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Abstract

Identifying breast cancer lesions with a portable diffuse optical tomography (DOT) device improves early detection, while

avoiding otherwise unnecessarily invasive, ionizing, and expensive modalities such as CT, as well as enabling first line of

care treatment efficacy. Critical to this capability is not just identification of lesions, but rather the complex problem of

discriminating between malignant and benign lesions. To accurately capture the highly heterogeneous tissue of a cancer lesion

embedded in healthy breast tissue with non-invasive DOT, multiple frequencies can be combined to optimize signal penetration

and reduce sensitivity to noise. However, these frequency responses can overlap, capture common information, and correlate,

potentially confounding reconstruction and downstream end tasks. We show that an orthogonal fusion loss of multi-frequency

DOT can improve reconstruction. More importantly, the orthogonal fusion leads to more accurate end-to-end identification of

malignant versus benign lesions, illustrating its regularization properties on the multi-frequency input space. With the line-of-

care deployment of portable DOT probes requiring a severely constrained computational budget, we show that our raw-to-task

model, for direct prediction of end task from signal, significantly reduces computational complexity without sacrificing accuracy,

enabling lower latency and higher, real-time throughput in medical settings.
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Abstract— Identifying breast cancer lesions with a
portable diffuse optical tomography (DOT) device improves
early detection, while avoiding otherwise unnecessarily
invasive, ionizing, and expensive modalities such as CT,
as well as enabling first line of care treatment efficacy.
Critical to this capability is not just identification of lesions,
but rather the complex problem of discriminating between
malignant and benign lesions. To accurately capture the
highly heterogeneous tissue of a cancer lesion embedded
in healthy breast tissue with non-invasive DOT, multiple
frequencies can be combined to optimize signal penetra-
tion and reduce sensitivity to noise. However, these fre-
quency responses can overlap, capture common informa-
tion, and correlate, potentially confounding reconstruction
and downstream end tasks. We show that an orthogonal
fusion loss of multi-frequency DOT can improve recon-
struction. More importantly, the orthogonal fusion leads to
more accurate end-to-end identification of malignant ver-
sus benign lesions, illustrating its regularization properties
on the multi-frequency input space. With the line-of-care
deployment of portable DOT probes requiring a severely
constrained computational budget, we show that our raw-
to-task model, for direct prediction of end task from sig-
nal, significantly reduces computational complexity with-
out sacrificing accuracy, enabling lower latency and higher,
real-time throughput in medical settings.

Index Terms— Diffuse optical tomography, image recon-
struction, deep learning, multi-frequency, tissue estimation,
lesion classification, diagnosis, multitask learning, transfer
learning, handheld probe.

I. INTRODUCTION

BREAST cancer is the most frequently diagnosed cancer
among women. With the most common symptoms are
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nipple discharge, lump formation, breast pain, and part of
breast thickening, pre-screening is usually carried out using
self-breast examinations, which can suffer from high false-
positive rates, or clinical breast examinations [1]. Although
breast lumps are often benign, such as lipoma, cyst, or
hamartoma, lesion malignancies may appear with a non-
palpable sign; hence regular screenings are critical. While
mammography is the most commonly used screening tool
today, it is an invasive exam with potential cumulative health
risks due to the reliance on ionizing radiation [2]. Furthermore,
the acquisition device’s complexity and the size limit patient
screening throughput.

Imaging modalities based on near-infrared light are emerg-
ing as tools for biomedical diagnosis, given that infrared light
is well tolerated, even in large doses, and it easily penetrates
through structures such as the skull, brain, and breast [3].
The recent progress of optical sensors makes optical-based
modalities increasingly attractive. Near-infrared diffusion op-
tical tomography (DOT) [4] uses diffuse light to image soft
tissues, offering several advantages in terms of safety, costs,
portability, and sensitivity to functional changes. This tech-
nique has shown great potential in investigating functional
brain imaging [5], [6] and breast cancer screening [7], [8]
with a wavelength allowing non-ionizing penetration of several
centimeters into human soft tissue. Typically deployed as a
handheld device in line-of-care settings, a DOT scanner is
comprised of an array of emitters and receivers using low-
powered LEDs or lasers.

Because a photon can experience many alterations of its
path in random directions until it is absorbed, DOT im-
age reconstruction is a non-linear ill-posed inverse problem,
subject to artifacts [9]. To complicate matters further, the
portable nature and limited power budget of DOT deployments
significantly reduce the number of available sensors-detectors
pairs and the available computational envelope for recon-
struction. Because DOT can effectively pre-screen patients,
saving them from unnecessary exposure to more precise but
potentially harmful ionizing modalities such as CT, there is a
clear need for low latency, preferably real-time, and accurate
reconstruction.

Reconstruction quality and depth sensitivity are inversely
proportional to the distance between source and detector
and noise level, and strongly depend on the reconstruction
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method [10]. In addition, the highly heterogeneous nature
of malignant cancerous tissue further complicates the re-
construction task [2]. Recent studies [11]–[13] have shown
that data processing and image reconstruction are faster and
more accurate when deep learning algorithms are used instead
of conventional reconstruction methods. One advantage deep
learning based algorithms have over classical reconstruction
methods is that they can exploit implicitly learned feature
encodings from the DOT sensor data, whereas classical re-
construction algorithms can exploit only priors encoded by
human designers [14].

DOT can be classified into three modes: continuous wave,
frequency domain, and time domain. In continuous wave
mode, light is usually time-invariant or modulated at a low
frequency (few kHz), while in frequency domain mode, light
intensity is amplitude-modulated (hundreds of MHz). In time
domain mode, an ultra-short light pulse is considered, where
the temporal response allows improved spatial resolution and
rich depth information [15]. Given the tradeoff between imag-
ing performance and cost, frequency domain methods tend to
be the most cost-effective mode where tissue optical properties
can be directly inferred from the back-scattered signal’s ampli-
tude and phase. Furthermore, sampling at different frequencies
in a sufficiently broad bandwidth enables converting frequency
domain signals to the time domain using the inverse Fourier
transformation [15]. In this work, we focus on the frequency
domain DOT.

Depending on the sources versus detector position, re-
flectance (same side, e.g., probe [7]) or transmittance (the
opposite side, e.g., parallel plate [16]) of light beamed into
the tissue are measured [4]. While a probe design allows a
lower hardware complexity and better portability, it increases
the hardness of the reconstruction task, especially when the
number of sources is limited [12].

A. Optical Properties Based Lesion Identification
DOT measures the distribution of tissue optical properties

as a function of absorption and scattering coefficients. These
properties are closely correlated to physiological markers
and allow indirect quantitative assessment of tissue malig-
nancy [17]. Indeed, marked variations between healthy and
tumor tissue are observed in terms of optical properties and
chromophore components (e.g., oxy/deoxy hemoglobin and
collagen). In particular, benign and malignant lesions can be
separated in terms of absorption at several wavelengths.

B. Multi-frequency DOT
Frequency-domain systems use intensity-modulated

sources, ranging from a few MHz to 1 GHz, to illuminate the
tissue and collect the amplitude and phase of diffusing waves.
A multi-spectral image can be obtained using several LEDs
or lasers using multiple wavelengths as illumination. The
different LEDs are used consecutively to capture an image
per wavelength or combined as one multi-spectral image [9].

The primary motivation for multi-frequency DOT is to
exploit the different but complementary responses of the tissue
under study to chromophore components excitation, given that

chromophores absorb photons at different rates at different
modulation frequencies. This wavelength sensitivity is lever-
aged to analyze optical spectra and reconstruct images of the
exposed tissue for diagnostic purposes, given that recovered
chromophore concentration changes can convey information
about functional brain vascular events and the characterization
and monitoring of breast lesions [10]. The captured multi-
frequency data can provide more spatial and contextual infor-
mation, enabling more robust and accurate identification and
discrimination of disease-correlated biological anomalies.

While higher frequencies allow for a better separation of op-
tical properties, such as absorption and scattering coefficients,
as well as a better detection of small and shallow objects,
the limit of the signal-to-noise ratio (SNR) decreases with
increased modulation frequency [18], [19], and penetration de-
creases as frequency increases. Utilizing multi-frequency data
for improving DOT image reconstruction and diagnosis has
been an active field of research, illustrating that the accuracy
of the optical coefficient can be improved using measurements
with multiple modulation frequencies [20]–[23]. For instance,
motivated by the clustered appearance of anomalies in brain
imaging, Chen et al. [24] addressed the joint reconstruction of
absorption and scattering coefficients using a clustered sparsity
reconstruction method. Numerical simulation performed on
multi-frequency (100-250 MHz) modulation concluded that
the combination of two frequencies results in improved re-
covery of optical coefficients and provides the highest SNR
and lowest error, negating the increasing noise in high fre-
quency data. In a prototype study, Shifa et al. [22] analyzed
the merits of multi-frequency on reconstruction quality by
exploring the combination of a variety of frequencies within
a larger range (100-1000 MHz) to reconstruct a single image,
showing improvement in optical properties’ reconstruction.
Multi-frequency high-density DOT has also been leveraged in
the context of 3D reconstruction for brain imaging [25] using
a difference method, relying on measurements before and after
the change to recover tissue optical properties, to compensate
for physiological and noise interference. Frequency shifting,
wherein multiple frequencies steps equally distanced are used,
has been proposed by Kazanci et al [26] as a promising method
to reduce the ill-posedness of the problem on in silico data.
A center modulation frequency was augmented with a total of
100 frequency shifts, sampled at 5 Hz frequency steps, showed
an improvement in multiple-lesion reconstruction. In a similar
direction, Applegate et al. [23] evaluated different modulation
frequency selection schemes’ impact on the image reconstruc-
tion task and concluded that, despite requiring careful tuning
of the inverse algorithm parameters to achieve good results,
adding modulation frequencies can lead to worse performance
depending on the instrument given the specific noise impact.
The perhaps counter-intuitive finding that more frequencies
can hurt performance is supported by Zimek et al [27],
who reported that adding dimensions can harm discriminative
potential if those dimensions do not improve the signal-to-
noise ratio.

In a study performed on patients with diagnosed breast le-
sions, Taroni et al. [28] investigated the potential effectiveness
of optically derived tissue composition and absorption prop-
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erties to discriminate between malignant and benign tissue. A
difference based approach reconstructed optical properties and
estimated tissue composition for seven collected wavelengths
(635–1060 nm) followed by a discrete AdaBoost classifier.
Augmenting DOT with ultrasound is finding recent adoption
as well, an example of multi-modal fusion [29], [30]. The
aforementioned art is based on conventional reconstruction
algorithms. To the best of our knowledge, no deep learning-
based method has explored the merit of exploiting multiple
frequencies in DOT-reconstruction and diagnosis.

C. DOT Reconstruction Algorithms
Traditional image reconstruction techniques commonly rely

on non-linear methods minimizing an objective function, it-
eratively until convergence, e.g., gradient and Newton-type
methods [31]. Based on an initial homogeneous tissue opti-
cal properties estimate, the difference between the measured
signal and the modelled data is used to iteratively update the
estimate until achieving convergence within acceptable limits
with the measured data. Given the ill-posed nature of the prob-
lem, regularization terms are leveraged to ensure convergence
by restricting the space of all possible solutions into only a
subset of physically plausible ones. A comprehensive review
is presented in [32].

Even though non-linear methods follow directly from the
underlying mathematical problem formulation, in practice they
have high computational cost as each iteration needs to be
optimized independently at reconstruction time, prohibiting
real-time or low-latency reconstruction. Furthermore, the re-
construction accuracy is easily compromised as the number
of sources and detectors is reduced, and reconstruction of
complex shapes can become challenging [33]. To address these
shortcomings, researchers have explored deep learning as an
alternative approach [4], [14]. A deep learning model for DOT
reconstruction is typically trained in a supervised setting on
in silico or phantom training data pairs. By incorporating
complex and diversified data samples, the model can selec-
tively enrich its feature space to improve performance on real-
world data. Our recently developed deep image reconstruction
framework [12], based on a deep spatial attention learning
network and a similarity loss function, reduces computational
complexity to the real-time range of few milliseconds per
frame, while improving lesion localization accuracy.

D. Multi-frequency as Data Fusion
Data fusion models mimic higher cognitive abstraction in

the human brain by synthesizing information from multiple
sources for improved decision-making. While data fusion is
non-trivial, the resulting contribution of multiple data sources
or multimodal data can significantly improve the performance
of deep learning models [34], [35]. The underlying motivation
for collecting multi-modal data is to learn the optimal joint
representation from rich and complementary features of the
same object or scene. In the context of combining multiple
information sources to learn more powerful representations,
the terms ‘early’ and ‘late’ fusion are commonly used [36].
Early fusion refers to concatenating input data from multiple

sources in separate channels before presenting it as input to the
network, while late fusion involves processing each input data
individually and aggregating their output. Mid-fusion restricts
cross-data flow to later layers of the network, allowing early
layers to specialize in learning and extracting data-specific
patterns [37].

Attention mechanisms have been shown to be suitable for
the fusion of features that usually suffer from confounding
issues such as conflicting or cancelling information, corre-
lation, and noise. Attention provides an approach to learn
to select informative subsets of the data, as well as the
relationship between data streams, before fusing them into a
single comprehensive representation [35], [38]. Transformer
based models, based on a multi-head attention architecture,
have recently gained increased adoption [37], [39]. However,
the high computational cost and complexity, scaling adversely
with input sequence length, remain a significant challenge,
especially given the real-time requirement.

Self-supervised learning (SSL) based on a joint embedding
architecture, driven by the maximization of the information
content of the network branches’ embedding, opened the
door to the application of joint-embedding SSL to multi-
modal signals [40]. The idea is to produce independent
embedding variables, removing confounding effects such as
partial correlation. However, modal collapse between data
streams should be avoided, where network branches ignore the
inputs and produce identical and constant output embedding
vectors. Zbontar et al. [41] use a loss term that minimizes
the difference between the identity matrix and the normalized
cross-correlation matrix of branch embeddings to encourage
independence. Bardes et al. [40] use a decorrelation mecha-
nism while relaxing the normalization constraint via an explicit
variance-preservation term for each embedding. Consequently,
it allows architecture diversity between branches given that no
shared structure or parameters are enforced.

Imposing orthogonal constraints in linear and convolutional
neural network layers can act as a form of regularization that
can help improve task performance and be beneficial for the
network’s generalization [42], [43]. Orthogonality in feature
space was proposed to encourage intra-class compactness and
inter-class separation of the deep features, and has shown
improvement in classification tasks [44]. Multi-modal orthog-
onalization has been used to force uni-modal embeddings to
provide independent and complementary information to the
fused prediction [45]. Another advantage is that an orthogonal
encoding can enforce the learning of a more sparse correlation-
free representation. The resulting smaller encoding can reduce
architecture dimensions, and serve as an implicit regulariza-
tion.

E. Towards Direct Medical Image Analysis in DOT
Traditional computational pipelines in biomedical imaging

involve solving tasks sequentially (e.g., segmentation fol-
lowed by classification or detection). Although each of these
two tasks is usually solved separately, the useful clinical
information extracted by the second task is highly depen-
dent on the first task’s results. While a ‘joint’ or multi-
stage model where different tasks are lumped together, for
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example, image reconstruction then classifying diagnosis, can
benefit from feature sharing and joint parameters tuning for
both tasks, significant computational resources are required
to optimize sub-tasks that may not necessarily lead to end-
task improvements. In contrast, in the direct medical image
analysis [46] (DMIA) paradigm, end task results are directly
inferred from raw/original data (e.g., raw sensors or whole
image/volume). Therefore, the model can focus solely on the
end task, reclaiming some of the computational resources for
improved results while requiring fewer resources. For instance,
Wu et al. [47] trained a neural network for joint reconstruction
and lung nodule detection from raw acquisitions and showed
performance improvement compared to a two-stage approach.
Hussain et al. [48] had shown that a segmentation-free kidney
volume estimation can help overcome segmentation errors
and limitations and reduce the false-positive area estimates.
In a similar perspective, Taghanaki et al. [49] investigated
a segmentation-free tumor’s volume and activity estimation
in PET images. Recently, Abhishek et al. [50] illustrated
that, in the context of cancerous skin lesions, predicting the
management decisions directly can be a simpler problem to
address than predicting the diagnosis followed by management
decisions, as one action can be prescribed to multiple subsets
of disease classes.

F. Contributions

We make the following contributions in this paper:
(i) We investigate the benefit of multi-frequency data on

the quality of DOT reconstruction and breast lesion diagnosis.
Previously, many works have addressed the multi-frequency
reconstruction problem or diagnosis, albeit using conven-
tional methods. Despite the importance of multi-frequency
acquisition for chromophore reconstruction, no deep learning
framework has investigated multi-frequency fusion nor joint
reconstruction and diagnosis to date. Here, we present a novel
approach designed to recover the optical properties of breast
tissue from multi-frequency data with a deep orthogonal fusion
model followed by a diagnosis.

(ii) To the best of our knowledge, this is the first deep
learning-based method that investigates the merits of tackling
the diagnosis prediction task from raw sensor data directly
without image reconstruction in DOT (direct prediction). Re-
sults with and without reconstruction are contrasted using a
modular pipeline, highlighting the potential of the raw-to-task
model for improved accuracy, while reducing computational
complexity.

(iii) We extend a fusion network [38] by training models
using an orthogonalization loss function [44] to maximize
the independent contribution of each modulation frequency
data and emphasize their collective strength, with improved
predictive performance compared to a single frequency model.

Section II, introduces our proposed model for multi-
frequency DOT fusion and defines the two prediction pipelines
(raw-to-task and joint reconstruction and diagnosis). Physics-
based computational simulation and real patient datasets are
detailed in Section III-A.1. In silico performance results are
presented in Section III-B and results on real-world data in

Section III-C. We conclude the paper by discussing insights
and limitations on interpretability, speed, and adaptive dy-
namic treatment in Section IV.

II. METHODOLOGY

Solving the inverse problem in DOT recovers the spatial
distribution of a tissue’s optical properties x ∈ RW×H based
on the measured boundary data yi ∈ RS×D×N , from S
sources (emitters) with D sensors (detectors) at different mod-
ulation frequencies i ∈ {1, N}. The learned inverse function
F−1(·) maps the raw measurements y to an image estimate x̂
while remaining faithful to the underlying physics constraints.
Learning the inverse function F−1(·) is carried out by solving:

θ∗ = argmin
θ

L
(
F−1(yi; θ);x

)
+ λR(F−1(yi; θ)) , (1)

where L and R are the network loss function and the regular-
ization, θ are the optimized network weights that parameterize
F−1. The reconstruction of an image based on the fusion of all
raw signals from diverse modulation frequencies is considered
as well by using the fusion network described in Section II-
A. While reconstructing an accurate 2D/3D image/volume
from collected measurements has been the mainstream task
in DOT, in a clinical setting, the ultimate purpose is not
necessarily obtaining the image itself but rather making an
informed clinical diagnosis or management decision, such as
lesion detection and classification into predefined classes. To
compare the impact of omitting the reconstruction and directly
predicting the end task, we implemented two architectures:
The first reflects classical approaches, i.e., a classification
module is appended to the output of the reconstruction layer to
make a prediction, where the result of the multi-spectral recon-
struction is used to supervise the classification task (Section
II-B). Whereas the second uses the same classification module
to make a prediction based on the fused raw data directly,
i.e., no reconstruction is considered in between. The ultimate
goal is to study the ability of deep learning to provide superior
prediction based on the raw signal only while reducing model
complexity and computational cost (Section II-C).

A. Fusion Network

Given multi-frequency raw data paired with known diagno-
sis outcomes, the objective is to learn a robust multi-frequency
representation in a supervised learning setting. While many
fusion strategies have been proposed in computer vision,
natural language processing, and multimodal biomedical data,
strategies for fusing data in multi-frequency DOT data remain
unexplored in deep learning-based approaches. Inspired by
recent methods for multimodal data fusion [38], [45], we
adopt a similar attention-based mechanism to control the
expressiveness of features from each input frequency before
constructing the multi-frequency embedding, while uniquely
feeding the raw data directly with no further pre-processing.
Let Y ∈ RS×D×N×M be a training mini-batch including
M tissue samples, each collected using N frequencies such
that Y = [Y1, Y2, ..., YN ] where for each frequency i, Yi =
[yi1, ...y

i
M ] includes data for M samples. When N > 1, input
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Fig. 1. Architecture overview of the proposed DOT image recon-
struction and diagnosis method. (A) single-frequency and (B) multi-
frequency signals (y) along with corresponding ground truth diagnosis
labels (ldiag) and images (x) are used to train the model. In the
single-frequency variant of our method (A), y, is used as input to the
image reconstruction, then the resulting image is used for diagnosis
prediction. In multi-frequency, note the two variants: (B.1) per-frequency
reconstruction and (B.2) multi-spectral reconstruction and diagnosis. For
both single and multi-frequency, the red dashed lines depict the raw-to-
task flow, where the image reconstruction is skipped and the diagnosis
is predicted directly from y. The bottom panel shows the details of the
multi-frequency fusion, reconstruction, and prediction modules.

measurements from each frequency are combined using the
fusion branch (Fusion, Fig1-i). To reduce the impact of noisy
input features and compress the size of the feature space, each
Yi is first passed through a fully connected layer of length l,
with ReLU activation, outputting Y s

i ∈ Rl×1×M , followed
by an attention mechanism that scores the relevance of each
feature in Yi. We define frequencies ̸ i as the set {j} such
that j ∈ {1, N} \ {i}, i.e., for frequencies other than i. A
linear transformation WA of frequencies Y̸i, that would score
the relative importance of each feature in i, is learned. WA

is a learned weight matrix parameters for feature gating. The
attention weights vector ai is then applied to Y s

i , an element-
wise product of scores and features, to form the attention-
weighted embedding Y s′

i ∈ Rl×1×M :

Y s′

i = ai ∗ Y s
i = σ (WA ∗ [Y̸i]) ∗ Y s

i . (2)

Finally, attention-weighted embeddings are passed through a
fully connected layer of length l2, with ReLU activation,
then combined through a Kronecker product between all
frequency embeddings to capture possible interactions. Each
vector is appended by 1 to capture partial interactions between
frequencies [38]. The final fused embedding is then defined

as:

F =

[
1

Y s′

1

]
⊗

[
1

Y s′

2

]
⊗ . . .⊗

[
1

Y s′

N

]
. (3)

F ∈ Rl′×l′×l′×M , for N = 3 and l′ = l2 + 1, is a N-
dimensional hypercube of all frequency interactions.

B. Joint Multi-frequency Reconstruction and Diagnosis
The task is to recover tissue optical properties and diagnosis

outcome given raw signal data. While a single frequency
model (Fig. 1-A), used as a baseline, relies on a single
frequency measurements to reconstruct spatially distributed
optical coefficients and predict diagnosis, a multi-frequency
model (FuseNet) relies on a joint representation from multiple
frequency measurements (Fig. 1-B). A multi-spectral image
that combines all frequency measurements, using the fusion
branch encoding (Fig. 1-B.2), is reconstructed and passed to
a classification module for diagnosis prediction. Furthermore,
a per-frequency image is reconstructed using each modulated
frequency signal. As depicted in (Fig. 1-B), the FuseNet model
outputs are x

(i)
Rec i ∈ {1, N}, xFusion

Rec , and ydiag which denote
the per-frequency reconstructed image (Fig. 1-B.1), the multi-
spectral reconstructed image, and the predicted diagnosis label
(Fig. 1-B.2), respectively, for N modulation frequencies.

Using multiple inputs, we train diverse subnetworks (Fig. 1-
B) to learn independent representations, where features derived
from each input (Yi) are only useful for the corresponding
output. Furthermore, given the differences in initialization, the
subnetworks can converge to disconnected modes in weight
space, thereby behaving as independently trained neural net-
works. Empirically, we observe that they converge to dis-
tinct optima. For this multi-task reconstruction and prediction
model, we extend the multi-task framework [12] and train a
model to simultaneously reconstruct a per-frequency image,
localize the lesion, and predict the diagnosis. The recon-
struction branch (Fig. 1) implements the design detailed in
the multi-task framework [12] with a fully connected layer,
128 × 128, followed by a convolutional layer and 6 residual
attention blocks with 32 channels, filters of size of 3 and ReLU
activation, to produce the final reconstruction image. While
the first and last layers are shallow feature extractors, the
attention blocks extract hierarchical attention-aware features
with modules of the form: two convolutions followed by
squeeze and excite modules. The prediction branch (Fig. 1)
includes 3 convolutional layers with max pooling and two
final classification layers. Raw data from different frequencies
are passed to the reconstruction branch except for the multi-
spectral subnetwork, where raw data from different frequencies
are first fused via the fusion branch. The fused features are
passed to the reconstruction branch, which outputs a multi-
spectral image followed by a classification layer to output the
final classification prediction. The multi-task loss (LMULTI )
encompasses all three tasks: reconstruction, lesion localization,
and diagnosis as a sum of losses for each task is defined as
follows:

LMULTI = LREC + LDIAG (4)

where LREC and LDIAG denote the reconstruction loss and
the diagnosis losses, respectively.



6 2022

1) Reconstruction loss: We adopt the reconstruction loss
defined by Ben Yedder et al. [12]. The mean square error
loss LMSE combined with the location loss LLOC guide the
image reconstruction and lesion localization of the network as
per (5). LMSE recovers the pixel-wise representation of the
image.

LREC = LMSE + β LLOC,

LLOC = ||DT (F−1(yi, θ), x)−DT (x)||,
(5)

where DT denotes the distance transform and computes the
Euclidean distance between the image pixel location and the
lesion boundaries, θ denotes the parameters of the multi-task
model, and β ∈ [0, 1] is a hyper-parameter controlling the
contribution of LLOC .

2) Diagnosis loss: The diagnosis loss, LDIAG, is a weighted
sum of the categorical cross entropy loss LCE , and the
orthogonal projection loss LOPL:

LDIAG = LCE + γLOPL, (6)

where: LCE = LCE (x, ldiag | Θ)

= −
ndiag∑
j=1

ldiag,j · log
(
ϕ (x | Θ)j

)
,

LOPL = (1− s) + |d|

s =
∑
i,j∈B
yi=yj

⟨fi, fj⟩ , d =
∑
i,k∈B
yi ̸=yk

⟨fi, fk⟩ ,

(7)

ndiag , ldiag denote the number of classes in the diagnosis
prediction tasks and ground truth label, respectively. ϕ(x|Θ)j
denotes the predicted probability for the jth class by the
model parameterized by Θ. γ ∈ [0, 1] is a hyper-parameter
balancing the contribution of the LOPL. |x| is the absolute
value operator, < x, y > the cosine similarity operator applied
on two vectors, and B denotes the mini-batch size.

The orthogonal projection loss LOPL, as defined in [44], is
used to maximize separability between classes by enforcing
class-wise orthogonality in the intermediate feature space and
simultaneously ensuring inter-class orthogonality (d term) and
intra-class clustering ((1-s) term) within a mini-batch.

C. Direct Prediction: Raw to Task Model

The ultimate aim of DOT-based screening is the early iden-
tification and classification of breast cancer lesions. Therefore,
we investigate if focusing exclusively on the end task, at the
cost of omitting the reconstruction of a 2D image, can perform
better or worse compared to classification with the interme-
diate reconstruction. Without the need to reconstruct a 2D
image, the architecture and computational complexity reduce
significantly, leading to line-of-care deployment improvements
in reducing power consumption and data computation latency.
The classification module is used to make predictions based on
the fused raw data, where combined features, extracted from
different frequencies using the fusion branch (Section II-A),
are passed to a convolutional layer for the prediction task and
a final classification layer with the associated loss (Fig. 1-
dashed lines). The diagnosis loss function, LDIAG, is used to

TABLE I
OPTICAL COEFFICIENTS DISTRIBUTIONS ON THE IN SILICO DATASET

Absorption
νa(cm−1)

Scattering
νs(cm−1)

Healthy tissue 0.032 ± 0.011 09.50 ± 1.01
Benign 0.080 ± 0.021 10.53 ± 1.20
Malignant 0.118 ± 0.096 12.50 ± 1.70

train the model given the raw input measurement where:

LCE = LCE ((yi, .., yN ) , ldiag | Θ)

= −
ndiag∑
j=1

ldiag,j · log
(
ϕ (y | Θ)j

)
,

(8)

yi denotes the ith measurement of the raw data and ϕ(y(i)|Θ)j
denotes the predicted probability for the jth class given an
input y(i) by the model parameterized by Θ. The orthogonal
projection loss LOPL (7) is used to maximize separability
between classes in the feature space.

III. RESULTS

We present results on both in-silico and clinical data. Results
were obtained by training the model on the in-silico data.
A transfer learning network, adapted from [12] and trained
on a phantom dataset, bridges the distributions shift that is
unavoidable when switching between in silico and real world
data. A Gaussian noise was added to the signal, mimicking real
world signal fluctuation, to improve model robustness to noise.
Performance evaluation captures image reconstruction quality,
diagnosis accuracy, and speed. The next section provides
details.

A. Experimental Design
1) Dataset: We simulate light propagation into tissue at dif-

ferent light wavelengths using the physics-based Toast++ [51]
software. Probe geometries were configured to reflect real
physical DOT Probe geometry [12]. We collect training sam-
ples from synthesized tissues with known optical properties
and labels. Lesions are modelled as tissue with perturbed
optical coefficients embedded in an otherwise homogeneous
diffusive medium. In order to mimic real breast tissue optical
parameters’, we base the optical properties on realistic val-
ues [28], [52] (Table I). A total of 4000 sample data pairs are
used to train and test our method. Each sample includes the
collected measurement vectors, one per-frequency, the ground
truth image, and the diagnosis label.

Our recently developed hand-held breast scanner (DOB-
probe) [7], [53] was used to collect real patient data to test
our method. The probe includes two source LEDs, with wave-
lengths of 690 nm, 750 nm, 800 nm, and 850 nm illuminating
the tissue consecutively and 128 co-linear detectors. Note that
the frequencies share variable overlap in the spectrum [28],
motivating further the need for orthogonal encoding. Follow-
ing the ethics and institutional review board approval protocol,
clinical data were collected from 9 participants diagnosed with
breast tumors [54]. For each patient, with information briefly
summarized in Table II, different sweeps over the lesion loca-
tion and opposite healthy breast are collected. Even though no
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TABLE II
SUMMARY OF CLINICAL DATA

Tumor Position Tumor size (cm) Tumor Type

Patient 1 Left Breast 1× 0.8× 0.7 BI-RADS 7
2.5× 0.8× 0.8

Right Breast 1.1× 0.8× 0.7 Benign
Patient 2 Left Breast 2.2× 1.7× 1.7 BI-RADS 4
Patient 3 Left Breast 1× 1× 1 Non-invasive ductal
Patient 4 Left Breast 2.5× 1.7× 3.5 BI-RADS 5
Patient 5 Right Breast 2.4 BI-RADS 4
Patient 6 Right Breast 2.3× 2.2× 1.5 BI-RADS 4
Patient 7 Left Breast 1.7× 1.4× 1.2 BI-RADS 5
Patient 8 Left Breast 1.6× 0.8× 0.8 BI-RADS 5
Patient 9 Right Breast 2.2× 2.1× 2.3 Invasive ductal

reconstruction ground truth is available for real-world data, it
is invaluable to detect robustness and real-world performance,
with partial ground truth known from other modalities on the
same patients. The precise location, size, and type of the tumor
lesion were determined via mammography, ultrasound, or
biopsy. Another advantage of our direct prediction approach is
that the absence of pixel-wise ground truth is less problematic
compared to reconstruction based classification, as only the
diagnosis label is required.

2) Implementation: Models were implemented in the Keras
TensorFlow framework and trained for 100 epochs on an
NVIDIA Titan X GPU. By optimizing the model’s perfor-
mance on the validation set, we set all hyper-parameters as
follows: batch size to 16, learning rate to 10−4, optimizer set to
Adam, and initialization to Xavier. Early stopping was used if
the validation loss had not improved within 10 epochs. The in
silico data was divided in a 80/10/10% training/validation/test
split, and hyper-parameters β (5) and γ (6) were set to 0.2
and 0.5, respectively. The fully connected units for the fusion
branch were set to 32 and 16 for l and l2, respectively.

3) Evaluation metrics: To quantify the models’ robustness,
we look at (i) lesion localization error; (ii) peak signal-to-noise
ratio (PSNR); (iii) structural similarity index (SSIM); and
(iv) Fuzzy Jaccard for reconstruction quantification, while the
balanced accuracy, F1 score, precision, recall, Matthews cor-
relation coefficients (MCC) and confusion matrix are reported
for the classification task quantification. For the computational
cost, we quantify the forward pass of the model, measured in
ms per example. To evaluate the performance of our models,
we contrast the results when using one frequency with many
frequencies in the FuseNet and the Raw-to-task model. We
present results on in-silico data and clinical data.

B. Results on Synthetic Data

Trained on the in silico data and tested on a separate test set
of 240 images, we compare the reconstruction and prediction
performance of our FuseNet and the prediction performance
with the Raw-to-Task counterpart.

1) Joint reconstruction and diagnosis: Figure 2, illustrates
reconstruction results on selected in silico samples with dif-
ferent lesion sizes, numbers, locations, and depths. In order to
offer clinicians more details, results based on each frequency
separately (Ri) as well as results that use all frequencies
are shown, with the latter showing more consistent perfor-
mance. The joint model successfully exploits the presence of

Ground Truth R1 R2 R3 R4 RFusion

a

b

c

d

e

Fig. 2. Qualitative reconstruction performance of the FuseNet++ on
in silico samples with varying ground truth lesion sizes, locations, and
numbers. Our multi-spectral results (RFusion) show an overall supe-
riority in terms of generally improved background/foreground contrast
and a better differentiation between lesion sizes and lesion localization
compared to per-frequency reconstruction results (R1 to R4).

the different frequencies and generally shows an improved
background/foreground contrast. For example, the difference
in signature for 3 small but proximate lesions is marked in
different frequency results (R1 to R4) (row c), while a more
accurately reconstructed sphere size is provided by the fusion
result RFusion in row (d). Detecting heterogeneity in lesions is
critical for correct treatment estimation given that it is a proxy
indicator of evolutionary pressure in the lesion, selecting for
more resistant cancer sub-populations.

Table III presents the quantitative results of the ablation
study, where different losses and modular choices of the
architecture are contrasted. Rows 1 to 4 highlight the benefit
of using multi-frequency fusion on the reconstruction task. A
naive multiple frequencies concatenation will not necessarily
improve results, which agrees with the findings reported by
Applegate et al. [23], illustrating the impact of adding noisy
dimensions on performances. Nonetheless, we see improved
results for FuseNet. When fusion branch and LOPL are
used jointly (FuseNet++), the features contribution from each
frequency is maximized in contrast to simple features concate-
nation (Concat-All) at the price of a minimal computational
increase (only 9%).

Prediction performance highlighted in Table III and Fig. 3
show an overall improvement when more input frequencies
are available, with a boost in performance when FuseNet and
FuseNet++ are used. Confusion matrices (Fig. 4-A,B) show
a clear discrimination between healthy and lesion features
when more data, in the form of more frequencies, is available.
Further, improved benign and malignant discrimination is
observed when feature orthogonality is leveraged (Fig 4-B)
as well as a reduction in healthy false negative.

2) Raw-to-Task: In Figure 4, similarly to the joint model,
the raw-to-task model prediction results using a single fre-
quency input (Fig 4-A) are contrasted with raw-to-task pre-
diction results using multiple frequencies as input (Fig 4-
B). A clear discrimination between features is apparent when
more data, in the form of multiple frequencies, is available,
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 Matthews Correlation 
Coefficient 

Precision Recall F1 Scores Balanced Accuracy 

Multi-Frequency

FuseNetSingle Freq FuseNet++ Raw-to-TaskConcat-All Raw-to-Task++

Fig. 3. Quantitative diagnosis performance of different models when one vs multi-frequency are used. Overall results show improved prediction
performances in multi-frequency models. Note the significant improvement when FuseNet is used compared to a simple concatenation (Concat-All).
Results using the FuseNet++ enforce the benefit of feature space orthogonality. Raw-to-task++, in which all network capacity is dedicated to the
end task, shows an overall performance gain.

TABLE III
QUANTITATIVE RESULTS ON IN SILICO TEST DATASET. †: VALUE NOT SUPPORTED BY METHOD, ‡: IMAGE RECONSTRUCTION SKIPPED.

Loss Loc. Error
(pixel, ↑)

PSNR
(dB, ↑)

SSIM
(↑)

Fuzzy Jaccard
(↑)

Runtime
(ms, ↓)

BA
↑

F1
↑LREC LCE LOPL

Single-Freq ✓ ✓ † 17.7 ± 21.9 19.1 ± 4.8 0.80 ± 0.05 0.60 ± 0.17 23 0.65 0.65
Concat-All ✓ ✓ † 20.4 ± 18.4 19.6 ± 6.2 0.73 ± 0.17 0.61 ± 0.18 28 0.63 0.65
FuseNet ✓ ✓ - 17.6 ± 23.3 20.2 ± 4.1 0.88 ± 0.05 0.62 ± 0.19 31 0.72 0.72
FuseNet++ ✓ ✓ ✓ 15.7 ± 12.7 21.2 ± 4.4 0.89 ± 0.03 0.64 ± 0.18 32 0.74 0.74
Raw-to-Task † ✓ - ‡ 15 0.74 0.72
Raw-to-Task++ † ✓ ✓ ‡ 15 0.77 0.75

especially when discriminating between healthy and lesion;
the primary application in DOT-based screening deployments.
Raw-to-task model significantly reduces computational com-
plexity (Table III-Runtime), enabling lower latency and higher
throughput in real medical settings. Next, we tested the con-
tribution of individual loss function terms and architecture
component on overall diagnosis performance. Figure 3 shows
the diagnosis performance on the test set for the best value
of γ and highlights the benefits of the feature orthogonality
constraint in breast cancer diagnosis, where tumoral and
non-tumoral breast lesion differentiation is challenging. Con-
trasting FuseNet++ and Raw-to-task++ (Fig 3-4) illustrates
performance gain when all network capacity is dedicated to
the end task rather than intermediate ones.

C. Results on Clinical Data

Figure 5 presents the reconstruction performance on breast
scans from patients diagnosed with breast tumors. The probe
is placed close to the likely location of each identified lesion,
and a set of sweeps are made. The opposite healthy breast,
for each patient, is scanned as a contrastive reference. Weak
labels were attributed to each set of sweeps regardless of the
probe’s closeness to the tumor localization. As a partial ground
truth, patients underwent mammography and/or Ultrasound
scans to obtain estimated lesion dimensions and biopsies to
confirm tumor type. While lesions are accurately reconstructed
in most cases (Fig 5-A), healthy cases can be more prone
to distribution shift, given that they capture only background
readings and are subject to artifacts (Fig 5-B). Orthogonal
fusion based reconstruction shows better robustness to noise
(RFusion). Table IV reports Raw-to-task++ quantitative pre-
diction performance with an overall average accuracy of 66%.
While good precision is shown for the healthy and malignant
cases, lower performance is reported for benign. This can be
due to variability in signal strength with respect to probe
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Fig. 4. Diagnosis prediction confusion matrices when (A) one vs (B)
multi-frequency inputs are used. Note the improvement in accuracy of
unbiased lesion classification (benign, malign) vs healthy when multiple
frequencies are used, as illustrated by the higher values along the
diagonal. Results of FuseNet++ highlight the benefit of encouraging or-
thogonality in enhancing benign vs malignant separability while reducing
healthy false negative. Raw-to-task++ further improves separability at
the expense of minimal false negative (2%).

proximity to the lesion; however, a benign lesion is still
predicted for this patient, allowing further follow-up.

D. Effect of Lesion Localization on Accuracy
We quantify the effect of lesion location on lesion detection

accuracy in Figure 6, where we classify whether a lesion
is present or not. The penetration depth into breast tissue
is approximately half the distance between the source and
detectors [15], ∼2.5 cm for our DOT probe. Our results
confirm the expected reduction in lesion detection accuracy
as the lesions decrease in size or increase in depth.

IV. DISCUSSION
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TABLE IV
QUANTITATIVE RESULTS ON CLINICAL DATASET USING RAW-TO-TASK++

Precision Recall F1-score Number of sweeps
Healthy 0.73 0.59 0.66 32
Benign 0.08 0.33 0.12 3

Malignant 0.75 0.68 0.71 44
Weighted-Avg 0.72 0.63 0.67 79
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(B)

R1 R2 R3 R4

Benign
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R4R3R2R1 RFusion

RFusion

Fig. 5. Qualitative reconstruction results on two patients with benign
and malignant tumors, where approximate lesion sizes and locations
were obtained with ultrasound (details in Table II). Note, in (A), the ability
of FuseNet++ to reconstruct both lesions, while, in (B), the robustness of
orthogonal fusion to noise (RFusion) compared to (R1 to R4) (healthy
row) is highlighted.

In order to be an effective tool in clinical settings, a
clinician’s trust is essential. A combination of good per-
formance, as quantified by accuracy and other metrics, and
an interpretable model increases trust. Neither deep learning
based reconstruction nor classical iterative algorithms provide
a path from pixel to sensor value in a way that a clinician
can easily understand. While a reconstructed image may seem
to increase interpretability, it is typically not created in an
interpretable way and is not necessarily causally related to
the classification decision. Omitting the reconstructed image,
while increasing performance, would not therefore reduce the
trust a clinician has in our direct to task contribution.

Cancer treatment regimens, especially for treatment-
resistant lesions, are shifting towards adaptive or dynamic
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Depth
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0.5

0.6
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Fig. 6. Effect of lesion depth and radius on model prediction accuracy.
Note how the more superficial (closer to the skin surface) and larger
lesions are more accurately detected.

treatment models, such as the recent game theory-driven
treatment of resistant prostate tumor patients [55]. However,
these require accurate, unbiased, and specialized task-specific
models. Our raw-to-task approach can be extended to develop
models specializing in multiple tasks, not just diagnostics.
Examples are prediction of lesion type, progression, local-
ization, and tumor heterogeneity, all the way to successful
treatment regimens ahead of time, paving the way for adaptive
personalized medicine and disease management [50].

A key focus of this work was to leverage orthogonality
in mitigating confounding factors induced by multi-frequency
fusion. However, as noted as early as 1936 by Fisher et al.
[56], orthogonal representations need not be informative, and
thus, in a deep learning setting can also lead to orthogonal
or independent encodings that are less or uninformative, as
we encountered in our own experiments. The heterogeneity
of lesions, especially malignant ones, ensures that no two
malignant lesions will likely be the same, thus driving the
need for diagnostic capability that focuses on identifying the
diverse lesion types, not necessarily the reconstructed image.

V. CONCLUSION

We introduce deep learning based multi-frequency fusion
for diffuse optical tomography with end-to-end classification
of malignancy of breast lesions. The positive effect of using
a multi-frequency methodology was observed in improved
reconstructed image quality and more accurate tumoral and
non-tumoral breast lesions’ discrimination. In addition, we
show that raw-to-task learning can improve detection without
requiring reconstruction.
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