± 0.18	32	0.74	0.74
Raw-to-Task	†	\checkmark	-			‡		15	0.74	0.72
Raw-to-Task++	†	\checkmark	\checkmark			‡		15	0.77	0.75

especially when discriminating between healthy and lesion; the primary application in DOT-based screening deployments. Raw-to-task model significantly reduces computational complexity (Table III-Runtime), enabling lower latency and higher throughput in real medical settings. Next, we tested the contribution of individual loss function terms and architecture component on overall diagnosis performance. Figure 3 shows the diagnosis performance on the test set for the best value of γ and highlights the benefits of the feature orthogonality constraint in breast cancer diagnosis, where tumoral and non-tumoral breast lesion differentiation is challenging. Contrasting FuseNet++ and Raw-to-task++ (Fig 3-4) illustrates performance gain when all network capacity is dedicated to the end task rather than intermediate ones.

C. Results on Clinical Data

Figure 5 presents the reconstruction performance on breast scans from patients diagnosed with breast tumors. The probe is placed close to the likely location of each identified lesion, and a set of sweeps are made. The opposite healthy breast, for each patient, is scanned as a contrastive reference. Weak labels were attributed to each set of sweeps regardless of the probe's closeness to the tumor localization. As a partial ground truth, patients underwent mammography and/or Ultrasound scans to obtain estimated lesion dimensions and biopsies to confirm tumor type. While lesions are accurately reconstructed in most cases (Fig 5-A), healthy cases can be more prone to distribution shift, given that they capture only background readings and are subject to artifacts (Fig 5-B). Orthogonal fusion based reconstruction shows better robustness to noise (R_{Fusion}) . Table IV reports Raw-to-task++ quantitative prediction performance with an overall average accuracy of 66%. While good precision is shown for the healthy and malignant cases, lower performance is reported for benign. This can be due to variability in signal strength with respect to probe

Fig. 4. Diagnosis prediction confusion matrices when (A) one vs (B) multi-frequency inputs are used. Note the improvement in accuracy of unbiased lesion classification (benign, malign) vs healthy when multiple frequencies are used, as illustrated by the higher values along the diagonal. Results of FuseNet++ highlight the benefit of encouraging orthogonality in enhancing benign vs malignant separability while reducing healthy false negative. Raw-to-task++ further improves separability at the expense of minimal false negative (2%).

proximity to the lesion; however, a benign lesion is still predicted for this patient, allowing further follow-up.

D. Effect of Lesion Localization on Accuracy

We quantify the effect of lesion location on lesion detection accuracy in Figure 6, where we classify whether a lesion is present or not. The penetration depth into breast tissue is approximately half the distance between the source and detectors [15], ~ 2.5 cm for our DOT probe. Our results confirm the expected reduction in lesion detection accuracy as the lesions decrease in size or increase in depth.

QUANTITATIVE RESULTS ON CLINICAL DATASET USING RAW-TO-TASK++ Recall F1-score Number of sweeps Precision Healthy 0.73 0.59 0.66 32 0.08 0.33 0.12 3 Benign Malignant 0.75 0.68 0.71 44 79 Weighted-Avg 0.72 0.63 0.67 (A) Rr. (B)

TABLE IV

Fig. 5. Qualitative reconstruction results on two patients with benign and malignant tumors, where approximate lesion sizes and locations were obtained with ultrasound (details in Table II). Note, in (A), the ability of FuseNet++ to reconstruct both lesions, while, in (B), the robustness of orthogonal fusion to noise (R_{Fusion}) compared to (R_1 to R_4) (healthy row) is highlighted.

In order to be an effective tool in clinical settings, a clinician's trust is essential. A combination of good performance, as quantified by accuracy and other metrics, and an interpretable model increases trust. Neither deep learning based reconstruction nor classical iterative algorithms provide a path from pixel to sensor value in a way that a clinician can easily understand. While a reconstructed image may seem to increase interpretability, it is typically not created in an interpretable way and is not necessarily causally related to the classification decision. Omitting the reconstructed image, while increasing performance, would not therefore reduce the trust a clinician has in our direct to task contribution.

Cancer treatment regimens, especially for treatmentresistant lesions, are shifting towards adaptive or dynamic

Fig. 6. Effect of lesion depth and radius on model prediction accuracy. Note how the more superficial (closer to the skin surface) and larger lesions are more accurately detected.

A key focus of this work was to leverage orthogonality in mitigating confounding factors induced by multi-frequency fusion. However, as noted as early as 1936 by Fisher et al. [56], orthogonal representations need not be informative, and thus, in a deep learning setting can also lead to orthogonal or independent encodings that are less or uninformative, as we encountered in our own experiments. The heterogeneity of lesions, especially malignant ones, ensures that no two malignant lesions will likely be the same, thus driving the need for diagnostic capability that focuses on identifying the diverse lesion types, not necessarily the reconstructed image.

personalized medicine and disease management [50].

V. CONCLUSION

We introduce deep learning based multi-frequency fusion for diffuse optical tomography with end-to-end classification of malignancy of breast lesions. The positive effect of using a multi-frequency methodology was observed in improved reconstructed image quality and more accurate tumoral and non-tumoral breast lesions' discrimination. In addition, we show that raw-to-task learning can improve detection without requiring reconstruction.

REFERENCES

- [1] A. G. Waks and E. P. Winer, "Breast cancer treatment: a review," *Jama*, vol. 321, no. 3, pp. 288–300, 2019.
- [2] F. Beca and K. Polyak, "Intratumor heterogeneity in breast cancer," in Novel Biomarkers in the Continuum of Breast Cancer. Springer, 2016, pp. 169–189.
- [3] A. Schneider and H. Feussner, *Biomedical engineering in gastrointesti*nal surgery. Academic Press, 2017.
- [4] G. M. Balasubramaniam, B. Wiesel, N. Biton, R. Kumar, J. Kupferman, and S. Arnon, "Tutorial on the use of deep learning in diffuse optical tomography," *Electronics*, vol. 11, no. 3, p. 305, 2022.
- [5] C. Chen, F. Tian, H. Liu, and J. Huang, "Diffuse optical tomography enhanced by clustered sparsity for functional brain imaging," *IEEE transactions on medical imaging*, vol. 33, no. 12, pp. 2323–2331, 2014.
- [6] H. Zhao, E. M. Frijia, E. V. Rosas, L. Collins-Jones, G. Smith, R. Nixon-Hill, *et al.*, "Design and validation of a mechanically flexible and ultra-lightweight high-density diffuse optical tomography system for functional neuroimaging of newborns," *Neurophotonics*, vol. 8, no. 1, p. 015011, 2021.
- [7] M. Shokoufi and F. Golnaraghi, "Handheld diffuse optical breast scanner probe for cross-sectional imaging of breast tissue," *Journal of Innovative Optical Health Sciences*, vol. 12, no. 02, p. 1950008, 2019.
- [8] M. L. Altoe *et al.*, "Diffuse optical tomography of the breast: a potential modifiable biomarker of breast cancer risk with neoadjuvant chemotherapy," *Biomedical Optics Express*, vol. 10, no. 8, pp. 4305– 4315, 2019.
- [9] P. Välisuo, "Optical methods for assessing skin flap survival," *Biophotonics for Medical Applications*, pp. 331–346, 2015.
- [10] M. Doulgerakis, A. T. Eggebrecht, and H. Dehghani, "High-density functional diffuse optical tomography based on frequency-domain measurements improves image quality and spatial resolution," *Neurophotonics*, vol. 6, no. 3, p. 035007, 2019.

- [11] H. Ben Yedder, M. Shokoufi, B. Cardoen, F. Golnaraghi, and G. Hamarneh, "Limited-angle diffuse optical tomography image reconstruction using deep learning," in *International Conference on Medical Image Computing and Computer-Assisted Intervention*. Springer, 2019, pp. 66–74.
- [12] H. Ben Yedder, B. Cardoen, M. Shokoufi, F. Golnaraghi, and G. Hamarneh, "Multitask deep learning reconstruction and localization of lesions in limited angle diffuse optical tomography," *IEEE Transactions on Medical Imaging*, vol. 41, no. 3, pp. 515–530, 2021.
- [13] J. Yoo, S. Sabir, D. Heo, K. H. Kim, A. Wahab, Y. Choi et al., "Deep learning diffuse optical tomography," *IEEE transactions on medical imaging*, vol. 39, no. 4, pp. 877–887, 2019.
- [14] H. Ben Yedder, B. Cardoen, and G. Hamarneh, "Deep learning for biomedical image reconstruction: A survey," *Artificial Intelligence Re*view, pp. 1–33, 2020.
- [15] C.-W. Sun, "Biophotonics for tissue oxygenation analysis," in *Biophotonics for Medical Applications*. Elsevier, 2015, pp. 301–320.
- [16] A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge *et al.*, "Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans," *Optics express*, vol. 15, no. 11, pp. 6696–6716, 2007.
- [17] M. Applegate, R. Istfan, S. Spink, A. Tank, and D. Roblyer, "Recent advances in high speed diffuse optical imaging in biomedicine," *APL Photonics*, vol. 5, no. 4, p. 040802, 2020.
- [18] M. B. Unlu, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, "Diffuse optical tomographic reconstruction using multifrequency data," *Journal of Biomedical Optics*, vol. 11, no. 5, p. 054008, 2006.
- [19] H. K. Kim, U. J. Netz, J. Beuthan, and A. H. Hielscher, "Optimal sourcemodulation frequencies for transport-theory-based optical tomography of small-tissue volumes," *Optics express*, vol. 16, no. 22, pp. 18082– 18101, 2008.
- [20] X. IntesP and B. Chance, "Multi-frequency diffuse optical tomography," *Journal of Modern Optics*, vol. 52, no. 15, pp. 2139–2159, 2005.
- [21] V. Mudeng, W. Nisa, and S. S. Suprapto, "Computational image reconstruction for multi-frequency diffuse optical tomography," *Journal* of King Saud University-Computer and Information Sciences, 2021.
- [22] N. Z. Shifa, M. M. R. Sayem, and M. A. Islam, "Improved image reconstruction using multi frequency data for diffuse optical tomography," in 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD). IEEE, 2021, pp. 264–268.
- [23] M. B. Applegate, C. A. Gómez, and D. Roblyer, "Frequency selection in frequency domain diffuse optical spectroscopy," in *Optical Tomography* and Spectroscopy of Tissue XIV, vol. 11639. International Society for Optics and Photonics, 2021, p. 116390N.
- [24] C. Chen, V. C. Kavuri, X. Wang, R. Li, H. Liu, and J. Huang, "Multifrequency diffuse optical tomography for cancer detection," in 2015 *IEEE 12th International Symposium on Biomedical Imaging (ISBI)*. IEEE, 2015, pp. 67–70.
- [25] D. Liu, Y. Zhang, L. Bai, P. Zhang, and F. Gao, "Combining two-layer semi-three-dimensional reconstruction and multi-wavelength image fusion for functional diffuse optical tomography," *IEEE Transactions on Computational Imaging*, vol. 7, pp. 1055–1068, 2021.
- [26] H. O. Kazanci and O. Oral, "Frequency shifting model for diffuse optical tomography," *Optical and Quantum Electronics*, vol. 53, no. 11, pp. 1–6, 2021.
- [27] A. Zimek, E. Schubert, and H.-P. Kriegel, "A survey on unsupervised outlier detection in high-dimensional numerical data," *Statistical Analy*sis and Data Mining: The ASA Data Science Journal, vol. 5, no. 5, pp. 363–387, 2012.
- [28] P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate *et al.*, "Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study," *Scientific reports*, vol. 7, no. 1, pp. 1–11, 2017.
- [29] A. Pifferi, A. Dalla Mora, L. Di Sieno, E. Ferocino, A. Tosi, E. Conca et al., "Solus: an innovative multimodal imaging system to improve breast cancer diagnosis through diffuse optics and ultrasounds," in Optical Tomography and Spectroscopy of Tissue XIV, vol. 11639. International Society for Optics and Photonics, 2021, p. 116390C.
- [30] G. Di Sciacca, G. Maffeis, A. Farina, A. Dalla Mora, A. Pifferi, P. Taroni, and S. Arridge, "Evaluation of a pipeline for simulation, reconstruction, and classification in ultrasound-aided diffuse optical tomography of breast tumors," *Journal of biomedical optics*, vol. 27, no. 3, p. 036003, 2022.
- [31] L. Zhang and G. Zhang, "Brief review on learning-based methods for optical tomography," *Journal of Innovative Optical Health Sciences*, vol. 12, no. 06, p. 1930011, 2019.

- [32] S. R. Arridge and J. C. Schotland, "Optical tomography: forward and inverse problems," *Inverse problems*, vol. 25, no. 12, p. 123010, 2009.
- [33] Y. Hoshi and Y. Yamada, "Overview of diffuse optical tomography and its clinical applications," *Journal of Biomedical Optics*, vol. 21, no. 9, p. 091312, 2016.
- [34] Y. Zhang, D. Sidibé, O. Morel, and F. Mériaudeau, "Deep multimodal fusion for semantic image segmentation: A survey," *Image and Vision Computing*, vol. 105, p. 104042, 2021.
- [35] W. Guo, J. Wang, and S. Wang, "Deep multimodal representation learning: A survey," *IEEE Access*, vol. 7, pp. 63 373–63 394, 2019.
- [36] G. Patel and J. Dolz, "Weakly supervised segmentation with crossmodality equivariant constraints." *Medical Image Analysis*, p. 102374, 2022.
- [37] A. Nagrani, S. Yang, A. Arnab, A. Jansen, C. Schmid, and C. Sun, "Attention bottlenecks for multimodal fusion," *Advances in Neural Information Processing Systems*, vol. 34, 2021.
- [38] R. J. Chen, M. Y. Lu, J. Wang, D. F. Williamson, S. J. Rodig, N. I. Lindeman *et al.*, "Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis," *IEEE Transactions on Medical Imaging*, 2020.
- [39] A. Bozic, P. Palafox, J. Thies, A. Dai, and M. Nießner, "Transformerfusion: Monocular rgb scene reconstruction using transformers," *Advances* in *Neural Information Processing Systems*, vol. 34, 2021.
- [40] A. Bardes, J. Ponce, and Y. LeCun, "VICReg: Variance-invariancecovariance regularization for self-supervised learning," arXiv preprint arXiv:2105.04906, 2021.
- [41] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, "Barlow twins: Self-supervised learning via redundancy reduction," in *International Conference on Machine Learning*. PMLR, 2021, pp. 12310–12320.
- [42] N. Bansal, X. Chen, and Z. Wang, "Can we gain more from orthogonality regularizations in training deep networks?" Advances in Neural Information Processing Systems, vol. 31, 2018.
- [43] L. Huang, X. Liu, B. Lang, A. W. Yu, Y. Wang, and B. Li, "Orthogonal weight normalization: Solution to optimization over multiple dependent stiefel manifolds in deep neural networks," in *Thirty-Second AAAI Conference on Artificial Intelligence*, 2018.
- [44] K. Ranasinghe, M. Naseer, M. Hayat, S. Khan, and F. S. Khan, "Orthogonal projection loss," in *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 2021, pp. 12333–12343.
- [45] N. Braman, J. W. Gordon, E. T. Goossens, C. Willis, M. C. Stumpe, and J. Venkataraman, "Deep orthogonal fusion: Multimodal prognostic biomarker discovery integrating radiology, pathology, genomic, and clinical data," in *International Conference on Medical Image Computing* and Computer-Assisted Intervention. Springer, 2021, pp. 667–677.
- [46] X. Zhen and S. Li, "Towards direct medical image analysis without segmentation," arXiv preprint arXiv:1510.06375, 2015.
- [47] D. Wu, K. Kim, B. Dong, and Q. Li, "End-to-end abnormality detection in medical imaging," 2018.
- [48] M. A. Hussain, G. Hamarneh, T. W. O'Connell, M. F. Mohammed, and R. Abugharbieh, "Segmentation-free estimation of kidney volumes in ct with dual regression forests," in *International Workshop on Machine Learning in Medical Imaging*. Springer, 2016, pp. 156–163.
- [49] S. A. Taghanaki, N. Duggan, H. Ma, X. Hou, A. Celler, F. Benard, and G. Hamarneh, "Segmentation-free direct tumor volume and metabolic activity estimation from pet scans," *Computerized Medical Imaging and Graphics*, vol. 63, pp. 52–66, 2018.
- [50] K. Abhishek, J. Kawahara, and G. Hamarneh, "Predicting the clinical management of skin lesions using deep learning," *Scientific reports*, vol. 11, no. 1, pp. 1–14, 2021.
- [51] M. Schweiger and S. R. Arridge, "The toast++ software suite for forward and inverse modeling in optical tomography," *Journal of biomedical optics*, vol. 19, no. 4, p. 040801, 2014.
- [52] A. B. Konovalov, E. A. Genina, and A. N. Bashkatov, "Diffuse optical mammotomography: state-of-the-art and prospects," *Journal of Biomedical Photonics & Engineering*, vol. 2, no. 2, pp. 020202–1, 2016.
- [53] F. Golnaraghi and M. Shokoufi, "Handheld probe and system for imaging human tissue," Oct. 31 2019, US Patent App. 16/479,025.
- [54] M. Shokoufi, Z. Haeri, B. S. Kharb, and F. Golnaraghi, "Novel handheld diffuse optical spectroscopy probe for breast cancer assessment: Clinical study," *Journal of Biomedical Sciences*, pp. 0–0, 2017.
- [55] J. West, Y. Ma, and P. K. Newton, "Capitalizing on competition: An evolutionary model of competitive release in metastatic castration resistant prostate cancer treatment," *Journal of Theoretical Biology*, vol. 455, pp. 249–260, 2018.
- [56] R. A. Fisher, "The use of multiple measurements in taxonomic problems," *Annals of eugenics*, vol. 7, no. 2, pp. 179–188, 1936.