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Abstract

The approximation of objective functions is a major strategy in surrogate-assisted multi-objective evolutionary algorithms, but
it tends to underperform on high-dimensional problems. We hypothesize that this is because the above strategy is vulnerable to
unreliable approximations and even a single unreliable approximation model may mislead the entire search process. Therefore,
an alternative strategy is to approximate each scalarization function, whereby candidate solutions for a decomposed problem can
be evaluated using a single approximation model, which prevents the negative propagation of unreliable approximations to the
entire search process. Accordingly, this study aims to confirm our hypothesis by introducing a basic surrogate-assisted algorithm,
in which each approximated scalarization function is independently optimized by a differential evolution algorithm. Despite
its methodological simplicity, the significant impact of approximating scalarization functions on high-dimensional problems is
revealed for the first time. The presented algorithm is competitive with state-of-the-art algorithms that are adapted for high-
dimensional problems, while exhibiting a reduced computational time. This computational efficiency is theoretically confirmed

by our complexity analysis.
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Abstract—The approximation of objective functions is a ma-
jor strategy in surrogate-assisted multi-objective evolutionary
algorithms, but it tends to underperform on high-dimensional
problems. We hypothesize that this is because the above strategy
is vulnerable to unreliable approximations and even a single
unreliable approximation model may mislead the entire search
process. Therefore, an alternative strategy is to approximate each
scalarization function, whereby candidate solutions for a decom-
posed problem can be evaluated using a single approximation
model, which prevents the negative propagation of unreliable
approximations to the entire search process. Accordingly, this
study aims to confirm our hypothesis by introducing a basic
surrogate-assisted algorithm, in which each approximated scalar-
ization function is independently optimized by a differential
evolution algorithm. Despite its methodological simplicity, the
significant impact of approximating scalarization functions on
high-dimensional problems is revealed for the first time. The pre-
sented algorithm is competitive with state-of-the-art algorithms
that are adapted for high-dimensional problems, while exhibiting
a reduced computational time. This computational efficiency is
theoretically confirmed by our complexity analysis.

Index Terms—Surrogate-assisted evolutionary algorithm, mul-
tiobjective optimization, scalability, scalarization function.

I. INTRODUCTION

ULTI-objective evolutionary algorithms (MOEAs) [1]
are powerful black-box optimizers and their potential
can be achieved with a sufficient number of fitness evaluations
(FEs) [2]. However, in reality, the number of FEs is frequently
restricted owing to their computational and/or financial cost,
which is often referred to as an expensive multi-objective op-
timization problem (EMOP) [3], [4]. Moreover, the optimiza-
tion of elaborate, large-scale models is generally performed
using expensive simulations; thus, the high dimensionality of
problems is a typical difficulty concomitant with EMOPs [5],
[6]. For example, in car structure optimization [7], [8], a 222-
dimensional car model is employed for optimization, wherein
the evaluation of a single solution requires twenty hours using
a supercomputer.
Surrogate-assisted evolutionary algorithms (SAEAs) [9] are
a representative approach for accelerating the evolutionary
search of MOEAs with thousands or even hundreds of FEs
[10]. Surrogates are typically designed to estimate the quality
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of the solutions, and SAEAs use these to prescreen uneval-
uated solutions before their exact evaluations with expensive
objective functions. Although various surrogate models exist,
the use of approximation models for metric functions, namely
approximation-based SAEAs, has become a central concept
in the field [11]. A methodological benefit of approximation-
based SAEAs is the production of well-prescreened candidate
solutions by optimizing the approximation models, compared
to, for example, classification models [12], [13].

The approximation of objective functions (AOF) is the most
common strategy among various possible alternatives, such
as the approximation of scalarization functions (ASF) [10],
[11]. This is probably owing to its reasonability; approximated
objective values are a fundamental resource for computing
various metric values, such as scalarization functions [14]-
[16], infill criteria [17]-[19], and certain indicators [20], [21].
Furthermore, the number of required models can be restricted
to that of the objectives. These benefits are crucial in tackling
current issues in EMOPs, that is, improving the scalability to
the number of objectives [22] and reducing the runtime of
SAEAs [11]. According to the observations reported in [23],
well-known AOF-based SAEAs, namely MOEA/D-EGO [24]
and K-RVEA [25], outperformed a representative ASF-based
SAEA, namely ParEGO [26], while improving their runtime
to 34% and 12% faster than that of ParEGO, respectively.

In addition to the aforementioned issues, systematic at-
tempts have recently been made to deal with high-dimensional
EMOPs [27], [28]. Existing insights in this regard have been
mainly obtained from AOF-based SAEAs. A universal strategy
is to construct surrogate models in a reduced search space
which is mapped with dimension-reduction techniques, as in
HeE-MOEA [29], SA-RVEA-PCA [30], and ADSAPSO [31].
Furthermore, ADSAPSO aims to accelerate the evolutionary
search by executing the search in the reduced search space.
Another strategy is the use of computationally efficient al-
ternatives to Gaussian process (GP) [32], with the aim of
reproducing the powerful search capacity of the GP on high-
dimensional EMOPs. This strategy has been implemented in
EDN-ARMOEA [27] and HeE-MOEA. These SAEAs have
been tested on problems with over 70 dimensions.

However, the significant impact of using classification mod-
els on high-dimensional EMOPs has recently been revealed.
Specifically, three classification-based SAEAs, namely CPS-
MOEA [33], CSEA [23], and MCEA/D [28], tend to out-
perform MOEA/D-EGO and K-RVEA on benchmark prob-
lems with up to 150 dimensions [28]. Furthermore, they are



competitive with EDN-ARMOEA, while exhibiting a reduced
runtime. This trend is also confirmed by our comparison in
this study; MCEA/D is competitive with dimension-reduction-
based SAEAs, that is, ADSAPSO and HeE-MOEA (see Sec-
tion IV).

Accordingly, our research question consists of exploring
how the potential of approximation-based SAEAs can be
further derived on high-dimensional EMOPs. Towards this
goal, this study revisits the benefits of ASF-based SAEAs in
terms of risk management for unreliable approximations and
computational costs.

Specifically, for brevity, we suppose basic SAEA implemen-
tations as follows; to estimate the quality of a single solution,
AOF-based SAEAs use multiple approximated objective func-
tions, whereas ASF-based SAEAs use a single approximated
scalarization function defined for a decomposed sub-problem.
Supposing that a deterioration in the approximation accuracy
is unavoidable under high dimensionality, we hypothesize that
AOF-based SAEAs are vulnerable to unreliable approxima-
tions and ASF-based SAEAs are a reasonable option for the
following reasons.

o AOF-based SAEAs use multiple approximated objective
values, and thus, the reliability of the estimated solution-
quality may be deteriorated if even a single unreliable
model exists. ASF-based SAEAs may relax this issue
because they use a single approximated value to estimate
the solution-quality.

o As approximated objective functions are commonly used
in the search, the negative influence of unreliable models
may propagate to, and thus mislead, the entire search
process [34]. ASF-based SAEAs use each approximation
model for the corresponding sub-problem, thereby pre-
venting this negative propagation.

As aforementioned, a known negative aspect of ASF-based
SAEAs is the increase in their runtime as the model con-
struction frequency increases. Although there probably exists
no solid reputation in this regard, we argue that ASF-based
SAEAs as well as AOF-based SAEAs exhibit the potential
to be computationally efficient if computationally inexpensive
surrogates are used, owing to the following reason.

o Although the calculation cost of the model construction
constitutes a major part of the runtime of SAEAs, that
of the model prediction is also non-negligible [35]. ASF-
based SAEAs can save the number of model predictions
as they can estimate the solution-quality with a single
approximation value. The use of computationally inex-
pensive approximation models can improve the compu-
tational efficiency of ASF-based SAEAs.

Note that modern AOF-based SAEAs aim to hedge the risk of
unreliable approximations, such as infill criteria and ensemble
modeling [36]. Apart from these advances, there may be the
aforementioned benefits of ASF-based SAEAs to handle high
dimensionality. To the best of our knowledge, few examples
of ASF-based SAEAs exist, as pointed out in [28], [34], [37],
[38], and several comparative studies have argued the potential
of ASF-based approaches for low-dimensional EMOPs [34],
[39] (see Section II). However, no such approaches have

been tested for high dimensionality, as the existing SAEAs
adapted for high-dimensional EMOPs, that is, HeE-MOEA,
SA-RVEA-PCA, ADSAPSO, and EDN-ARMOEA, employ
the AOF-based approaches. Thus, the effect of the approxi-
mation of scalarization functions on high-dimensional EMOPs
has remained unclear.

This study aims to demonstrate the impact of the approx-
imation of scalarization functions under high dimensionality.
We introduce a simple algorithm based on the basic principle
of ASF-based SAEAs. In particular, the proposed algorithm,
ASF/DE, uses the decomposition framework of MOEA/D [40],
wherein a differential evolution (DE) algorithm optimizes each
approximated scalarization function. In accordance with our
hypothesis, we employ a radial basis function (RBF) [41]
technique for the computationally efficient surrogate modelling
[42]. Note that we do not intend to use any efficient extensions,
such as infill criteria, to reveal the pure impact of the ASF-
based approach. For this aim, we also introduce an AOF-based
SAEA, namely AOF/DE, which uses approximated objective
functions under the ASF/DE framework, to demonstrate the
effect of ASF/DE.

The contributions of this study are summarized as follows.

o To the best of our knowledge, this study is the first
to reveal the impact of the approximation of scalar-
ization functions on high-dimensional EMOPs. Despite
its methodological simplicity, ASF/DE is competitive
with state-of-the-art SAEAs adapted for high-dimensional
EMOPs. This finding can be viewed as a specific example
of the foresight provided in [34] with respect to the
potential of ASF-based approaches.

o We show that ASF/DE performs faster than AOF/DE and
recent AOF-based SAEAs compared in this study. There-
fore, together with the first contribution, we suggest that
ASF-based SAEAs may be a promising new approach
for handling high dimensionality in terms of both the
performance and runtime.

o The first intensive comparison of the representative strate-
gies for high-dimensional EMOPs, that is, dimensional
reduction techniques, computationally-efficient alterna-
tives of GPs, and classification models, is conducted
on benchmark problems with up to 200 dimensions and
11 objectives. The comprehensive results reveal effective
strategies for approximation-based SAEAs.

Note that this paper does not argue the methodological novelty
of ASF/DE, as it follows a basic implementation of ASF-based
SAEAs.

The remainder of this paper is organized as follows. Section
IT summarizes related works and describes the MOEA/D and
RBF frameworks. The algorithms of ASF/DE and AOF/DE
are explained in Section III. Section IV presents the experi-
mental results to demonstrate the effect of ASF/DE through a
comparison with state-of-the-art SAEAs, including AOF/DE.
Thereafter, in Section V, additional results are provided to
confirm the effectiveness of ASF/DE. Section VI presents a
complexity analysis to discuss the computational efficiency of
ASF/DE. Finally, conclusions are summarized in Section VII.



II. PRELIMINARIES

A. Related work

We summarize existing insights into ASF-based SAEAs.
Known improvements for high-dimensional EMOPs have been
summarized in Section I, including very recent insights, that
is, the superiority of classification-based SAEAs.

1) Existing ASF-based SAEAs: Although the approxima-
tion of scalarization functions is a common strategy for
approximation-based SAEAs, relatively few efforts have been
made in this regard [28], [34], [37], [38].

ParEGO is a representative algorithm that optimizes an
approximated scalarization function using an efficient global
optimization (EGO) framework. Although ParEGO was orig-
inally tested on small-scale problems, it has been compared
with modern SAEAs for problems with up to 50 dimensions
[43]. An alternative approach is to conduct EGO with approxi-
mated objective functions. This AOF-based approach has been
employed in MOEA/D-EGO, SMS-EGO [44], and EIM-EGO
[45], and their superiority to ParEGO has been confirmed. GS-
MOMA [46] employs an ensemble model of approximated
scalarization functions by unifying the heterogeneous models
of GP, RBF, and polynomial regression. Experiments have
demonstrated that GS-MOEA outperforms NSGA-II on three-
objective problems with up to 50 dimensions under 8000 to
30000 FEs. SURROGATE-ASF [47] is an interactive ASF-
based SAEA which adaptively selects a scalarization function
to be approximated to obtain preferred solutions for a user.

These ASF-based SAEAs are based on certain motivations;
for example, demonstrating an extension of EGO on EMOPs
and the effect of ensemble models, rather than understanding
the methodological benefits of ASF-based approaches.

2) Comparative studies: In recent years, several efforts
have been made to discuss the impact of AOF/ASF-based
SAEAs, as summarized below.

In [39], a comparative study of surrogate-assisted MOEA/D
has been presented for a set of bi-objective problems with up
to 10 dimensions. Although the effect of different definitions
of training samples was mainly discussed, AOF/ASF-based
MOEA/Ds (MOEA/D-filterl, 2, ---, 4) were introduced and
compared in addition to other approaches such as ParEGO,
M-EGO [48], and MOEA/D-RBF [15]. The observation has
suggested that an AOF-based approach, namely MOEA/D-
RBF, performs effectively, whereas an ASF-based MOEA/D
(filter4) tends to outperform an AOF-based MOEA/D (filterl)
on certain problems.

In [34], an intensive study has been conducted on small-
scale unconstrained/constrained EMOPs while focusing on
the methodological differences between AOF and ASF-based
approaches. The experimental results have demonstrated that
the approximation of an aggregated function of objective
values and constraints tends to improve the performance. This
superiority holds even for unconstrained problems; thus, the
positive impact of ASF-based approaches has been revealed
on low-dimensional problems. The authors have suggested the
need for further exploration of ASF-based approaches. Note
that, in [38], [49], [50], different scalarization functions to be

Algorithm 1 MOEA/D

1: Initialize P and EP as an empty set

2: Generate P with N initial solutions {z',--- =™}

3: Evaluate all initial solutions in P

4: Initialize z as z; = mingep fi(x)Vj € {1,--- ,M}
5: while Termination criteria are not met do

6 for i =1to N do

7 Generate y* from 2 and ', where k, 1 € B(:)
8 Evaluate 7° _

9: Update z as z; < min {z;, f;(y")} Vj € {1,---, M}
10: for each j € B(i) do

11: if g(y" | N, 2) < g(x? | M, z) then
12: Replace 7 with y°

13: end if

14: end for _

15: Remove all solutions dominated by y* from EP
16: Add y* to EP if y* is the Pareto solution

17:  end for

18: end while

approximated have been tested to understand their dependency
on the performance of ASF-based algorithms.

Inspired by these works, this study reveals the effect of ASF-
based SAEAs on high-dimensional EMOPs under the assump-
tion that their possible benefits can be further enhanced for
high dimensionality. Furthermore, a comparative discussion of
the runtime is presented in this paper.

B. MOEA/D

This study considers a D-dimensional multi-objective opti-
mization problem (MOP) with M objectives, formalized as

minimize  F(x) = [fi(x), f2(x), ..., fu(x)],

subject to x € S, M

where M > 2, f: S — R, S is a feasible space of RP, and
thus, x is a D-dimensional real-valued solution.

MOEA/D decomposes an MOP instance of (1) into N sub-
problems, wherein a scalarization function g : RP — R is
assigned to each sub-problem. The Tchebycheff function is
used in this study. Specifically, g for the i-th sub-problem is
defined as

g(x|N', z) = 15?5\4{)\;\fj(w) - zjl}, 2)

where z = {z1, 22, ..., zp} is a set of reference points and \*
is a weight vector such that Z;\il Ai =1and \; € RT. Here,
g(x|A\, z) can be considered as a single-objective function,
and MOEA/D aims to approximate the Pareto optimal front
of (1) by independently minimizing /N scalarization functions.

The detailed procedure of MOEA/D is presented in Algo-
rithm 1, where P is a population and EP is an archive that
contains all discovered non-dominated solutions. Initially, T’
neighbor sub-problems are determined for each sub-problem;
an index set B(i) for the i-th sub-problem is defined as
B(i) = {iy,i2,...,ir}, where A1 X2 ... X7 are the T
closest weight vectors to A’. Subsequently, P is built with N
initial solutions. All initial solutions are evaluated and each
reference point z; is determined as the minimum value of f;
among the objective values of the initial solutions.



The main loop is implemented as follows. For the i-th sub-
problem, two neighbor solutions ¥ and z' are set as parents,
where k,l € B(i). A new solution y° is produced based on
the parents by applying the simulated binary crossover and
the polynomial mutation. Subsequently, y* is evaluated and
z is updated. For each neighbor sub-problem that is indexed
with j € B(i), a neighbor solution &’ may be replaced with
y'if g(y'|N, z) < g(x?/| N, ). Finally, y* may be added to
EP while eliminating the solutions dominated by y° if y* is
the Pareto solution. This procedure is repeated for each sub-
problem.

C. RBF

Assume n training samples X = {x'}"_, and their target
values V = {y'}" ,, where y* = f(z') is mapped with
a function f : RP” — R. An RBF model expresses the
approximation function of f, which is denoted by f , as

fl@) = wd(|z—a'l), 3)
i=1

where w; is a scalar weight and ®(||z — x||) is a defined

kernel function. A weight vector w = [wy,ws, ..., w,]|"
adapted for Y is then obtained as
w= y, (4)

where y = [y',92,...,y"7 and ® is an n x n kernel
matrix, defined as ® = [®(||z? — x7||)],,xn. This study uses
a Gaussian function for ®(-), which is expressed as

3(r) = exp (—) | )

where o2 is set t0 02 = dyax(nD) P [51]1-[53] and dyax
is the maximum distance between the samples in X.

The time complexity for constructing an RBF model is
O(n?) and that for calculating an RBF prediction is O(n)
[54]-[56].

III. TWO BASIC ALGORITHMS

We introduce AOF/DE and ASF/DE, which use approxi-
mation models for the objective and scalarization functions,
respectively. The only difference between these algorithms is
the target functions to be approximated.

First, we define the basic framework of AOF/DE. Thereafter,
ASF/DE with minimum modifications to AOF/DE is intro-
duced. Both algorithms require the same hyper parameters:
the population size N, the neighbor size 7', the maximum DE
iterations wm,ax, the crossover rate C'R, and the scaling factor
F'. Moreover, the following mathematical notations are used
to introduce the AOF/DE and ASF/DE frameworks.

FE The number of FEs consumed thus far, including

those for the initialization process.

A An archive set consisting of all evaluated solu-
tions, which is identified as A = {z*}IF, .

An approximated value for g(z|\?, 2).

f; An approximation model for f;.

i — filz) g | A 2)
fo —— falz) g(x | N, 2)
fs — fa(fc) g(z | ’\sz)
g(x | AN, z)
(a) AOF/DE
' g(x [ AL, z)
9 g(x | X%, z)
g° g(x | X%, z)
N g(x | AN, 2)
(b) ASF/DE

Fig. 1. Conceptual difference between AOF/DE and ASF/DE.

g® An approximation model for the i-th scalarization
function with A*.

X A set of training samples.

Y; A set of target values of training samples, which
is used to construct f; or g°.

Ppe A population of a DE algorithm.

Hereinafter, we define that one generation of both algorithms
is to complete the solution-update process for all N sub-
problems, corresponding to the termination of the “for” loop
in line 17 of Algorithm 1.

A. AOF/DE

1) Concept: AOF/DE follows the typical implementation
of AOF-based approaches, as illustrated in Fig. 1(a). Each
objective function is approximated and §(z|\?, z) is calculated
from M approximated objective values, that is,

i@X,2) = max (Nlf@ -5 ©

Hence, the approximation accuracy of §(z|\?, z) depends
on that of all M approximation models. The approximation
models are constructed and fixed at the start of each generation
and the same models are used for all N sub-problems during
generation. Therefore, the number of approximation models
required for each generation can be restricted to M.

2) Algorithm: Algorithm 2 describes the pseudo-procedure
of AOF/DE, and the main modifications are highlighted with
underline. Note that the termination criterion is expressly
described to conform to our experimental design mentioned
in Section IV; the algorithm is forcibly terminated when FE
reaches the maximum FEs, FE, ..

The initialization process is the same as that in MOEA/D,
which requires N FEs. Subsequently, an approximation model



Algorithm 2 AOF/DE and ASF/DE

Algorithm 3 DE-based search

1: Initialize P, EP, A as an empty set
2: Generate P with N initial solutions {z',--- =™}
3: Evaluate all initial solutions in P, and set F'EX to FE = N
4: Initialize z as z; = mingep fi(x)Vj € {1,--- ,M}
5: Update A as AU P

6: while True do

7 Build a set of training samples X from A

8

: if AOF/DE then
9: for j =1to M do

10: Build the approx. model for f;, f;, trained with X
11: end for

12:  else if ASF/DE then

13: for i =1 to N do o

14: Build the approx. model for g°, §*, trained with X’
15: end for

16:  end if

17:  fori=1to N do

18: Generate y' using DE with approximation models
19: Evaluate y* and set FE to FE — FE+1

20: Update z as z; < min {z;, f;(y")} Vj € {1,--- , M}
21: for each j € B(i) do

22: if g(y' | N, 2) < g(x? | M, z) then

23: Replace o/ with y*

24: end if

25: end for _

26: Remove all solutions dominated by y* from EP

27: Add y' to EP if y' is the Pareto solution

28: Update A as AU {y'}

29: if FE = FEnax then

30: return EP

31: end if

32:  end for

33: end while

trained for X is constructed for each objective function at
the beginning of each generation. Once the M approximation
models are obtained, DE is executed to optimize §(z|\!, 2)
for each sub-problem, in which the best discovered solution
is set to the offspring y’. Thereafter, the same solution-update
process as in MOEA/D is performed.

The model construction and DE-based search processes are
detailed in the following.

a) Model construction: We assume that well-distributed
samples in the objective space tend to improve the reliability
of the approximated objective functions; however, the use
of many samples increases the computational cost of RBF
models. To balance this tradeoff, we rank the solutions in
A using non-dominated sorting [57] and employ the top
N solutions as training samples. Although other efficient
approaches may exist, the same training samples are used in
AOF/DE and ASF/DE for a fair comparison.

Let A be a duplicate of A, in which the solutions have
been sorted using non-dominated sorting, and x* € A, is the
top k-th ranked solution. The set of training samples X" is
defined as follows.

X = {:13]C | zk e AN @)

The target values are obtained as V; = {f;(z*) | 2% € X},
to construct the approximation model for the j-th objective
function. Subsequently, the approximation model fj is mod-
eled as in (3), with w adapted for A" and };.

1: Initialize Ppr using (8)
2: Calculate (x|, z) of all initial solutions in Ppg
3: for w =1 to wWmax do

4:  Set Upg to an empty set
5.  for j =1 to |Ppg| do )
6: Set the best exemplar "' +— arg mingep,,, §(|A\’, 2)
7: Set two random exemplars ™!, 2™ € Ppg \ {’}
8: Set a random integer Kyung € {1,---, D}
9: Initialize a new solution uw’/ = x’
10: for k=1 to D do
11: if rand[0,1) < CR V k = kyna then
12: Set ul, as ul, < x} + F (25 — z]) + F(x}! — z}2)
13: end if
14: end for
15: Calculate §(u’|X’, z) of u’
16: if g(u’ |X\", z) < (2’ |\', z) then
17: Add v’ to Upg
18: else _
19: Add x’ to Upg
20: end if
21: end for
22: Update Ppr as Ppe < Upe
23: end for

24: Determine y° as y* = arg mingep,, §(x|A’, z)
25: return y*

b) DE-based search: Algorithm 3 describes the DE-
based search process in detail. We employ DE with the current-
to-best/1 mutation and the binomial crossover to accelerate
the search process. Moreover, we aim to inherit the current
search progress under the assumption of MOEA/D, that is, the
optimum solutions of neighbor sub-problems exist in a similar
region. Specifically, for the i-th sub-problem, its 7' neighbor
solutions indexed with B(¢) are used as the initial solutions.
That is, Ppg is initialized as

Ppp = {x* | ¥ € P,Vk € B(i)}. (8)

Thus, the population size of Ppg is set to T'. Subsequently, the
DE search process is repeated for wy,,x iterations to minimize
G(x|\?, z) given by (6). Finally, the offspring solution for the
i-th sub-problem is determined as the best discovered solution;

i = in §(z|\, ). 9
y' =arg min j(x|)\,2) )

B. ASF/DE

1) Concept: As illustrated in Fig. 1(b), ASF/DE directly
approximates each scalarization function. Given an approxi-
mated scalarization function that is modeled by (3), §(z|\%, 2)
is formalized as

N
§(@N',2) = §'(x) = Y _wid(le - "), (10
k=1

where zF € X and w' = [wi,- -, w’]T is a weight vector
adapted for ;. The approximation accuracy of §(xz|\?, z) is
dependent only on a single model §' and N approximation

models must be built during one generation.



TABLE I

PARAMETER SETTINGS AND CATEGORICAL FEATURES OF COMPARED ALGORITHMS.

Algorithm

Category (ML)

Parameter setting

K-RVEA (2016)

HeE-MOEA (2019)
EDN-ARMOEA (2022)

ADSAPSO (2022)

CPS-MOEA (2015)
CSEA (2019)

MCEA/D (2022)

AOF/DE

AOF (GP)

AOF (SVM, RBF, PCA)
AOF (ANN)

AOF (RBF)

Classification (KNN)
Classification (ANN)

Classification (SVM)

AOF (RBF)

{91,91,77} for M = {3,7,11}, a = 2, fr = 0.1, [u| = 5, § = 0.05N, wmax = 20, de = 20, and
1.0 [25]

=100, K,, = 5,1 = 11D — 1+ 25, the population size and the generation number of NSGA-II are 50 [29]

N = 100, § = 0.08, iter = 20, k = 5, J = K = 40, wd = 1072, Ir = 0.01, iterirain = 80000,
itertest = 100, iter, = 8000, p; = 0.8, pr = 0.5, d. = 20, and p. = 1.0 [27]

N =100, K =5, 8 = 0.5, No = 200, Ns = 50, the population size and the generation number of PSO are
100 [31]

N =100, F = 0.5, CR = 1.0, and the number of offspring is 5 [33]

N = 100, H = 10, K = 6, and the number of iterations for each model construction is 800, d. = 20, and
pe = 1.0 [23], [28]

N = {91,91,77} for M = {3,7,11}, Rmax = 10, v = 1.0, C = 1.0, T = [0.1N], § = 0.9, n, = 2,
F =0.5,and CR = 1.0 [28]

N = {91,91,77} for M = {3,7,11}, T = [0.1N], F = 0.5, CR = 0.9, and wmax = 20

N
pC
N

ASF/DE

ASF (RBF)

The same setting as in AOF/DE

2) Algorithm: As shown in Algorithm 2, the only difference
from AOF/DE is to construct an approximation model of each
scalarization function, as indicated in lines 13 and 14. This
requires a modification of )/;, that is,

Vi ={g(a¥|N',z) | ¥ € X}, (11)

Note that X is determined using the same procedure as that
in AOF/DE.

Once §* has been obtained by solving (4) with X and ),
the DE-based search is executed, as in Algorithm 3, where
G(x|\?, 2) is calculated directly from (10) with g.

IV. EXPERIMENTS

This section validates the effect of approximating the scalar-
ization functions in terms of the performance and runtime. We
compare ASF/DE with AOF/DE and state-of-the-art SAEAs
adapted for high-dimensional EMOPs. All experiments re-
ported in this paper are conducted on the evolutionary multi-
objective optimization platform (PlatEMO) [58] with Intel
Core 17-9700 (3.0 GHz) CPU and 16 GB RAM.

A. Experimental design

1) Test problems: Eleven MaF problems (MaFl1 to 7, 10
to 13) [59] are used, wherein the number of objectives and
problem dimension are set to M = {3,7,11} and D =
{50,100, 150,200}, respectively. These problem scales are
based on existing studies on high-dimensional EMOPs [27],
[28], [31]. Note that MaF8, 9, 14, and 15 have been eliminated
from our experiments owing to the defined settings of the
problem dimension; D must be set to 2 and 20 x M for {MaF8,
9} and {MaF14, 15}, respectively.

2) Comparison: ASF/DE is compared with AOF/DE and
the following seven SAEAs: K-RVEA, HeE-MOEA, EDN-
ARMOEA, ADSAPSO, CPS-MOEA, CSEA, and MCEA/D.
The parameter settings and categorical features of the algo-
rithms are summarized in Table I. Note that N = 100 is
used as a common setting in this study with reference to
[22], [28]. However, for the decomposition-based SAEAs,

N ={91,91,77} is used for M = {3,7,11} through the two-
layered approach [60] with (Hy, Ho) = {(12,0), (3,1),(2,1)}
to obtain uniformly distributed weight vectors of the scalariza-
tion functions. We use the Latin hypercube sampling method
[61] to obtain the initial solutions. The maximum FEs, F'E, .,
is set to 500, including those for the initialization process.

3) Evaluation criteria: The performance of the algorithms
is evaluated using the Inverted Generational Distance (IGD)
[62]. As shown in Algorithm 2, the algorithms are forcibly ter-
minated when F'F,,,x FEs have been consumed. Subsequently,
the IGD values are calculated from the Pareto solutions that
are identified from all evaluated solutions. The average IGD
values of 21 trials with different random seeds are reported.
Furthermore, the Wilcoxon rank-sum test is applied to find the
significant difference with a significance level of p < 0.05.

B. Results

Tables II and III report the average IGD values for D =
{50,150}. The IGD values for D = {100,200} are reported
in Table S-I in Section A of the Supplementary Material.
The statistical results of the Wilcoxon rank-sum test are
summarized at the bottom of each table; “+,” “—, and “~
indicate that the IGD value of the compared algorithm is
significantly better than, worse than, and competitive with that
of ASF/DE, respectively. The statistical results for all problem
dimensions are summarized in Table IV. The mean rank that
is calculated from the average IGD values is shown in Fig. 2,
where the left and right figures show the mean ranks for the
problem dimension and number of objectives, respectively.
The runtime (wall-clock time) is shown in Fig. 3.

1) Impact of approximating scalarization functions: Table
IV confirms the positive impact of ASF/DE compared to
AOF/DE. The IGD values of ASF/DE are significantly better
than those of AOF/DE on at least 24 experimental cases for all
problem dimensions. Moreover, the number of “ —" gradually
increases with an increase in the problem dimension; for D =
200, ASF/DE does not significantly underperform AOF/DE on
any experimental cases. This superiority of ASF/DE can also
be observed in the mean rank, as illustrated in Fig. 2; the mean
rank of ASF/DE is better than that of AOF/DE.

[t}



TABLE 11
AVERAGE IGD VALUES FOR D = 50 (21 TRIALS).

EDN-
M K-RVEA HeE-MOEA ARMOEA ADSAPSO CPS-MOEA CSEA MCEA/D AOF/DE ASF/DE
3 1.935e+00 — 4.114e-01 — 2.867e+00 — 1.062e+00 —  2.077e+00 — 1.269e+00 — 4.235e-01 — 3.450e-01 — 2.154e-01
MaF1 7 4.084e+00 —  7.402e-01 —  4.413e+00 —  2.106e+00 —  3.587e+00 —  2.011e+00 —  6.593e-01 —  6.609¢-01 —  4.268e-01
11 3.909e+00 —  8.378e-01 —  4.878¢+00 —  1.909¢+00 —  4.061e+00 —  1.950e+00 —  6.852¢-01 —  1.042e+00 —  5.018e-01
3 2.033e-01 — 1.101e-01 —  2.517e-01 — 1.577e-01 —  2.215e-01 — 1.695¢-01 —  9.842¢-02 —  8.093e¢-02 =~  7.551e-02
MaF2 7 2.477e-01 + 2.610e-01 + 2.647e-01 + 2.274e-01 + 2.364e-01 + 3.003e-01 ~ 2.810e-01 =~ 2.879¢-01 =~ 2.870e-01
11 3311e-01 +  3.014e-01 +  3.455e-01 +  2.948e-01 +  3.182e-01 +  3.998e-01 ~  3.882e-01 ~ 3.982e-01 ~  4.016e-01
3 3.337e+07 — 1.641e+07 — 1.864e+07 —  4.009e+06 —  9.647e+06 —  2.307e+07 — 1.591e+06 ~ 3.321e+07 —  2.362e+06
MaF3 7 2510e+07 — 1.791e+07 —  1.518e+07 —  1.733e+07 —  9.019e+06 —  2.295e+07 —  1.429e+06 —  2.478e+07 —  1.162e+06
11 2.275e+07 — 1.810e+07 — 1.178e+07 — 1.545e+07 —  7.862e+06 — 1.900e+07 — 1.211e+06 —  2.311e+07 —  9.726e+05
3 1.047e+04 — 1.221e+04 — 1.139e+04 —  6.234e+03 ~  9.544e+03 — 6.419e+03 — 4.703e+03 ~  8.622e+03 —  5.815e+03
MaF4 7 1.418e+05 — 1.909e+05 — 1.789e+05 — 1.392e+05 — 1.569¢+05 — 1.038e+05 —  7.864e+04 =~ 1.342e+05 —  8.574e+04
11 2.295e+06 —  2.744e+06 —  2.579e+06 —  2.072e+06 —  2.174e+06 —  1.567e+06 —  9.952e+05 ~ 1.916e+06 —  1.253e+06
3 1.785e+01 —  6.382e+00 —  8.736e+00 —  4.191e+00 +  8.640e+00 — 5.116e+00 ~ 5243e+00 ~ 1.572e+01 —  4.814e+00
MaF5 7 9.219e+01 —  7.866e+01 —  3.047e+01 +  4.022e+01 ~ 4.033e+01 ~  2.666e+01 + 3.765¢+01 ~  7.020e+01 —  4.013e+01
11 1.423e+03 —  8.767e+02 —  2.499e+02 +  4.019e+02 —  3.984e+02 —  2.749e+02 ~ 3.989e+02 — 6.575e+02 — 2.917e+02
3 1.992e+02 —  2.448e+01 —  2.532e+02 —  7.844e+01 — 1.556e+02 — 1.018e+02 — 1.813e+01 —  2.923e+01 — 1.027e+01
MaF6 7 2262e+02 —  3.830e+01 —  2.255e+02 —  1.477e+02 —  1.591e+02 —  1.069e+02 —  1.863e+01 —  3.705e+01 —  1.069e+01
11 1.777e+02 —  3.523e+01 —  2.004e+02 — 1.679e+02 — 1.451e+02 —  8.613e+01 —  2.563e+01 —  5.233e+01 — 1.918e+01
3 5527e400 ~ 3.891e+00 ~ 4.111e+00 ~  5.559¢e+00 —  8.863e+00 — 4.929¢+00 —  8.330e+00 —  7.198e+00 —  3.626e+00
MaF7 7 1.196e+01 — 1.562e+01 — 8.878e+00 — 1.877e+01 —  2.064e+01 —  2.350e+01 — 1.885e+01 — 1.264e+01 —  3.244e+00
11 1.675e+01 —  2.885¢+01 —  1.690e+01 —  3.002e+01 —  3.303e+01 —  3.815e+01 —  2.806e+01 —  2.224e+01 —  5.434e+00
3 2257e+00 —  1.989e+00 — 2.063e+00 —  2.081e+00 — 2.270e+00 —  1.586e+00 + 2.168¢+00 —  1.943¢e+00 —  1.893e+00
MaFI10 7  2.945e+00 —  2.866e+00 ~  2.782e+00 +  2.738¢+00 +  2.948¢+00 —  2.635¢+00 + 2.982e+00 —  2.826e+00 +  2.904e+00
11 3.581e+00 ~  3.576e+00 4+ 3.471e+00 +  3.449e+00 + 3.624e+00 ~ 3.507e+00 + 3.647e+00 ~  3.614e+00 ~  3.620e+00
3 8.817e-01 ~ 6.918e-01 + 7.836e-01 =~ 7.016e-01 + 8.246e-01 ~ 5.879¢e-01 + 7.354e-01 + 8.007e-01 ~ 8.077e-01
MaF11 7 2.805e+00 — 2.221e+00 =~  1.616e+00 +  1.629¢+00 +  1.796e+00 +  1.907e+00 + 2.207e+00 ~ 2.367e+00 ~  2.191e+00
11 4.396e+00 ~ 3.911e+00 ~  2.825¢+00 + 3.004e+00 +  3.026e+00 +  4.461e+00 ~  3.387e+00 +  4.410e+00 ~  4.384e+00
3 9.223e-01 —  8.484e-01 — 9.375¢-01 —  7.960e-01 — 9.067¢-01 —  8.511e-01 —  7.692¢-01 —  8.427e-01 —  6.716e-01
MaF12 7 3.088e+00 +  3.590e+00 ~  3.493e+00 + 3.710e+00 ~ 3.775e+00 ~ 4.067e+00 — 3.749e+00 =~  3.793e+00 =~  3.739e+00
11 7.448e+00 +  8.395¢+00 +  8.615e+00 +  8.844e+00 =~ 8.931e+00 =~  1.004e+01 —  8.660e+00 +  9.694e+00 —  9.162e+00
3 2224e+00 —  1.170e+00 —  2.607e+00 —  9.819¢-01 ~ 2.393e+00 — 1.182e+00 — 1.117e+00 — 1.782e+00 —  8.058e-01
MaF13 7  2.062e+04 — 3.972e+01 ~ 1.259e+03 —  4.090e+00 +  2.706e+03 —  8.091e+00 +  2.852e+00 +  1.270e+04 —  2.202e+02
11 4303e+04 — 8.286e+01 ~ 1.429e+03 —  1.135e+01 ~ 1.985e+03 — 1.736e+01 ~ 3.002e+00 + 3.982e+04 —  9.295e+01
+/ —/ =~ 4/25/4 512177 10/21/2 9/18/6 4/24/5 7/20/6 5/17/11 1/24/8 -
TABLE III
AVERAGE IGD VALUES FOR D = 150 (21 TRIALS).
EDN-
M K-RVEA HeE-MOEA ARMOEA ADSAPSO CPS-MOEA CSEA MCEA/D AOF/DE ASF/DE
3 1.074e+01 — 5.031e+00 —  1.152e+01 — 4.379e+00 —  6.581e+00 —  7.545e+00 —  9.427e¢-01 —  2.258e+00 —  6.491e-01
MaF1 7 2.192e+01 —  9.567e+00 —  2.207e+01 —  8.131e+00 — 1.223e+01 — 1.28%+01 — 1.187e+00 —  3.722e+00 — 9.926e-01
11 2.665e+01 — 1.271e+01 —  2.833e+01 — 1.062e+01 — 1.510e+01 — 1.617e+01 — 1.194e+00 —  5.516e+00 — 9.261e-01
3 8.425e-01 — 4.459¢-01 — 8.455e-01 — 4.260e-01 — 5.533e-01 — 5.987e-01 — 2.001e-01 — 2.630e-01 — 1.169e-01
MaF2 7 5219e-01 —  3.390e-01 +  4.848e-01 —  4.557e-01 —  4.696e-01 —  5.06le-01 —  3.967¢-01 —  4.092e-01 —  3.714e-01
11 5.070e-01 — 3.471e-01 + 4.439-01 + 4.309e-01 + 4.547e-01 =~ 5.052e-01 — 4.655e-01 ~ 4.948e-01 =~ 4.749¢-01
3 1.198¢+09 —  2.098¢+08 —  2.109e+08 —  7.193e+07 —  1.157e+08 —  5.409e+08 —  1.756e+07 + 1.199e+09 —  2.176e+07
MaF3 7 7.702e+08 —  3.270e+08 —  2.019e+08 —  5.048e+08 — 1.298e+08 —  4.615e+08 — 1.856e+07 —  7.767e+08 — 1.341e+07
11 1.407e+09 —  3.099¢+08 —  1.885e+08 —  5.434e+08 —  1.213e+08 —  4.355e+08 —  1.768e+07 —  1.407e+09 —  1.222e+07
3 4207e+04 —  4.215e+04 — 3.990e+04 —  2.455e+04 — 3.262e+04 — 3.031e+04 — 1.879e+04 — 2.544e+04 —  1.571e+04
MaF4 7 7.044e+05 —  6.898e+05 —  6.742e+05 —  5.194e+05 —  5.848e+05 —  6.345e+05 —  3.200e+05 —  3.585e+05 — = 2.576e+05
11 1.079e+07 — 1.074e+07 — 1.053e+07 —  8.437e+06 —  9.091e+06 — 1.032e+07 —  4.827e+06 —  5.576e+06 —  4.087e+06
3 6.372e+01 —  2.81le+01 — 2.676e+01 — 1.146e+01 —  2.577e+01 — 1.742e+01 —  9.771e+00 —  4.959e+01 —  6.485e+00
MaF5 7 4.289%+02 —  1.694e+02 —  4.999e+01 =~ 5.456e+01 ~ 5.187e+01 ~ 4.878e+01 ~ 4.923e+01 ~ 1.803e+02 —  6.074e+01
11 5926e+03 —  1.435¢+03 —  3.444e+02 + 4.942e+02 —  5.032e+02 —  3.390e+02 +  4.910e+02 —  1.290e+03 —  4.152e+02
3 1.001e+03 — 4.661e+02 — 9.847e+02 — 4.304e+02 — 5.360e+02 —  6.669e+02 —  6.535e+01 —  2.661e+02 —  5.038e+01
MaF6 7 9.743e+02 —  3.818e+02 —  9.544e+02 —  7.605e+02 —  5.859¢+02 —  7.202e+02 — 1.091e+02 —  2.954e+02 —  7.337e+01
11 9.138e+02 —  3.255¢+02 —  9.180e+02 —  7.460e+02 —  5.658e+02 —  7.129e+02 —  1.452e+02 —  3.378e+02 —  9.482e+01
3 1.069e+01 —  8.338e+00 +  6.965e+00 +  7.289e+00 +  1.023e+01 —  7.016e+00 + 1.021e+01 — 1.014e+01 —  8.952e+00
MaF7 7 2.648¢+01 — 2247e+01 —  1.959e+01 ~ 2.357e+01 —  2.543e+01 —  2.670e+01 —  2.387e+01 —  2.263e+01 —  1.841e+01
11 4.252e+01 —  3.907e+01 —  3.255e+01 =~  3.700e+01 —  4.049e+01 — 4.312e+01 —  3.820e+01 —  3.788e+01 —  3.164e+01
3 2.397e+00 —  2.098e+00 —  2.087e+00 —  2.116e+00 —  2.261e+00 — 1.628e+00 +  2.221e+00 — 1.893e+00 + 1.963e+00
MaF10 7 3.029e+00 — 2.913e+00 ~  2.832¢+00 +  2.807e+00 + 2.957e+00 —  2.627e+00 +  2.983e+00 —  2.849e+00 +  2.915e+00
11 3.693e+00 —  3.625¢+00 =~  3.525¢+00 +  3.486e+00 + 3.632e+00 ~  3.523e+00 +  3.643e+00 ~ 3.613e+00 ~  3.627e+00
3 1.088¢+00 —  7.689¢-01 ~  8.308e-01 —  7.118¢-01 +  8.493e-01 —  7.147¢-01 +  6.946e-01 +  8.070e-01 ~  7.818e-01
MaF11 7 3.074e+00 —  2.294e+00 =~ 1.693e+00 + 1.845e+00 + 1.799e+00 + 1.965e+00 + 1.768e+00 +  2.083e+00 ~  2.321e+00
11 5.556e+00 — 3.951e+00 =~  3.022e+00 +  3.242¢+00 +  3.076e+00 +  4.447e+00 ~  3.393e+00 +  4.106e+00 ~  4.541e+00
3 1.151e+00 — 9.095e-01 — 1.030e+00 — 9.180e-01 — 9.970e-01 — 9.427e-01 — 7.916e-01 — 8.692¢-01 — 6.634e-01
MaF12 7  4.606e+00 — 3.323e+00 =~  3.752e+00 —  3.835e+00 —  3.708e+00 —  4.057e+00 —  3.559e+00 —  3.753e+00 —  3.301e+00
11 1.013e+01 — = 7.622e+00 +  9.151e+00 —  9.382e+00 — 8.870e+00 —  9.283e+00 —  8.904e+00 —  9.261e+00 —  8.479e+00
3 4.040e+00 — 2.588e+00 —  3.769e+00 —  1.039e+00 ~ 2.386e+00 —  2.254e+00 — 1.121e+00 —  2.780e+00 —  9.885e-01
MaF13 7 3.910e+04 —  6.258e+02 — 1.417e+04 —  6.064e+00 ~  2.760e+03 — 1.841e+02 —  3.497e+00 +  3.964e+04 — 1.768e+01
11 9.607e+04 —  1.444e+03 — 2.321e+04 — 8.473e+00 + 4.868¢+03 —  3.709e+02 —  4.270e+00 +  7.718e+04 —  5.238e+01
+/ =/~ 0/33/0 4/23/6 712313 8/22/3 2/28/3 7/24/2 6/24/3 2/26/5 -




SYMBOLS “+,” *

TABLE IV
STATISTICAL RESULTS OF COMPARISON WITH ASF/DE (+/ —/=). THE

—,” AND “/” INDICATE THAT THE IGD VALUE OF THE

COMPARED ALGORITHM IS SIGNIFICANTLY BETTER THAN, WORSE THAN,
AND COMPETITIVE WITH THAT OF ASF/DE, RESPECTIVELY.

——K-RVEA —+— HeE-MOEA —e- EDN-ARMOEA

D K-RVEA HeE-MOEA  EDN-ARMOEA  ADSAPSO
50 4/25/4 512177 10/2172 9/18/6
100 1/32/0 5/24/4 6/24/3 9/20/4
150 0/33/0 4/23/6 7/23/3 8/22/3
200 0/33/0 4/24/5 5/23/5 512117
D CPS-MOEA CSEA MCEA/D AOF/DE
50 4/24/5 7120/6 517711 1/24/8
100 3/26/4 7/22/4 /1917 172517
150 2/28/3 712412 6/24/3 2/26/5
200 2/29/2 4/24/5 5/23/5 0/28/5
TABLE V

STATISTICAL RESULTS OF COMPARISON WITH AOF/DE (+/ —/=). THE

SYMBOLS “+,” “ —" AND “ =" INDICATE THAT THE IGD VALUE OF THE

COMPARED ALGORITHM IS SIGNIFICANTLY BETTER THAN, WORSE THAN,
AND COMPETITIVE WITH THAT OF AOF/DE, RESPECTIVELY.

D K-RVEA HeE-MOEA  EDN-ARMOEA  ADSAPSO
50 5/13/15 14/8/11 19/13/1 18/10/5
100 1/28/4 11/13/9 14/14/5 12/10/11
150 0/27/6 12/13/8 15/14/4 12/12/9
200 0/28/5 10/12/11 16/14/3 16/12/5
D CPS-MOEA CSEA MCEA/D ASF/DE
50 12/14/7 16/10/7 197777 24/1/8
100 10/14/9 13/13/7 21/517 25/117
150 12/16/5 12/15/6 21/4/8 26/2/5
200 11/16/6 11/15/7 22/4/7 28/0/5

As reported in Fig. 3, ASF/DE performs sufficiently faster
than AOF/DE. The runtime of AOF/DE is clearly dependent
on the number of objectives; however, ASF/DE relaxes this
dependency. This is because that the number of required
approximation models depends only on N in ASF/DE. This
observation will be theoretically confirmed in Section VI.

2) Comparison with modern SAEAs: The IGD values of
ASF/DE are sufficiently competitive with those of the com-
pared algorithms while exhibiting a reduced runtime, as shown
in Table IV and Fig. 3. Specifically, the number of “—" is
more than 16 cases, but that of “+” is curbed to up to 10
for all problem dimensions. Furthermore, the number of “ —"
gradually increases with an increase in the problem dimension.
Consequently, ASF/DE has been assigned to the first rank even
when the problem dimension and the number of objectives
increase (see Fig. 2). As illustrated in this figure, ASF/DE is
scalable, especially for the problem dimension.

We further validate that the above impact of ASF/DE as
achieved by approximating scalarization functions. Table V
summarizes the statistical results (+/ —/ =) when the baseline
algorithm is set to AOF/DE, where “+) “— and “~”
indicate that the IGD value of the compared algorithm is
significantly better than, worse than, and competitive with that
of AOF/DE, respectively. The superiority of AOF/DE cannot
be observed except for K-RVEA, and MCEA/D sufficiently
outperforms AOF/DE.

This observation confirms that approximating scalarization
functions contributes to the superiority of ASF/DE, rather than
its basic algorithm, that is, the use of RBF models with our
defined training samples and the DE-based solution search.
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Fig. 2. Mean rank of compared algorithms. The left and right figures present
the average values for the D-dimensional and M-objective experimental
cases, respectively.
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Fig. 3. Average runtime for computing one trial. The left and right figures
further show the average runtime for the D-dimensional and M -objective
experimental cases, respectively.

3) Other insights: Based on our comprehensive compar-
ison, the following insights are presented, particularly for
approximation-based SAEAs.

o The effect of the dimension-reduction technique may be
enhanced further by conducting the evolutionary search
in a reduced search space, as ADSAPSO performs ef-
fectively. This tendency is consistent with recent obser-
vations on autoencoder-embedded approaches for single-
objective problems [63], [64].

o Among the approximation-based SAEAs, K-RVEA, HeE-
MOEA, and EDN-ARMOEA stably improve their mean
rank with the increase in the objectives. Although we
have not identified a specific reason for this, the use of
GP models and their alternatives tends to improve the
scalability of SAEAs for the number of objectives.

o In addition to the above insight, the mean rank of
EDN-ARMOEA clearly improves when the number of



TABLE VI
SUMMARY OF STATISTICAL RESULTS ON D = {10, 20,30} (+/ —/=).

D K-RVEA HeE-MOEA  EDN-ARMOEA  ADSAPSO
10 16/10/3 7/19/3 12/14/3 16/9/4
20 18/12/3 9/21/3 11/19/3 13/13/7
30 13/16/4 5/21/7 11/21/1 11/16/6
D | CPS-MOEA CSEA MCEA/D AOF/DE
10 7/19/3 14/8/7 9/9/11 5/15/9
20 6/24/3 11/13/9 6/17/10 3/19/11
30 5/24/4 10/16/7 8/16/9 2/21/10

objectives increases. EDN-ARMOEA constructs a single
ANN model that approximates M objective values in a
lump, and this approach is intuitively antithetical to that
of ASF/DE. Thus, the potential of approximation-based
SAEAs may be further expanded with this direction.

V. ADDITIONAL INSIGHTS

We provide additional insights into the ASF/DE framework.
Specifically, this section is mainly composed of two parts:
the impact on low-/middle-dimensional EMOPs and a demon-
stration of the affinity of ASF/DE with the DE settings. All
experiments employ the same experimental settings with 21
trials as in the previous section, unless stated otherwise.

A. Results on low- and middle-dimensional EMOPs

Supposing that a deterioration in the approximation accu-
racy may occur on any problem dimension, we can expect
that the effectiveness of ASF/DE is observed even in low- and
middle-dimensional problems. We provide additional results
in this regard.

The problem dimension is set to D = {10, 20,30} for the
low-/middle-dimensional problem scales [65]. Note that MaF7,
10, 11, and 12 for {D = 10, M = 11} have been eliminated
because these problems define D as greater than M [59]. The
statistical results are summarized in Table VI, and the specific
IGD values are reported in Table S-II in Section A of the
Supplementary Material.

As shown in the table, ASF/DE derives competitive perfor-
mance with the compared algorithms except for K-RVEA. The
effectiveness of ASF/DE gradually increases with the increase
in the problem dimension, as the number of “ —" increases.
Furthermore, ASF/DE sufficiently outperforms AOF/DE for
all problem dimensions.

Thus, the positive impact of ASF/DE can be observed
even for 20, 30-dimensional problems. This suggests that the
approximation of scalarization functions can be a “fast-acting”
strategy to handle an increase in the problem dimension.

B. Impact of DE settings

Existing single-objective SAEAs are often designed to
search local regions around superior solutions with surrogate
models specialized to those regions [65]-[67]. Inspired by this
insight, AOF/DE and ASF/DE have employed the current-to-
best/1 mutation and neighbor solutions as the initial solutions.
We validate this effect on ASF/DE.

Two ASF/DE variants are compared: ASF/DE/rand/1, which
uses the rand/1 mutation, and ASF/DE/LHS, which uses

TABLE VII
STATISTICAL RESULTS OF ASF/DE WITH RAND/1 MUTATION AND
RANDOM INITIAL SOLUTIONS ( +/ —/=).

D ASF/DE/rand/1  ASF/DE/LHS
10 8/9/12 8/19/2
20 11/5/17 712412
30 14/2/17 7/26/0
50 12/3/18 7/25/1
100 8/11/14 8/25/0
150 8/13/12 6/25/2
200 9/14/10 6/26/1

random initial solutions for DE, generated using the Latin
hypercube sampling method. We set D = {10, 20, 30, 50,
100, 150, 200} for a comprehensive comparison. The statistical
results are summarized in Table VII and the IGD values are
reported in Table S-IIT in Section A of the Supplementary
Material. Note that “+,” “— and “~” indicate that the
IGD value of the ASF/DE variant is significantly better than,
worse than, and competitive with that of the default version
of ASF/DE, respectively.

We can firstly confirm the effect of using neighbor solutions.
The obtained IGD values of ASF/DE are significantly better
than those of ASF/DE/LHS on at least 19 experimental cases
for all problem dimensions. However, a relatively low effect is
observed for the current-to-best/1 mutation. For 20 < D < 50,
ASF/DE/rand/1 improves the IGD values of ASF/DE on at
least 11 experimental cases. When D > 100, the number of
“—" gradually increases greater than that of “+”.

The results demonstrate the possibility of further improving
ASF/DE by tuning the DE settings. More generally, a possible
advantage of ASF-based SAEAs is that we can use various
insights in the field of single-objective optimization. Although
ASF/DE has been designed in a straightforward manner, it is
expected that ASF-based SAEAs may be advanced further in
this regard.

C. Impact of training dataset

The training samples in AOF/DE and ASF/DE are defined as
the top N solutions, as ranked by the non-dominated sorting.
This definition is better suited to AOF/DE because superior
solutions that are well distributed in the objective space can
be obtained. Accordingly, we discuss other possible definitions
of the training samples suitable for ASF/DE.

A typical strategy is the use of all evaluated solutions. How-
ever, as mentioned in Section V-B, it may be more effective
to specialize an approximated scalarization function to a good
region for each corresponding sub-problem. Accordingly, we
test the following two definitions for the training samples:

o All evaluated solutions in A are used as the training
samples. ASF/DE with this definition is denoted as
ASF/DE/A.

e The top NN solutions ranked with the values of each
scalarization function are used as the training samples,

that is,
Xy = {a* | a" e AT}, (12)

where AY is a duplicate of A in which the solutions have
been sorted by g(x|\%, z) in the ascending order. Thus,



TABLE VIII
STATISTICAL RESULTS WITH DIFFERENT TRAINING SAMPLES (+/ —/~).

D | ASF/IDE/A  ASF/DE/AY
10 410125 8/0/21
20 2/1/30 6/0/27
30 1/0/32 8/0/25
50 2/3/28 5/3/25
100 3/2/28 8/2/23
150 3/1/29 6/2/25
200 2/1/30 3/1/29

the set of training samples &; is constructed for each
sub-problem. ASF/DE with this definition is denoted as
ASF/DE/AY.

We set D = {10,20,30, 50,100, 150,200}. The statistical
results are summarized in Table VIII, in which “+,” “ -
and “~” indicate that the IGD value of the ASF/DE variant is
significantly better than, worse than, and competitive with that
of the default version of ASF/DE, respectively. The IGD values
are reported in Table S-IV in Section A of the Supplementary
Material.

From the table, there is almost no sufficient difference
between ASF/DE/A and ASF/DE. Thus, ASF/DE can achieve
similar performance to ASF/DE/A while reducing the number
of training samples. However, ASF/DE/AY improves the IGD
value of ASF/DE on certain experimental cases. This tendency
is consistent with known insights, as discussed in Section V-B.

VI. COMPLEXITY ANALYSIS

As revealed in Section IV, ASF/DE performs faster than
AOF/DE. Although AOF/DE and ASF/DE use almost the same
algorithmic procedures, their model construction and predic-
tion frequencies differ. Therefore, we expect this difference to
be the main factor in determining the computational efficiency.
The prime goal here is to theoretically confirm this insight by
conducting a complexity analysis.

Apart from the algorithmic consistency between AOF/DE
and ASF/DE, the design of existing SAEAs has been varied
in terms of evolutionary algorithms, machine learning, and
model management strategies. For example, different from
AOF/DE, K-RVEA runs RVEA [68] with M GP models, and
|u| new solutions per model construction are evaluated with the
original objective functions. Thus, it is worth to understand the
theoretical boundary that ASF-based SAEAs perform faster
or slower than AOF-based SAEAs, under the freedom of
such methodological varieties. A complete comparison is non-
trivial, but the computational efficiencies of AOF/ASF-based
SAEAs can be roughly compared, as demonstrated in this
section. Thus, the secondly goal of this section is to provide
general insights in this regard.

Our main assumption is to focus only on the computational
cost consumed for the model construction and prediction.
The big-O notation is generally used to represent the time
complexity of algorithms, which is suitable for asymptotic
analysis, such as O(n?) for n? 4+ 1000n as n — oo. How-
ever, this asymptotic representation may hinder a comparative
discussion of the computational efficiency of SAEAs because

Algorithm 4 Generalized AOF/ASF-based SAEA

1: Generate P with NV initial evaluated solutions

2: Set FEto FE =N

3: Setnto 0

4: while True do

5: Updatenasn<+n+1

6:  if AOF-based SAEA then

7: Construct M approximation models of objective functions
trained with n samples

8:  else if ASF-based SAEA then

9: Construct N approximation models of scalarization func-

tions trained with n samples

10:  end if )

11:  Generate n, solutions {u'};, by optimizing the approxi-
mation models through an optimizer; the optimizer generates
n. candidate solutions during the search, and their quality is
estimated with the model predictions

12 for i =1 to n, do

13: Evaluate u® with FE«+ FE+1
14: Update P with u*

15: if FE = FE.x then

16: return P

17: end if

18: end for
19: end while

possible factors of the computational order are typically re-
stricted to small-scale values, and the impact of the coefficient
parameters of these factors may be unignorable. Accordingly,
we compare the number of computations without asymptotic
analysis.

A. Preparation

Here, we suppose generalized descriptions of AOF/ASF-
based SAEAs, as described in Algorithm 4, in which a
solution-generation process with an optimizer remains a black-
box procedure in line 11, and 7 indicates the number of
generations. We use the following four assumptions. First, the
optimizer generates n. candidate solutions during the search.
The quality of all n. candidate solutions must be estimated
with the model predictions, and no additional prediction is
performed. Furthermore, n,, solutions to be evaluated with the
original objective functions are selected from the n. candidate
solutions for each execution of the optimizer, thereby consum-
ing n, FEs. Finally, AOF/ASF-based SAEAs use common
values of n. and n, as well as the same optimizer and the
same machine learning algorithm, for a fair comparison.

Algorithm 4 has the freedom in selecting the optimizer
and machine learning as well as n. and n,, which increases
the generality of our analytical conclusions. Moreover, the
actual frameworks of AOF/DE and ASF/DE can be precisely
converted into Algorithm 4 (see Section VI-C).

We use the following notations:

Tmodel Tmodel

const + Lpreq' . The number of computations consumed when

constructing a single approximation model and
calculating its single prediction, respectively.

n, The number of model constructions and pre-
dictions consumed until the termination of the

algorithm, respectively.

* *
const’ npred



Tonsts Tpreq The number of computations consumed in the
model construction and prediction until the
termination of the algorithm, respectively.

T*

wia The total number of computations consumed

in the model construction and prediction in the
algorithm.

In the above, * is either AOF or ASF, and T*

ol 18 obtained as

* ok *
total — Tconst + pred

ok model * model

= Meonst X zjconsz + npred X Tpred ) (13)

where the time complexity of the algorithms is obtained as
O(T;,,) if the big-O notation is used.

Given FE|.x, the maximum number of generations 7)pyax
is determined as Nmax = [(FEmax — N)/n,]. The number of

model constructions 7, is determined as

FEmax - N
%ﬁ—[]xM, (14)
Ty
FE ax — N
%wai]xN, (15)
Ty

because AOF/ASF-based SAEAs build M and N approxima-
tion models, respectively, for each generation.

Here, nmax X 1 candidate solutions are eventually generated
until the termination of the algorithm. Thus, the number of
model predictions n,,, is determined as

FEmax - N
nggg[7hL] X e X M, (16)
FEm X N
st _ [n] X e, a7

because AOF-based SAEAs require M predictions for each
candidate solution. Thus, according to (13),

TAOF _ ’VFEmaX B N-‘ (Tmodel x M + Tmo:{lel X Mg X M),

total — n. const pre
(18)
FEmax -N
m%={}aﬁﬁxN+m%%n& (19)
m
can be obtained.
B. Theoretical boundary
Based on (14) to (17), the following equalities hold:
N
Noonst = 3 Meonsr Mpred = 37 "pred (20)

These equalities reveal the insights mentioned in Section I;
ASF-based SAEAs require a higher computational cost for the
model construction than AOF-based SAEAs because N > M
typically holds, and it can save the model prediction while
eliminating the dependence on the number of objectives.

Recalling our assumption that the computational efficiency
of SAEAs is discussed only for the model construction and
prediction, ASF-based SAEAs perform faster than AOF-based
SAEAs if the following condition is satisfied:

TASF

AOF
total <T;

total »

ey

»
a

g

T 10°F T 3 10% T ]
& i T o i g ool —Tou 1
S s T E i |
S otk ; |
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Fig. 4. Approximated number of computations of AOF/DE and ASF/DE with
parameter settings employed in Section IV.

which can now be specified as

N — M Tyode
ne > cont (22)
M - 1 Tpreg !

according to (18) and (19). Note that T7%" and T7o¢* must
be greater than zero. A solution of n. that satisfies the above
inequality always exists, as its right term is always smaller
than oo because M > 1 holds on MOPs. The difference in the
computational efficiency of AOF/ASF-based SAEAs does not
depend on n, but on N, M, or the employed approximation
model. Importantly, (22) can be an “easy-to-use” criterion for
determining whether ASF-based SAEAs perform faster than
AOF-based SAEAs.

Although it is difficult to formalize T/’ and Trode
strictly, they can be substituted with the runtime consumed in
processing the 7704 and T/ computations, respectively.
For example, according to our experiment, the employed
RBF models consumed 0.0118 and 0.0036 seconds for sin-
gle model construction/prediction with 100 training samples,
respectively; and thus, T77od! /model ~ 3 978,

const pred

C. AOF/DE vs. ASF/DE

As a case study, we validate our theoretical results in Section
VI-B using the actual frameworks of AOF/DE and ASF/DE.

To begin with, we identify the specific values of n,, and n,
for both algorithms. These execute DEs N times (that is, for
N sub-problems) for each model construction, wherein each
DE produces T(1 + wmax) solutions including the 7T initial
ones. Note that T is the population size of DE. Therefore,
we can consider that both algorithms execute an aggregated
optimizer of N DEs per model construction, and that these
evaluate N offspring solutions selected from TN (1 + wmax)
candidate solutions. Thus, n,, = N and n. = TN (1 + wmax)
are obtained. Moreover, we use 7"9%! / Tp”}gg‘” ~ 3.278.

Fig. 4 shows the theoretical curves of T7,,,,, T/} ;. and Tp7,
calculated from (13) with the parameter settings employed in
Section IV. As noted in (20), T45F is greater than 7497, and
T/sy is smaller than 7507, Tmportantly, Ty, is sufficiently
smaller than 7). ,, indicating that the computational cost of the

model construction is unignorable in our case. Consequently,



TASE s sufficiently smaller than TA%; therefore, it is expected

that ASF/DE performs faster than AOF/DE under our experi-
mental settings. Furthermore, the landscapes of T49F and TASF
are similar to those of the actual runtime of both algorithms
(see right figure in Fig. 3).

Finally, we theoretically demonstrate that the condition of
(22) has been satisfied with our parameter settings. Recalling

that n, = TN (1 + wmax), (22) can be rewritten as

N - M T
—1
TN (M — 1) Trmodel

pre

(23)

Wmax >

The above inequality holds if the following is satisfied:
1 Tmodel

const

T(M —1) Tpoge

(24)

Wmax >
Accordingly, by substituting our parameter settings into (24);
that is, 7 = [0.1N] and 7model /Tmodel ~ 3278, we can
identify that wpax > 1 for M = {3,7,11}. Therefore, we
conclude that ASF/DE has performed faster than AOF/DE
because we set wpax = 20.
More generally, (24) indicates that ASF/DE always per-
forms faster than AOF/DE if

model

const

model
Tp red

T(M —1) > (25)
holds, because this inequality always satisfies wpyax > 1. For
example, because we set 7' = 8 for {N,M} = {77,11},
ASF/DE should perform faster than AOF/DE unless 779%! is
more than 80 times greater than 7707

VII. CONCLUSION

This study first hypothesized that the approximation of
scalarization functions is reasonable to hedge the risk of unre-
liable approximations, and that this benefit should emerge in
high-dimensional EMOPs. We introduced and compared two
surrogate-assisted extensions of MOEA/D, namely AOF/DE
and ASF/DE, in which the objective and scalarization func-
tions are approximated, respectively. The experimental results
demonstrated that ASF/DE significantly outperforms AOF/DE
on problems with up to 200 dimensions, thereby supporting
the hypothesis of this study.

In addition to the above fundamental insights, the results
revealed that ASF/DE is sufficiently competitive with state-
of-the-art SAEAs adapted for high-dimensional EMOPs, while
reducing its runtime. Therefore, we suggest that the approx-
imation of scalarization functions may be a promising new
strategy for handling the high dimensionality of problems.

There probably exists no consensus for the computational
efficiency of ASF-based approaches. Therefore, we attempted
mathematical organization in this regard. Our theoretical re-
sults suggest that ASF-based SAEA can be computationally
efficient unless the computational time for the model construc-
tion is significantly, say 10 times, greater than that for the
model prediction. The results also indicated an “easy-to-use”
criterion for the approximate comparison of the computational
efficiency of AOF/ASF-based SAEAs.

Because ASF/DE has been designed in a straightforward
manner, we expect that the potential of ASF-based SAEAs
can be further derived using modern insights and extensions
that have been accumulated in single-/multi-objective SAEAs.
We will explore this issue in future work.
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This supplementary material provides additional results
for the main manuscript entitled “Impact of Approximating
Scalarization Functions on High-dimensional Multiobjective
Optimization: A Fast and Scalable Approach”.

A. IGD VALUES

This section reports the obtained IGD values on experiments
conducted on the main manuscript.

Tables S-I and S-II report the IGD values for D =
{100,200} and {10, 20,30} on the MaF problems (21 trials),
respectively. The symbols, “+,” “—" and “~” indicate that
the IGD value of the compared algorithm is significantly
better than, worse than, and competitive with that of ASF/DE,
respectively. Note that MaF7, 10, 11, and 12 for {D =
10, M = 11} have been eliminated because these problems
define D as greater than M.

Table S-III reports the IGD values of two alternatives,
ASF/DE/rand/1 and ASF/DE/LHS. Note that “+,” “—." and

113 bl

~” indicate that the IGD value of the alternative is signif-
icantly better than, worse than, and competitive with that of
the default version of ASF/DE, respectively.

Tables S-IV reports the IGD values of two alternatives,
ASF/DE/A and ASF/DE/AY. The symbols, “+,” “— and
“~” indicate that the IGD value of the alternative is signif-
icantly better than, worse than, and competitive with that of
the default version of ASF/DE.



TABLE S-1
AVERAGE IGD VALUES FOR D = {100,200} (21 TRIALS).

(a) D =100
EDN-
M K-RVEA HeE-MOEA ARMOEA ADSAPSO CPS-MOEA CSEA MCEA/D AOF/DE ASF/DE
3 6.464e+00 —  1.986e+00 —  7.074e+00 —  2.580e+00 —  4.191e+00 —  4.083e+00 —  6.902e-01 —  1.164e+00 —  4.670e-01
MaF1 7 1.254e+01 —  3.487e+00 —  1.329e+01 —  4.731e+00 —  7.704e+00 —  6.615¢+00 —  8.953e-01 —  1.982e+00 —  7.166e-01
11 1.593e+01 —  3.765e+00 —  1.652e+01 —  5.967e+00 —  9.935¢+00 —  8.369¢+00 —  8.90le-01 —  3.008e+00 —  6.728e-01
3 5.305e-01 — 2.476e-01 —  5.411e-01 — 2.655e-01 —  4.115e-01 — 3.443e-01 — 1.581e-01 — 1.733e-01 — 1.001e-01
MaF2 7 3.890e-01 — 2.863e-01 +  3.668e-01 — 3.350e-01 ~  3.627e-01 —  3.973e-01 — 3.553e-01 ~  3.417e-01 ~  3.445e-01
11 4.022e-01 +  2.982e-01 +  3.78%-01 +  3.491e-01 +  3.668¢-01 +  4.304e-01 ~  4.158e-01 +  4.320e-01 ~  4.334e-01
3 2.658e+08 —  7.817e+07 —  8.612e+07 —  1.974e+07 — 4.743e+07 — 1.206e+08 —  7.150e+06 + 2.626e+08 —  1.266e+07
MaF3 7 1.755e+08 —  9.493e+07 —  8.067e+07 —  7.953e+07 —  4.826e+07 —  1.327e+08 —  8.157e+06 —  1.713e+08 —  6.405e+06
11 2.707e+08 —  9.548e+07 —  7.419e+07 —  1.125e+08 —  4.623e+07 —  1.088e+08 —  7.944e+06 — 2.707e+08 —  5.065e+06
3 2.582e+04 —  2.701e+04 —  2.520e+04 —  1.712e+04 —  2.074e+04 — 1.783e+04 — 1.00le+04 =~  1.782e+04 —  9.778e+03
MaF4 7 4.259e+05 —  4.449e+05 —  4.251e+05 —  3.250e+05 —  3.579e+05 —  3.451e+05 —  1.940e+05 —  2.748¢+05 —  1.682e+05
11 6.209¢e+06 —  6.746e+06 —  6.390e+06 —  5.142e+06 —  5.588e+06 —  5.388e+06 —  2.882e+06 ~  4.389¢+06 —  3.125e+06
3 4.150e+01 —  1.681e+01 —  1.734e+01 —  7.546e+00 —  1.662e+01 —  1.039e+01 —  7.786e+00 —  3.26le+01 —  5.694e+00
MaF5 7 2.999e+02 —  1.312e+02 —  4.104e+01 ~ 4.444e+01 ~ 4.662¢+01 + 3.783e+01 ~ 4.551e+01 +  1.247e+02 —  4.666e+01
11 3.821e+03 — 1.085¢+03 — 3.417e+02 ~ 4.325e+02 ~ 4.601e+02 —  3.075e+02 + 4.409e+02 — 9.069¢+02 —  3.762e+02
3 5.885e+02 —  1.980e+02 —  6.154e+02 —  2.382e+02 —  3.664e+02 —  3.639e+02 —  4.567e+01 —  1.287e+02 —  3.336e+01
MaF6 7 5.934e+02 —  2.055e+02 —  5.808e+02 —  4.399e+02 —  3.810e+02 — 3.963e+02 — 4.983e+01 ~ 1.540e+02 —  4.541e+01
11 5.541e+02 —  1.814e+02 —  5.522e+02 — 3.933e+02 — 3.767e+02 —  3.660e+02 —  8.968e+01 —  1.958e+02 —  6.464e+01
3 1.065e+01 —  6.645e+00 +  5.655e+00 + 6.762e+00 +  9.676e+00 —  6.214e+00 +  9.678e+00 —  9.832e+00 —  7.743e+00
MaF7 7 2.511e+01 —  2.037e+01 —  1.56le+01 —  2.251e+01 —  2.438e+01 —  2.593e+01 —  2.209e+01 —  1.990e+01 —  1.269e+01
11 3.786e+01 —  3.552e+01 —  2.756e+01 —  3.467e+01 — 3.843e+01 —  4.186e+01 —  3.548e+01 —  3.304e+01 —  2.373e+01
3 2.373e+00 —  2.079e+00 —  2.095e+00 —  2.057e+00 —  2.260e+00 —  1.588e+00 + 2.229¢+00 —  1.924e+00 ~  1.923e+00
MaF10 7 3.031e+00 — 2.918e+00 ~  2.811e+00 +  2.834e+00 +  2.964e+00 —  2.618¢+00 + 2.983e+00 —  2.842e+00 +  2.913e+00
11 3.691e+00 —  3.611e+00 =~  3.502¢e+00 + 3.475e+00 + 3.627e+00 ~ 3.487e+00 + 3.641e+00 ~ 3.624e+00 ~  3.637e+00
3 1.075e+00 —  7.462e-01 +  8.298e-01 ~  7.235¢-01 +  8.402¢-01 ~  6.629¢-01 +  7.038e-01 +  7.937e-01 =~  8.086e-01
MaF11 7 3.120e+00 —  2.154e+00 =~  1.677e+00 +  1.732e+00 +  1.812e+00 ~ 1.988e+00 ~  1.870e+00 ~  2.356e+00 =~  2.171e+00
11 5439+00 — 3.902¢e+00 =~ 2.921e+00 + 3.034e+00 +  3.138e+00 +  4.396e+00 ~  3.142e+00 +  4.600e+00 ~  4.003e+00
3 1.101e400 —  9.218e-01 —  1.005e+00 —  9.107e-01 —  9.627e-01 — 9.349¢-01 —  7.846e-01 — 8.708e-01 — 6.828e-01
MaF12 7 4.294e+00 —  3.534e+00 —  3.683e+00 —  3.971e+00 —  3.728e+00 —  4.040e+00 —  3.694e+00 —  3.703e+00 —  3.326e+00
11 9.752e+00 —  8.012e+00 +  9.026e+00 —  9.287¢+00 —  8.892e+00 ~  9.580e+00 —  8.978e+00 ~  9.198e+00 —  8.665e+00
3 3.814e+00 —  2.059e+00 —  3.469e+00 —  1.037e+00 ~  2.426e+00 — 1.800e+00 —  1.133e+00 —  2.480e+00 —  9.922e-01
MaF13 7 3.547e+04 —  1.843e+02 —  7.811e+03 —  6.544e+00 + 4.073e+03 —  7.000e+01 — 3.918e+00 +  3.570e+04 —  2.987e+01
11 6.204e+04 — 2.928e+02 —  1.473e+04 —  7.867e+00 +  3.566e+03 —  1.327e+02 +  3.412e+00 + 3.517e+04 —  1.331e+02
+/—/= 1/32/0 5/24/4 6/24/3 9/20/4 3/26/4 7/22/4 7119717 1/25/7 -
(b) D = 200
EDN-
M K-RVEA HeE-MOEA ARMOEA ADSAPSO CPS-MOEA CSEA MCEA/D AOF/DE ASF/DE
3 1.594e+01 — 9.208e+00 —  1.592e+01 —  6.776e+00 —  8.752¢+00 —  1.090e+01 —  1.252e+00 —  4.128e+00 —  8.529e-01
MaF1 7 3.156e+01 —  1.713e+01 —  3.067e+01 —  1.324e+01 —  1.652e+01 —  1.938e+01 —  1.556e+00 —  5.816e+00 —  1.242e+00
11 4.022e+01 —  2.102e+01 —  3.967e+01 —  1.548e+01 —  2.163e+01 —  2.504e+01 —  1.581e+00 —  6.865¢+00 —  1.198e+00
3 1.170e400 —  6.627e-01 —  1.145¢+00 —  5.968e-01 —  6.906e-01 — 8.165¢-01 — 2.260e-01 —  3.621e-01 — 1.209e-01
MaF2 7 6.481e-01 —  4.006e-01 —  6.143e-01 — 5.783e-01 —  5.404e-01 — 6.107e-01 —  4.303e-01 —  4.120e-01 — 3.824e-01
11 5.517e-01 — 3.734e-01 +  5.036e-01 ~  4.874e-01 ~  5.049¢-01 ~  5.469¢-01 — 5.007e-01 ~  5.272e-01 —  4.890e-01
3 3.512e+09 — 4.121e+08 —  3.927e+08 —  9.263e+07 —  2.085¢+08 —  1.516e+09 — 3.263e+07 + 3.513e+09 —  4.731e+07
MaF3 7 2.317e+09 —  6.871e+08 —  3.757e+08 —  1.001e+09 —  2.376e+08 —  1.320e+09 —  3.959e+07 —  2.327e+09 —  2.538e+07
11 4.738e+09 —  6.913e+08 —  3.513e+08 —  1.199¢+09 —  2.192e+08 —  1.219e+09 —  3.696e+07 —  4.737e+09 —  2.267e+07
3 5.736e+04 —  5.593e+04 —  5.475e+04 —  3.693e+04 — 4.491e+04 — 447le+04 — 2.371e+04 —  3.754e+04 —  2.137e+04
MaF4 7 9.755e+05 —  9.539e+05 —  9.275e+05 —  8.931e+05 —  8.0l1le+05 — 9.308e+05 —  4.503e+05 —  5.262e+05 —  3.640e+05
11 1.562e+07 —  1.472e+07 —  1.450e+07 —  1.333e+07 —  1.248e+07 —  1.466e+07 —  6.046e+06 ~  8.933e+06 —  5.391e+06
3 8.455e+01 —  3.839e+01 —  3.405e+01 —  1.602e+01 —  3.399e+01 —  2.539e+01 —  1.205e+01 —  6.497e+01 —  7.048e+00
MaF5 7 5.690e+02 —  2.684e+02 —  5.636e+01 ~  6.021e+01 ~ 5.873e+01 — 5217e+01 ~ 5.158e+01 ~ 2.261e+02 —  5.616e+01
11 6.574e+03 —  2.304e+03 — 4.108e+02 ~ 4.707¢+02 ~ 5.115e+02 —  3.770e+02 ~ 5.380e+02 —  2.036e+03 —  4.175e+02
3 1.375e+03 —  7.194e+02 —  1.368e+03 —  7.097e+02 —  7.577e+02 — 9.932e+02 — 9.101e+01 —  4.522e+02 —  6.950e+01
MaF6 7 1.348e+03 —  5.393e+02 —  1.322e+03 —  1.117e+03 —  7.548e+02 —  1.053e+03 —  1.664e+02 —  4.391e+02 —  1.079e+02
11 1.308e+03 —  4.739e+02 —  1.300e+03 —  1.083e+03 —  7.568e+02 —  1.010e+03 —  2.263e+02 —  5.224e+02 —  1.296e+02
3 1.109e+01 —  9.264e+00 +  7.943e+00 +  7.702e+00 +  1.059e+01 —  7.641e+00 + 1.047e+01 — 1.064e+01 —  9.680e+00
MaF7 7 2.700e+01 —  2.435e+01 —  2.182e+01 =~  2.526e+01 —  2.566e+01 —  2.704e+01 —  2.491e+01 —  2.330e+01 —  2.149e+01
11 4.340e+01 — 4.053e+01 —  3.469e+01 =~  3.902e+01 — 4.118e+01 —  4.350e+01 — 3.981e+01 —  3.866e+01 —  3.431e+01
3 2.398e+00 —  2.130e+00 —  2.096e+00 —  2.098¢+00 —  2.253e+00 —  1.616e+00 + 2.217e+00 — 1.867e+00 ~  1.925e+00
MaF10 7 3.028e+00 —  2.920e+00 =~  2.842e+00 +  2.797e+00 +  2.964e+00 —  2.676e+00 + 2.991e+00 —  2.908e+00 =~  2.906e+00
11 3.689¢+00 —  3.627e+00 ~  3.522e+00 +  3.476e+00 + 3.629e+00 =~ 3.512e+00 + 3.646e+00 ~ 3.611e+00 ~  3.642e+00
3 1.085e+00 —  7.902e-01 ~  8.327e-01 — 7.320e-01 ~  8.571e-01 — 7.462¢e-01 ~  7.045e-01 ~  8.36le-01 — 7.613e-01
MaF11 7 3.130e+00 —  2.217e+00 ~  1.662e+00 +  1.694e+00 +  1.789¢+00 +  2.105¢+00 ~  1.861e+00 +  2.359e+00 ~  2.374e+00
11 5.570e+00 —  3.792e+00 +  3.104e+00 +  3.143e+00 +  3.058e+00 4+ 4.521e+00 ~  3.315e+00 +  4.225¢+00 ~  4.455e+00
3 1.145e400 —  9.146e-01 —  1.023e+00 —  9.447e-01 —  1.018e+00 —  9.655e-01 —  7.651e-01 —  9.212e-01 — 6.323e-01
MaF12 7 4.503¢+00 —  3.298¢+00 ~ 3.741e+00 —  3.900e+00 —  3.692e+00 —  3.890e+00 —  3.611e+00 —  3.679¢+00 —  3.139e+00
11 1.062e+01 —  7.492e+00 +  8.982e+00 —  9.158e+00 —  8.753e+00 —  9.180e+00 —  8.906e+00 —  8.787e+00 —  8.146e+00
3 4.131e+00 —  2.777e+00 —  3.912e+00 —  1.074e+00 ~  2.605e+00 —  2.484e+00 —  1.140e+00 — 2.573e+00 —  9.993e-01
MaF13 7 5.346e+04 —  2.652e+03 —  1.819e+04 —  8.435e+00 ~ 4.343e+03 — 4.750e+02 —  4.848e+00 + 4.90le+04 —  5.533e+01
11 1.021e+05 —  3.671e+03 —  2.566e+04 — 9.038¢+00 ~ 5.387e+03 —  7.201e+02 —  4.465¢e+00 +  9.104e+04 —  8.259e+01
+/—/ = 0/33/0 4/24/5 5/23/5 512177 2/29/2 4/24/5 5/23/5 0/28/5 -




AVERAGE IGD VALUES FOR D = {10, 20, 30} (21 TRIALS).

TABLE S-1I

(a) D =10
EDN-
M K-RVEA HeE-MOEA ARMOEA ADSAPSO CPS-MOEA CSEA MCEA/D AOF/DE ASF/DE
3 4.495¢-02 + 1.603e-01 — 1.181e-01 — 1.001e-01 —  2.728e-01 — 1.177e-01 —  9.165e-02 —  5.639e-02 ~  5.767e-02
MaFl1 7 2.624e-01 —  4.177e-01 — 3.295e-01 — 2.898e-01 — 3.719¢-01 — 2.514e-01 ~  3.333e-01 —  2.920e-01 — 2.402e-01
11 3.844e-01 — 3.468e-01 —  4.071e-01 — 3.468e-01 — 3.628e-01 — 2.659%-01 +  3.528e-01 — 2.961e-01 =~  3.046e-01
3 3.060e-02 +  4.003¢-02 ~  5.058¢-02 —  4.674e-02 —  4.720e-02 —  4.921e-02 — 3.674e-02 +  3.324e-02 +  4.028e-02
MaF2 7 2.392e-01 =~  2.13%e-01 +  2.194e-01 + 1.741e-01 + 1.603e-01 +  2.624e-01 — 2.213e-01 +  2.507e-01 — 2.375e-01
11 3.505e-01 =~  2.960e-01 +  3.175¢-01 +  2.46le-01 +  2.680e-01 +  3.591e-01 ~  3.412e-01 ~  3.503¢-01 =~  3.603e-01
3 4.506e+05 — 1.867e+05 —  2.146e+05 —  1.553e+04 + 9.264e+04 —  1.276e+05 ~  1.983e+04 + 4.392¢+05 —  3.215e+04
MaF3 7 6.690e+04 —  2.558e+04 —  1.432e+04 —  8.181e+03 =~ 6.618¢+03 — 1.055¢+04 ~ 1.671e+03 ~ 6.848e+04 —  2.855e+03
11 7.953e-02 + 1.554e-01 ~  8.126e-02 + 1.273e-01 + 1.347e-01 + 1.561e-01 =~ 1.308e-01 + 1.690e-01 — 1.529¢-01
3 4918e+02 ~ 1.043e+03 — 9.363e+02 — 3.30le+02 +  7.882e+02 —  3.326e+02 +  5.142e+02 ~  5.245e+02 ~  5.678e+02
MaF4 7 1.322e+03 4+  3.693e+03 —  3.519e+03 ~  1.472e+03 + 3.561e+03 —  1.177e+03 + 2.474e+03 ~ 2.396e+03 ~  2.628e+03
11 2.539e+02 —  1.284e+02 — 2.418e+02 —  1.173e+02 ~  1.335¢+02 —  2.059e+02 —  1.093e+02 ~ 1.146e+02 —  1.099¢+02
3 8.428e-01 +  2.672e+00 —  1.110e+00 +  1.396e+00 + 2.431e+00 ~ 1.617e+00 + 2.467e+00 ~  3.420e+00 —  2.326e+00
MaF5 7 1.116e+01 +  2.792e+01 —  1.464e+01 + 1.904e+01 =~  2.047e+01 —  1.440e+01 + 2.005e+01 ~ 2.60le+01 —  1.881e+01
11 1.073e+02 + 3.183e+02 —  1.443e+02 4+  1.994e+02 —  1.876e+02 — 1.901e+02 ~  2.055¢+02 — 2.902¢+02 —  1.691e+02
3 7.444e-01 —  4.673e-01 —  1.450e+00 —  1.185¢+00 —  1.056e+01 —  9.895¢-01 —  4.515e-01 —  2.905e-01 — 8.992e-02
MaF6 7 9.861e-02 — 3.368e-01 —  4.433e-01 — 2.295e-01 —  1.381e+00 —  2.627e-01 — 2.302e-01 — 1.520e-01 — 5.106e-02
11 5.194e-03 — 2.345e-03 +  3.211e-03 +  3.741e-03 + 1.892e-03 +  3.658e-03 +  2.622e-03 +  4.084e-03 +  4.802e-03
3 1.154e-01 +  1.119e+00 —  1.085e+00 —  2.174e+00 — 4.271e+00 — 1.069¢e+00 —  5.973e-01 —  2.173e+00 —  3.995e-01
MaF7 7 6.546e-01 +  4.944e+00 —  1.461e+00 —  3.698¢+00 —  3.061e+00 —  6.546e+00 — 1.168e+00 ~ 1.116e+00 ~  1.153e+00
11 - - - - - - - - -
3 1.693e+00 +  2.008e+00 —  1.896e+00 —  1.689¢+00 +  2.253e+00 —  1.599e+00 +  2.173e+00 —  1.744e+00 +  1.825e+00
MaF10 7 2.593e+00 +  2.821e+00 ~  2.675e+00 +  2.562e+00 +  2.950e+00 —  2.540e+00 + 2.963e+00 —  2.736e+00 +  2.823e+00
11 - - - - - - - - -
3 3.108e-01 +  6.672e-01 +  5.939e-01 +  4.749e-01 +  7.072e-01 +  4.331e-01 +  6.615e-01 +  6.743e-01 ~  7.563e-01
MaF11 7 8.145e-01 +  2.501e+00 —  1.127e+00 +  1.164e+00 +  1.688e+00 +  1.461e+00 +  1.985e+00 ~  2.655e+00 —  2.071e+00
11 - - - - - - - - -
3 5.052e-01 +  7.510e-01 —  6.705e-01 — 5.082e-01 +  6.888e-01 — 5.466e-01 +  6.46le-01 ~  6.462e-01 ~  6.200e-01
MaF12 7 2.494e+00 +  3.663e+00 +  2.740e+00 +  3.023e+00 +  3.557e+00 +  3.936e+00 ~  3.666e+00 +  3.802e+00 +  4.146e+00
11 - - - - - - - - -
3 2.324e-01 +  7.099¢e-01 —  5.459-01 ~ 5.167e-01 ~  1.124e+00 —  4.235¢-01 + 5.878¢-01 ~ 6.037¢-01 =~  6.202¢-01
MaF13 7 5.802e+01 —  2.370e+00 +  3.435e+00 +  9.959¢-01 +  8.671e+00 ~  8.805¢-01 +  9.808¢e-01 +  8.154e+01 —  2.895e+01
11 7.362e+01 —  3.507e+00 +  8.758e+00 =~  1.287e+00 +  1.360e+01 =~  9.307e-01 +  1.044e+00 4+ 9.715e+01 —  3.323e+01
+/—/= 16/10/3 7/19/3 12/14/3 16/9/4 7/19/3 14/8/7 9/9/11 5/15/9 -
(b) D =20
EDN-
M K-RVEA HeE-MOEA ARMOEA ADSAPSO CPS-MOEA CSEA MCEA/D AOF/DE ASF/DE
3 1.642e-01 — 1.897e-01 — 5.006e-01 —  2.357e-01 — 7.131e-01 —  2.467e-01 — 1.942e-01 —  9.655e-02 — 8.535e-02
MaF1 7 4.343e-01 —  4.967¢-01 — 5.272e-01 — 5.133e-01 —  9.785e-01 —  4.942e-01 —  4.855e-01 — 3.802e-01 — 3.233e-01
11 5.263e-01 —  5.710e-01 —  5.428e-01 —  5.294e-01 — 8.723e-01 —  5.182e-01 — 5.374e-01 —  4.956e-01 —  4.117e-01
3 4.404e-02 +  5797e-02 =~  9.306e-02 — 8.066e-02 — 8.999¢-02 — 8.155e-02 — 5397e-02 ~  4.867e-02 +  5.485e-02
MaF2 7 2.159e-01 +  2.163e-01 +  2.235e-01 + 1.695e-01 + 1.661e-01 +  2.587e-01 ~  2.210e-01 +  2.508e-01 ~  2.471e-01
11 3.482e-01 +  3.210e-01 +  3.376e-01 +  2.932¢-01 +  2.909e-01 + 3.900e-01 ~  3.826e-01 ~ 4.011e-01 ~  3.962¢-01
3 3.768e+06 —  1.258e+06 —  1.917e+06 —  2.699e+05 =~  9.640e+05 — 2.019e+06 — 1.306e+05 ~ 3.615e+06 —  2.069e+05
MaF3 7 2.043e+06 —  1.384e+06 —  9.289%e+05 —  9.270e+05 —  5.572e+05 —  1.313e+06 —  9.225e+04 ~ 2.08%¢+06 —  9.891e+04
11 9.148e+05 —  6.560e+05 —  3.737e+05 —  5.127e+05 —  2.019e+05 —  5.160e+05 —  4.763e+04 —  9.609e+05 —  3.933e+04
3 2.618e+03 —  3.850e+03 —  3.269¢e+03 —  1.477e+03 ~ 2.761e+03 — 1.438e+03 ~ 1.573e+03 ~ 2.234e+03 —  1.630e+03
MaF4 7 2.194e+04 ~ 4.531e+04 — 4.121e+04 —  2.546e+04 ~ 3.60le+04 — 1.289¢+04 + 1.957e+04 ~ 2.982e+04 ~ 2.181e+04
11 1.586e+05 +  4.220e+05 —  4.232e4+05 —  1.850e+05 +  3.399e+05 —  1.146e+05 +  2.022e+05 4+  3.200e+05 ~  2.557e+05
3 2.403e+00 +  4.312e400 ~  3.131e+00 ~  2.116e+00 + 4.330e+00 =~ 2.296e+00 + 3.282¢+00 ~ 7.010e+00 —  3.665e+00
MaF5 7 1.682e+01 +  4.480e+01 —  1.853e+01 +  2.755e+01 ~  3.097e+01 —  1.785e+01 +  3.028e+01 —  4.550e+01 —  2.485e+01
11 1.556e+02 +  4.146e+02 —  1.791e+02 +  2.656e+02 —  3.070e+02 —  2.297e+02 =~ 3.178e+02 —  4.262e+02 —  2.407e+02
3 2.148e+01 —  1.777e+00 —  2.475e+01 —  6.750e+00 —  4.462e+01 —  9.947e+00 —  3.156e+00 — 1.891e+00 —  6.864e-01
MaF6 7 1.363e+01 —  2.406e+00 —  3.082e+01 —  1.866e+01 —  3.154e+01 —  4.892e+00 —  2.552e+00 —  1.348e+00 —  7.090e-01
11 4.953e+00 —  1.540e+00 —  1.140e+01 —  1.464e+01 — 1.816e+01 —  3.096e+00 —  2.377e+00 —  2.880e+00 —  7.510e-01
3 5.040e-01 +  2.077e+00 —  1.881e+00 —  3.097e+00 —  6.588¢+00 — 2.931e+00 —  4.045e+00 —  2.221e+00 —  7.593e-01
MaF7 7 7.876e-01 +  1.102e+01 —  3.923e+00 —  1.125e+01 —  1.307e+01 —  1.607e+01 — 6.219e+00 — 2.518e+00 ~  1.293e+00
11 1.284e+00 +  1.897e+01 —  4.172e+00 —  1.665e+01 —  1.823e+01 —  2.736e+01 — 5.857e+00 — 2.418e+00 —  1.723e+00
3 1.784e+00 ~ 1.977e+00 —  1.946e+00 —  1.732e+00 +  2.248¢+00 —  1.602e+00 +  2.195¢+00 —  1.757e+00 +  1.858e+00
MaF10 7 2.654e+00 +  2.810e+00 +  2.687e+00 +  2.658e+00 +  2.961e+00 —  2.653e+00 +  2.982¢+00 —  2.807e+00 +  2.870e+00
11 3.416e+00 4+  3.559e+00 +  3.435e+00 +  3.392e+00 +  3.624e+00 —  3.466e+00 +  3.641e+00 —  3.564e+00 ~  3.589e+00
3 5.249¢-01 +  6.159¢-01 +  6.889e-01 +  5.987e-01 +  7.716e-01 ~  4.988e-01 +  7.062¢-01 +  7.700e-01 ~  8.232¢-01
MaF11 7 1.036e+00 +  2.434e+00 —  1.405e+00 +  1.399e+00 +  1.843e+00 +  1.671e+00 +  2.027¢+00 ~  2.187e+00 ~  2.156e+00
11 1.505e+00 + 4.172e+00 ~  2.304e+00 +  2.637e+00 +  3.188¢+00 +  4.034e+00 ~  3.336e+00 +  4.303e+00 ~  4.330e+00
3 6.930e-01 ~  7.854e-01 — 8.291e-01 —  6.986e-01 ~  7.936e-01 —  6.833¢-01 ~  7.406e-01 —  7.786e-01 — 6.541e-01
MaF12 7 2.811e+00 +  3.466e+00 +  3.040e+00 +  3.700e+00 ~  3.774e+00 =~  4.066e+00 ~ 3.777e+00 ~ 3.922¢+00 ~ 3.921e+00
11 6.744e+00 + 8.591e+00 +  7.463e+00 +  8.785¢+00 +  8.921e+00 +  9.782e+00 ~ 9.211e+00 ~  9.604e+00 ~  9.627e+00
3 3.624e-01 +  9.723e-01 —  9.953e-01 — 6.782e-01 ~  2.069¢+00 —  5.714e-01 ~  8.719¢-01 —  9.699¢-01 — 5.893e-01
MaF13 7 1.429¢+03 —  8.425e+00 +  1.300e+01 =~  3.305e+00 +  1.127e+02 —  1.506e+00 +  1.704e+00 +  6.880e+02 —  4.485e+01
11 8.278e+03 —  9.690e+00 +  2.348e+01 ~  2.485e+00 +  1.725¢+02 +  2.602¢e+00 +  1.575e+00 +  7.488e+03 —  2.881e+02
+/ -/~ 18/12/3 9/21/3 11/19/3 13/13/7 6/24/3 11/13/9 6/17/10 3/19/11 -




(¢c) D=30

EDN-

M K-RVEA HeE-MOEA ARMOEA ADSAPSO CPS-MOEA CSEA MCEA/D AOF/DE ASF/DE

3 5.533e-01 — 2.141e-01 1.187e+00 —  4.702e-01 —  1.119e+00 —  4.699e-01 — 2.888e-01 — 1.444e-01 =~ 1.265¢e-01

MaF1 7 8.333e-01 — 5.425e-01 —  1.326e+00 —  9.544e-01 —  1.759e+00 —  8.126e-01 — 5.632e-01 —  4.968e-01 — 3.573e-01
11 1.103e+00 —  6.312e-01 1.084e+00 —  8.473e-01 —  1.779e+00 —  7.598e-01 — 6.079e-01 —  6.016e-01 —  4.465e-01

3 9.421e-02 — 6.907e-02 ~ 1.474e-01 — 1.109e-01 — 1.381e-01 — 1.156e-01 —  7.114e-02 =~  5.626e-02 +  6.588e-02

MaF2 7 2.205e-01 +  2.293e-01 +  2.366e-01 + 1.952e-01 + 1.891e-01 +  2.780e-01 — 2.444e-01 +  2.676e-01 ~  2.611e-01
11 3.303e-01 +  3.327e-01 +  3.325e-01 +  2.848e-01 +  2.929¢-01 + 391le-01 ~ 3.808e-01 ~ 3.960e-01 ~  3.945e-01

3 9.234e4+06 —  3.834e+06 —  5.637e+06 —  7.605e+05 ~  2.759e+06 —  5.672e+06 — 3.959e+05 ~ 8.876e+06 —  6.794e+05

MaF3 7 6.605e+06 —  4.369e+06 3.834e+06 —  4.990e+06 —  2.289e+06 —  5.420e+06 —  3.223e+05 =~ 6.497e+06 —  3.279e+05
11 4.664e+06 —  3.592e+06 —  2.450e+06 — 3.256e+06 —  1.425e+06 —  3.644e+06 — 1.957e+05 ~ 4.575e+06 —  2.254e+05

3 4.918e+03 —  6.734e+03 5.714e+03 —  2915e+03 ~ 4.833e+03 — 2.631e+03 ~ 2.219e+03 4+ 4.484e+03 —  3.159e+03

MaF4 7 5.225e+04 —  9.009e+04 —  8.538e+04 —  6.691e+04 —  7.291e+04 — 3.721e+04 ~ 3.895e+04 ~ 5.791e+04 —  4.282e+04
11 6.223e+05 ~  1.169e+06 1.073e+06 —  8.187e+05 ~  9.034e+05 — 4.142e+05 + 5.653e+05 ~ 9.529e+05 —  7.030e+05

3 3.946e+00 ~  5.145e+00 —  5.730e+00 —  2.885e+00 +  6.095e+00 —  2.803e+00 + 4.169e+00 ~  9.221e+00 —  4.032e+00

MaF5 7 2.538¢+01 +  5.313e+01 2.358e+01 +  3.056e+01 ~  3.542e+01 —  2.071e+01 +  3.384e+01 —  5.274e+01 —  2.901e+01
11 2.84le+02 —  5.008e+02 —  2.165e+02 + 3.186e+02 — 3.478e+02 —  2.496e+02 4+  3.606e+02 —  3.41le+02 —  2.810e+02

3 6.742e+01 —  4.698e+00 —  9.624e+01 —  2.563e+01 —  8.305e+01 — 3.039e+01 —  6.633e+00 —  1.074e+01 —  2.463e+00

MaF6 7 6.786e+01 —  8.061e+00 —  9.498e+01 —  6.458e+01 —  6.736e+01 —  2.836e+01 —  6.440e+00 —  7.858e+00 —  2.233e+00
11 4.181e+01 —  7.106e+00 7.086e+01 —  5.540e+01 —  5.586e+01 —  2.315e+01 —  1.005e+01 —  1.306e+01 —  4.740e+00
1.262e+00 +  2.732e+00 2.904e+00 —  4.004e+00 —  7.859e+00 —  3.759e+00 —  7.061e+00 —  4.423e+00 —  1.640e+00

MaF7 7 1.069e+00 4+  1.364e+01 —  5.170e+00 —  1.526e+01 —  1.736e+01 —  1.964e+01 —  1.296e+01 —  4.739e+00 —  1.498e+00
11 3.068e+00 ~  2.378e+01 8.661e+00 —  2.347e+01 —  2.737e+01 — 3.286e+01 —  1.534e+01 —  8.987e+00 —  1.961e+00

3 1.950e+00 ~  2.003e+00 —  1.993e+00 —  1.938e+00 ~  2.236e+00 —  1.575e+00 +  2.190e+00 —  1.883e+00 ~  1.880e+00

MaF10 7 2.782e+00 +  2.839e+00 ~  2.738¢+00 +  2.686e+00 +  2.960e+00 —  2.615e+00 +  2.980e+00 —  2.780e+00 +  2.869e+00
11 3.458e+00 +  3.566e+00 +  3.453e+00 + 3.423e+00 + 3.625¢+00 ~ 3.500e+00 +  3.656e+00 —  3.586e+00 ~  3.604e+00

3 6.745e-01 +  6.503e-01 +  7.440e-01 +  6.768e-01 +  8.076e-01 ~  5.198¢-01 +  7.145¢-01 +  7.826e-01 ~  8.177e-01

MaF11 7 1.455e+00 4+  2.207e+00 ~  1.456e+00 +  1.537e+00 + 1.781e+00 +  1.955¢+00 ~  1.874e+00 4  2.402e+00 ~  2.286e+00
11 2.634e+00 4+  4.081e+00 ~  2.490e+00 + 2.921e+00 + 3.252e+00 + 4.175e+00 ~ 3.308e+00 + 4.563e+00 ~  4.275e+00

3 8.361e-01 — 8.207e-01 — 8.904e-01 — 7.254e-01 — 8.563e-01 —  7.641le-01 —  7.126e-01 —  7.870e-01 — 6.417e-01

MaF12 7 2.877e+00 +  3.668e+00 ~  3.238e+00 +  3.815e+00 ~ 3.726e+00 ~ 4.071e+00 ~ 3.712e+00 ~  3.828e+00 ~  3.818e+00
11 6.625e+00 + 8.502e+00 +  8.080e+00 +  8.693e+00 +  8.982e+00 +  9.929e+00 ~  9.043e+00 +  9.767e+00 ~  9.736e+00

3 6.094e-01 +  9.169e-01 —  1.631e+00 —  7.609e-01 —  2.210e+00 —  7.255e-01 —  9.616e-01 — 1.323e+00 —  6.488e-01

MaF13 7 7.710e+03 —  3.107e+01 ~  8.47le+01 ~ 3.439e+00 + 3.193e+02 ~ 4.030e+00 +  2.940e+00 + 7.607e+03 —  5.891e+02
11 1.544e+04 — 3.290e+01 ~  1.848e+02 — 4.325e+00 +  1.190e+03 —  3.316e+00 +  2.286e+00 +  1.422e+04 —  1.325¢+02

+/ /= 13/16/4 5/21/7 11/21/1 11/16/6 5/24/4 10/16/7 8/16/9 2/21/10 -
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