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Abstract

Since hybrid power plants (HPPs) play an intensive role in the energy supply balance of future energy systems, there is today

an increased attention on co-located wind-battery HPPs both in industry and academia. However, the profitability of HPPs

in sequential electricity markets to overcome initial investment costs has not been yet well examined, especially with respect

to balancing services provision. This article proposes a novel energy management system (EMS) for optimal participation

of wind-battery HPPs in two sequential electricity markets, namely in spot market and balancing market. The methodology

consists of three optimization models, which allow HPPs to achieve energy arbitrage, to provide balancing services, and to

reduce real-time imbalance costs. Furthermore, the profitability of HPPs in future (2030) energy scenario is analyzed based on

the new designed and developed EMS taking balancing service into account. The results of the overplanting case show that

HPPs operated based on the proposed EMS achieve net present value 3.6 times as high as sole operation in spot market.
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Abstract—Since hybrid power plants (HPPs) play an intensive
role in the energy supply balance of future energy systems, there
is today an increased attention on co-located wind-battery HPPs
both in industry and academia. However, the profitability of HPPs
in sequential electricity markets to overcome initial investment
costs has not been yet well examined, especially with respect to
balancing services provision. This article proposes a novel energy
management system (EMS) for optimal participation of wind-
battery HPPs in two sequential electricity markets, namely in
spot market and balancing market. The methodology consists of
three optimization models, which allow HPPs to achieve energy
arbitrage, to provide balancing services, and to reduce real-time
imbalance costs. Furthermore, the profitability of HPPs in future
(2030) energy scenario is analyzed based on the new designed and
developed EMS taking balancing service into account. The results
of the overplanting case show that HPPs operated based on the
proposed EMS achieve net present value 3.6 times as high as sole
operation in spot market.

Index Terms—wind-battery hybrid power plant, EMS, balanc-
ing market, net present value, long-term economic benefits

NOMENCLATURE

A. Sets
T Set of hours.
Di Set of dispatch intervals.
Si Set of settlement intervals.
Ks Set of dispatch intervals in a settlement interval.

B. Constants
ND Number of dispatch intervals in a day.
NS Number of settlement intervals in a day.
NO

D Number of dispatch intervals in an offering interval.
NO

S Number of settlement intervals in an offering inter-
val.

NS
D Number of dispatch intervals in a settlement inter-

val.
αSEI Coefficients of semi-empirical model.
βSEI Coefficients of semi-empirical model
EBESS The rated energy capacity of battery energy storage

system.
λ̂sp
t Spot price forecast at period t (C/MWh).

λ̂rp
k Regulation price forecast at period k (C/MWh).

P b,max Maximum output power of battery (MW).
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ηleak Hourly battery natural discharging rate (%).
ηdis Hourly battery discharging efficiency (%).
ηcha Hourly battery charging efficiency (%).
ηhaleak Battery natural discharging rate for every 5 minutes

(%).
ηhadis Battery discharging efficiency for every 5 minutes

(%).
ηhacha Battery charging efficiency for every 5 minutes (%).
Emax Maximum energy capacity of battery (MWh).
Emin Minimum energy capacity of battery (MWh).
P grid Maximum grid capacity (MW).
P̂w
t Day-ahead wind power forecast at period t (MW).

P̂w
k Hour-ahead wind power forecast at period k (MW).

P crt,up Offered up regulation power for current OI (MW).
P crt,dw Offered down regulation power for current OI

(MW).
Pnxt,up Offered up regulation power for next OI (MW).
Pnxt,dwOffered down regulation power for next OI (MW).

C. Variables

dsem Estimated battery degradation by semi-empirical
model.

P sm
t Power schedule offered to spot market at period t

(MW).
P sm,w
t Power schedule of wind offered to spot market at

period t (MW).
P sm,dis
t Discharging power schedule of battery at period t

(MW).
P sm,cha
t Charging power schedule of battery at period t

(MW).
Esm,b

t Energy schedule of battery at period t (MWh).
EBESS The rated energy capacity of battery energy storage

system.
Π̂reg

k Optimized regulation revenue at period k (C).
Πreg

k Realized regulation revenue at period k (C).
Π̂im

k Optimized imbalance revenue at period k (C).
Πim

k Realized imbalance revenue at period k (C).
Pup
k Up regulation power offer at period k (MW).

P dw
k Down regulation power offer at period k (MW).

∆P̂up
s Positive imbalance power at period s (MW).

∆P̂ dw
s Negative imbalance power at period s (MW).

∆P̂s Imbalance power at period s (MW).
Pha
k Hour-head power schedule at period k (MW).

Pha,w
k Hour-head power schedule of wind at period k

(MW).
Pha,b
k Hour-head power schedule of battery at period k

(MW).
Pha,dis
k Hour-head discharging power schedule of battery at

period k (MW).
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Pha,cha
k Hour-head charging power schedule of battery at

period k (MW).
Eha,b

t Hour-ahead energy schedule of battery at period k
(MWh).

I. INTRODUCTION

THE green transition of energy system is witnessing an
increase in share of renewable energy [1]. Nevertheless,

the power system imbalances caused by variability and uncer-
tainty of renewable power generations bring huge challenges
to power system operators [2]. Such power systems require
large power capacity reserves or huge curtailment of renewable
power to maintain power system balance. In this respect,
energy storage technologies are seen as potential solutions to
mitigate such concerns. These storage technologies can either
be connected directly in the power systems close to loads or
together with renewable power plants (RPPs). If these storage
technologies are connected to RPPs (combination typically
called hybrid power plants (HPPs)), the storage can be then
utilised by the power plant owner to maximize profit from
the energy markets through energy arbitrage and provision of
ancillary services.

Recently, commercial projects on hybrid renewable energy
and battery storage have been developed or are in pipeline
in many countries and regions [3]–[5]. For example, the
utility-scale HPP - Kennedy Energy Park has been constructed
in Queensland, Australia in 2019. In this project, 12 wind
turbines amounting 43 MW installed capacity are coupled with
15 MW of solar photovoltaic (PV) and 2 MW/4 MWh of
battery energy storage system (BESS) [3]. A larger European
utility-scale HPP, Haringvliet Energy Park in Netherlands
includes a 22 MW wind farm, a 38 MW solar farm and a
12 MWh energy storage unit [4]. In these renewable HPP
projects, the RPPs and energy storage systems are connected
to the grid at same point of connection (PoC), sharing power
plant equipment like transformers and cables, as well as many
infrastructures, e.g. substation, and reducing thus the develop-
ment and investment costs. In terms of resources utilization,
an HPP can increase annual energy production and capacity
factor (i.e. grid utilization factor) by using solar combined
with wind. An HPP with storage can also increase generation
flexibility because by storing excess energy, which would
otherwise be curtailed, more stable and higher power output
can be inserted into the electrical grid [3], [6], [7]. This is
of high relevance to transmission system operators (TSOs),
as the aid of storage can, to some extent, locally eliminate
variability and uncertainty of renewable power in comparison
to individual RPPs, less balancing efforts being thus required
for TSOs.

In addition to cost reduction and improved resource uti-
lization, the development of HPPs has also the advantage of
emerging market opportunities, which provide more revenue
streams for HPPs [8]. One market opportunity is for example
the balancing market, where by voluntarily providing balanc-
ing service, HPPs might receive payments higher than spot
market. Individual RPPs are less likely to provide balancing
service due to their power variability and uncertainty.

There have been various investigations in the literature
regarding the short-term optimal offering and bidding chal-
lenges of wind-battery HPPs in electricity markets. Most
of the existing literature about HPPs is mainly concerned

with the offer of energy in day-ahead (DA) and/or intra-
day (ID) market to maximize revenues [9]–[14]. Furthermore,
some of the investigations consider imbalance costs, which
is settled in balancing market [15]–[19]. The DA spot market
optimization considering imbalance cost is studied in [15], this
model being further improved in [16] by incorporating linear
decision rule (LDR) for real-time operation. The parameters of
LDR are optimized and obtained in DA stage. A coordinated
optimization model where the DA market, ID market and
imbalance cost are all optimized concurrently in the DA stage,
is presented in [18]. In addition, ancillary services provision
by HPPs is becoming another promising revenue stream as
described in the literature. The optimal trade of power reserve
in reserve market is discussed in [20], [21], while the provision
of frequency containment normal reserve (FCR-N) in DA
FCR-N market is investigated in [22]. The trade of regulation
power in hour-ahead (HA) balancing market is considered as
a revenue stream in [23].

Apart from the short-term trade challenges, the long-term
profitability of wind-battery HPPs is also studied in [19], [24],
[25]. For example, a long-term economic analysis of wind-
battery HPP in UK market considering DA market revenue
and imbalance cost is presented in [19]. The net present values
(NPV) of a market based case and power purchase agreement
based cases with and without subsidy are examined. Batteries
in [24] are used to balance wind power forecast errors, having
as result reduced imbalance costs. The studied cases highlight
negative NPV due to the higher investment cost of battery.
Similar results are also found in [25], namely that by using
battery only for energy arbitrage does not repay the high
investment cost.

All aforementioned literature mainly focus on short-term
optimal operation of wind-battery HPPs in markets by stacking
revenue streams, while those studies examining long-term
profitability consider limited revenue streams, especially the
absence of balancing revenue, which has been detected as
potential revenue for HPPs [26]. Besides, their methodologies
neglect the grid capacity as a practical constraint for co-located
HPPs. Unlike virtual power plants where the WPP and BESS
have separate grid connections, it is possible for HPPs to have
the WPP overplanted with BESS with limited grid connection
capacity owing to the co-location.

To fill this gap, this article proposes a novel EMS method-
ology and apply it to perform a NPV analysis over 20-year
period, which is a common lifetime of wind turbine [27].
The scope of the work is described in Fig. 1. The short-term
operation depicts the EMS and its interface with electricity
markets, power management system (PMS), forecasts, as well
as how the battery degradation model is integrated. Further-
more, revenues in long-term operation is based on short-term
operation and the capital expenditures (CAPEX) and operation
expenditures (OPEX) of WPP, BESS, and HPP infrastructures,
e.g. grid capacity, are taken into account when calculating
NPV. The main contributions of this study are:

• This article proposes a novel EMS methodology including
spot market optimization (SMOpt), balancing market
optimization (BMOpt) and intra-hour re-dispatch opti-
mization (RDOpt). Unlike [17], [23] that only consider
hourly resolution in their methodologies, three different
time scales, i.e. offering interval (OI), settlement interval
(SI), and dispatch interval (DI), are modeled in the
proposed EMS to fit practical requirements from TSOs
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and markets. In addition, the incorporation of a detailed
battery degradation model [28] enables the quantifica-
tion of non-linear battery degradation costs. The value
of wind-battery HPPs providing regulation power, i.e.
balancing service in Nordic balancing market is firstly
investigated through comparing annual profits of different
operation strategies.

• To further investigate the profitability of wind-battery
HPPs to overcome initial investment costs, NPV analysis
of a overplanting HPP is performed by running the
proposed EMS. Comparing with [19], [24], [25] that only
consider energy arbitrage or/and imbalance cost reduc-
tion in the revenue streams, this research work includes
balancing revenue in the NPV calculation as the third
revenue stream on top of energy arbitrage and imbalance
cost reduction. The CAPEX of HPP infrastructures, i.e.
cost of grid capacity and balance of system (BOS) is
included in the present study in order to depict a more
realistic case of the real-world. The reason to choose
overplanting case is that overplanting HPP in respect to
grid capacity bring benefits to TSO and society, such
as delayed requirement for transmission infrastructure
reinforcement, more RES integration with same grid
capacity [6].

• The existing literature mainly study current or historical
energy scenarios. However, the efficacy of the developed
methodology in this work is demonstrated through an-
alyzing future (2030) energy scenario of Western Den-
mark. The purpose is to quantify balancing market po-
tentials for HPP development in 2030.

The article is structured as following. The formulation of the
EMS is presented in detail in Section II. Section III discusses
the Case study results and describes the implementation of
long-term economy analysis. Finally, the conclusions are given
in Section IV.

II. METHODOLOGY

This section discusses the methodology of the developed
EMS. The workflow of the EMS and battery degradation
model are demonstrated in short-term operation block in Fig.
1. The EMS is on top of PMS. It works through three
optimizations including DA spot market optimization (given in
appendix), HA balancing market optimization and intra-hour
re-dispatch optimization. All optimization models integrates
a detailed battery degradation model [28]. The inputs of
the EMS are external forecasts of wind power and market
prices, the updated real time (RT) information from PMS, i.e.
HPP controller, and information from markets and TSO. The
outputs of the EMS are traded energy and power into markets,
and energy set-points to PMS.

A. Battery Degradation Model
In this investigation, a semi-empirical model (SEM) [28] is

used to estimate the loss of capacity (LoC) of battery. The
formulations are given by:

d =

{
1− αseie

−βseil − (1− αsei)e
−l, ifd ≤ d1

1− (1− d′)e−(l−l
′
), ifd > d1

(1)

Emax = EBESS · (1− d) (2)

Eq. (1) provides the models to be used to express the
accumulated LoC d for a fresh battery and used battery after
the formation of SEI film, respectively. A pre-defined value
d1, e.g. 8% [28] is used to switch between the models. d

′
and

l
′

are the LoC and linear degradation rate when d exceeds
d1 at the first time. Eq. (2) estimates the remaining energy
capacity Emax.

The linear degradation rate l in Eq. (1), calculated by Eq. (3)
and (4), depends on the depth of discharge (DoD), the elapsed
time, the state of charge (SoC), and the cell temperature.

l =
∑
i

li (3)

li = [Sδ(δ) + Stc(tc)]Sσ(σ)Ste(te) (4)

for every cycle i, the linear degradation rate li is calculated
according to four stress factor models: Sδ(δ), Stc(tc), Sσ(σ)
and Ste(te). Their model details can be found in [28].

It should be noticed that the model is a post-processing
model. A rainflow counting [29], [30] need to be implemented
on historical SoC profile to obtain cycle DoD, cycle average
SoC, cycle number, and cycle time duration. Therefore, the
model as it is in this form cannot be directly integrated into
optimization.

To solve this problem, a throughput based model is used to
approximate the semi-empirical model based on the assump-
tion, that the battery degrades linearly in a short period, e.g.
one week. The process is described in Fig. 1. Based on this,
the accumulated LoC per MWh throughput, i.e. slope ad, can
be calculated in the short period by:

ad =
dsem∑

t∈Tpast |P b
t | ·∆t

(5)

where dsem is the LoC obtained by (1).
∑

t∈Tpast |P b
t | · ∆t

represents the energy throughput for a past period. Then the
LoC caused by charging/discharging throughput in a future
period can be estimated by:

dest = ad ·
∑

t∈T future

|P b
t | ·∆t (6)

where
∑

t∈T future |P b
t | ·∆t is energy throughput for a future

period.

B. Balancing Market Optimization
The goal of BMOpt is to optimize regulation power offers

and update power schedules based on the updated forecast
information, e.g. HA wind power forecast. This model operates
hourly, starting from the current OI to the end of the day.

1) Objective function: The objective function in BMOpt is
to maximize profits in balancing market, namely:

max
∑

k∈D
(t+1)NO

D

Π̂reg
k +

∑
s∈S

tNO
S

Π̂im
s − Ψ̂(Pha,b

k ) (7)

Π̂reg
k = (λ̂up

k · r̂upk · Pup
k − λ̂dw

k · r̂dwk · P dw
k ) ·∆k (8)

Π̂im
s = (λ̂dw

s ·∆P̂up
s − λ̂up

s ·∆P̂ dw
s ) ·∆s (9)

Ψ̂(Pha,b
k ) = µ · EBESS · ad ·

∑
k∈D

tNO
D

(Pha,dis
k + Pha,cha

k ) ·∆k

(10)
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Fig. 1. Diagram of the scope of this research work

Notice that the objective function (7) includes revenues from
regulation power and imbalance settlement, as well as penal-
ties of battery degradation. Revenues from regulation power
and imbalance settlement are computed in (8) and (9), respec-
tively, where λ̂up

k and λ̂dw
k are up and down balancing prices,

respectively. They are calculated by λ̂up
k = max{λ̂rp

k , λsp
t }

and λ̂dw
k = min{λ̂rp

k , λsp
t }. The λ̂rp

k represents forecasts
of regulation price (RP) during period k. It should be no-
ticed that in balancing market optimization, the cleared spot
prices (SPs) for all day are known. r̂upk and r̂dwk indicate
the activation signal of regulation power of coming hour
generated by (11) and (12), which can be regarded as forecasts
of activation signal. Ψ̂ refers to the penalties of battery
degradation, given in (10), where µ is the penalty coefficient,
which reflects degradation mode. ∆k is the DI, which is
typically 5 minute resolution. ∆s is SI, which is typically
hourly or 15 minute resolution. The set D(t+1)NO

D
is defined as

D(t+1)NO
D
:= {(t+1)NO

D , (t+1)NO
D +1, ..., ND − 1}. There

is D0 ⊃ D1 ⊃ · · · ⊃ DND−1. Therefore, the optimization
horizon decreases as time increases.

r̂upk =

{
1, if λ̂rp

k > λsp
k

0, otherwise
(11)

r̂dwk =

{
1, if λrp

k < λsp
k

0, otherwise
(12)

2) Technical and operation constraints: In BMOpt a sub-
hourly resolution is applied because TSO requires higher

resolution power schedule to balance power system, namely
for k ∈ DtNB

D
:

Pha
k = Pha,w

k + Pha,b
k (13)

Pha,b
k = Pha,dis

k − Pha,cha
k (14)

0 ≤ Pha,cha
k ≤ P b,max · (1− zk) (15)

0 ≤ Pha,dis
k ≤ P b,max · zk (16)

Eha,b
k+1 = Eha,b

k (1− ηhaleak)−
Pha,dis
k

ηhadis
·∆k + Pha,cha

k ηhacha ·∆k

(17)

Emin ≤ Eha,b
k ≤ Emax (18)

0 ≤ Pha
k ≤ P grid (19)

0 ≤ Pha,w
k ≤ P̂w

k (20)

Equation (13) calculates power output of HPP based on
wind and battery generation, where P b

k is calculated in (14).
Constraints (15) and (16) limit the battery that cannot charge
or discharge at the same time, where zt = 1 means the battery
works on discharging status, otherwise zt = 0 means the
battery works on charging status. (17) models the evolution
of battery energy over time. (18) set the limits of energy.
(19) constraints that the power output of HPP cannot exceed
grid limitation. (20) restricts wind power output less than the
forecasting value.

3) Imbalance settlement constraints: The revenue from im-
balance settlement should also be considered when optimizing
regulation power offers and power schedules. This refers to
whether HPPs should deliberately create imbalance in order
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to capture revnenue opportunities from providing regulation
power. For s ∈ StNO

S
, the imbalance settlement constraints

are expressed in (21)-(23).
Where ∆P̂s, ∆P̂up

s and ∆P̂ dw
s are imbalance power, pos-

itive imbalance power and negative imbalance power in a SI.
(21) calculates imbalance power that is the difference among
HA power schedule and DA promised power as well as regula-
tion power. The set StNO

S
is defined as StNO

S
:= {tNO

S , tNO
S +

1, · · · , NS − 1}. There is S0 ⊃ S1 ⊃ · · · ⊃ SNS−1. The set
Ks is defined as Ks := {sNS

D, sNS
D +1, · · · , (s+1)NS

D −1}.
rupk and rdwk are the activation signal of regulation power

of current hour coming from TSO. 1 means activation and 0
means no activation.

C. Re-dispatch Optimization
The RDOpt operates between two BMOpts when part of

imbalances has been realized. It repeats every 5 minutes, which
is a nearly real-time optimization starting from the ith DI
to the end of the day. The goal of this model is to update
power schedule continuously with real-time information to
maximize profits in imbalance settlement and also consider the
potential profit opportunities for providing regulation power in
the future OIs.

1) Objective function:

max
∑

k∈D
(t+2)NB

D

Π̂reg
k +

∑
s∈S⌊i/NS

D
⌋

Π̂im
s − Ψ̂(Pha,b

k ) (24)

The objective function of RDOpt is similar with BMOpt,
but the difference is that the index of regulation revenues
is D(t+2)NB

D
, meaning that the start interval for regulation

power offers is after 2 OIs, because regulation power offers
for current OI and next OI are already determined at the time
of optimization. ⌊·⌋ means rounding down.

2) Technical and operation constraints: For k ∈ Di, The
general constraints are same as BMOpt, i.e. (13)-(20).

3) Imbalance settlement constraints: In the re-dispatch
stage, the calculation of imbalance power is classified into four
situations: the current SI, the remaining SIs in the current OI,
the SIs in the next OI, and the SIs for the rest of the day.
For s ∈ S⌊i/NS

D⌋, the constraints are shown in (22), (23) and
(25)-(28):

D. Post-calculation of Revenue and Cost
The profits calculation happens after the operation day when

all information is realized. Accordingly, the profits can be
calculated. The spot market revenue Πsm is calculated by
multiplying energy schedule with cleared spot prices:

Πsm =
∑
t∈T

λsp
t · P sm

t ·∆t (29)

Regulation revenue is equal to activated regulation powers
multiplied by RPs (30).

Πreg =
∑
k∈Dt

λrp
k · P reg

k ·∆k (30)

where P reg
k is activated regulation power calculated by (31)

P reg
k = rupk · Pup

k − rdwk · P dw
k (31)

Imbalance revenue is equal to differences among the real-
time measurements and spot market power schedule as well as

Fig. 2. An overview of HPP EMS and HPP PMS [31]

activated regulation power multiplied by the up price or down
price according to the sign of the delta (32).

Πim =
∑
s∈St

(λdw
s ·∆Pup

s − λup
s ∆P dw

s ) ·∆s (32)

where ∆P dw
s and ∆Pup

s are realized imbalance power given
in (33) and (34).

∆Pup
s =

{
∆Ps, if ∆Ps ≥ 0

0, otherwise
(33)

∆P dw
s =

{
−∆Ps, if ∆Ps ≤ 0

0, otherwise
(34)

∆Ps =
∑
k∈Ks

(P rt
k − P reg

k − P sm
k ) (35)

where P rt
k is the real-time measured generation provided by

PMS.
Apart from revenues, battery degradation cost is also calcu-

lated in (36) to reflect where the battery lifetime is.

Ψ =
Nc

N total
c

· CCap (36)

where N total
c represents the total number of 100%-DOD cycles

that makes battery reach to 80% state of health (SoH). CCap

is the capital cost of battery. Nc is the equivalent 100%-DoD
cycle number, which can be identified by Eq. (1), (3), and (4)
assuming the observed LoC is loaded by repeated cycles with
100% DoD, and 50% average SoC.

E. Real-time measurements
In the real-world, the communication between EMS and

PMS is required to exchange information. The interface of
EMS with PMS is shown in Fig. 2 [31], where the EMS
provides energy set-points to PMS and obtains real-time
measurement values, e.g. P rt

k from PMS. However, it is
impossible to connect the developed EMS to a real PMS to
implement long-term case analysis. To solve this problem, a
real-time algorithm to emulate active power control logic [32]
is proposed as depicted in Fig. 3.

In each DI, the behavior of controller depends on the
difference between available wind power and power reference,
battery charging/discharging abilities, and whether the PoC is
congested. The final outputs of the algorithm are 3 states with
the priority that follow reference > create imbalance > power
curtailment.

III. CASE STUDIES

A set of case studies is carried out to assess the performance
of the proposed EMS methodology for HPPs in sequential
electricity markets and to understand the profitability of HPPs
in sequential electricity markets towards year 2030. As an HPP
located in Western Denmark is considered, the market rules
of DK1 are applied, where, the DI, SI, OI are 5 minutes, 15
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∆P̂s =


1

∆s
·

∑
k∈Ks

(Pha
k − (rupk P crt,up − rdwk P crt,dw)− P sm

k ) ·∆k, if s < tNO
S

1

∆s
·

∑
k∈Ks

(Pha
k − (r̂upk Pup

k − r̂dwk P dw
k )− P sm

k ) ·∆k, o.w.
(21)

∆P̂s = ∆P̂up
s −∆P̂ dw

s (22)

∆P̂up
s ,∆P̂ dw

s ≥ 0 (23)

∆P̂s =



P im
s +

1

∆s
·
∑

k∈Ks

(Pha
k − (rupk P crt,up − rdwk P crt,dw)− P sm

k ) ·∆k, if s = ⌊i/NS
D⌋ (25)

1

∆s
·
∑

k∈Ks

(Pha
k − (rupk P crt,up − rdwk P crt,dw)− P sm

k ) ·∆k, if ⌊i/NS
D⌋ < s < tNO

S (26)

1

∆s
·
∑

k∈Ks

(Pha
k − (r̂upk Pnxt,up − r̂dwk Pnxt,dw)− P sm

k ) ·∆k, if tNO
S ≤ s < (t+ 1)NO

S (27)

1

∆s
·
∑

k∈Ks

(Pha
k − (r̂upk Pup

k − r̂dwk P dw
k )− P sm

k ) ·∆k, o.w. (28)

minutes, and 1 hour, respectively. As shown in Table I, four
operation strategies are considered in the analysis. It should
be noted that since there is no trade of regulation power when
use SMOpt and RDOpt, the variables and objective function
term regarding regulation power in RDOpt are not considered.
The parameters for the HPP, based on [31] and Danish Energy
Agency catalogue [33], are depicted in Table II.

All three optimisation models, proposed and described in
the previous section, are solved using the solver of IBM
Decision Optimisation Studio CPLEX through the docplex
python library [34] operating on DTU’s high performance
computing cluster Sophia [35].

TABLE I
OPERATION STRATEGY DEFINITION

Operation strategy Spot market Balancing market
SMOpt BMOpt RDOpt

SM ✓
SM+RD ✓ ✓
SM+BM ✓ ✓

SM+BM+RD ✓ ✓ ✓

TABLE II
PARAMETERS OF THE HPP

Item Parameters Values
WPP Pw,max 120 MW
BESS P b,max 20 MW

EBESS 60 MWh
Emin 12 MWh
ηcha 97%
ηdis 98%
ηleak 0%
µ 0.142 MC/MWh

CCap 11.72 MC
Grid pgrid 100 MW

A. Wind and market data
Wind power time series are simulated with the CorRES

simulation tool [36]–[38]. This tool is based on re-analysing
meteorological data from the weather research and forecast
model with the stochastic model to add fluctuations. CorRES

is capable of simulating wind power time series in minute
resolution. The longitude, latitude, and hub height of HPP,
power curves of wind turbines and simulation period are
required as inputs for CoRES to simulate wind power time
series. The weather year used for the time series corresponds
to 2012. The assumption behind is that the climate in 2030
does not change compared to 2012. DA and HA forecasts of
wind power time series are also obtained from CorRES with
the same setup. 5-minute-ahead forecasts are generated based
on the realized wind power of previous 5 minutes as forecast
of next 5 minutes.

The SP and RP in 2030 electricity markets are modeled by
balancing tool chain (BTC) [39], which aggregates Balmorel
open source energy system model [40] for DA market op-
eration, the balancing model, and the area frequency control
model. The goal of BTC is to simulate the operation of energy
system with variable renewable energy generation. SP forecast
is derived through Long-short term memory network [41]. RP
forecast is taken as the last day’s realized RP as forecast of
current day.

Fig. 4 shows the DA, HA, 5-minute-ahead forecasts and
measurements of wind power as well as the actual and forecast
spot and regulation price.

B. Annual profit of HPP
It is noticed that in some Nordic countries, there are

contractual and legal requirements with regards to participants
following their power schedules [42]. For DK1, deviations
between participants metering power and most recent power
schedules are penalized by a special power imbalance set-
tlement. The settlement is based on original energy notifica-
tion, most recent updated power schedule converting to 15
minutes resolution time series, and real-time metering power
converting to 15 minutes resolution time series. In each 15
minutes, the deviations bigger than 10 MW are punished.
The details of calculation can be found in [43]. This part
of penalty is also considered to analyze the profitability.
Accordingly, the annual statistics of revenues and costs for
different operation strategies are shown in Table IV and Fig.
5. Besides, as shown in Fig. 6, one week is picked up randomly
to compare the real-time measured power and power schedules
for all operation strategies and to analyse whether power
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schedules are well tracked. Table III demonstrates root mean
square error (RMSE) between real-time measured power and
power schedules. It is clear in Fig. 6 that with re-dispatch
optimization in (b) and (d), HPP can follow its power schedule
at more time comparing with (a) and (c). According to Table
III, the RMSEs are reduced from 25.5 to 0.7 and from 4.4 to
1.1, respectively. Therefore, the energy set-points obtained by
intra-hour re-dispatch are easily to be tracked by PMS. The
reason is that 5-min ahead forecast of wind power is more
accurate and hence stressing battery less, when following such
power setpoints.

TABLE III
RMSE OF P ref

k AND P rt
k IN DIFFERENT OPERATION STRATEGIES

SM SM+RD SM+BM SM+BM+RD
RMSE 25.5 0.7 4.4 1.1

As observed in Fig. 5 and Table IV, it is clear that the total
profit of HPP in the operation strategy SM+BM+RD is biggest
(13.7 MC), being followed by the operation strategy SM+BM
(13.6 MC) and SM+RD (12.2 MC), respectively, the lowest
profit being achieved in the operation strategy SM (10.3 MC).
Furthermore, it is also seen that the intra-hour re-dispatch
can unilaterally improve the profits of HPP by reducing
imbalance costs from 3.9 MC to 1.8 MC. while providing
balancing service can individually improve the profits of HPP
by capturing the regulation revenue stream leading to almost
none penalties in BM. The comparison illustrates that the
profit potential of providing balancing service is higher than
real-time imbalance cost reduction. Besides, it can also be
noticed that battery degradation cost approximately doubles
with operation strategy SM+BM comparing with operation
strategy SM. The reason is the fact that battery stresses
more when providing balancing service. However, the aid
of intra-hour re-dispatch helps the battery degradation cost
decrease by comparing operation strategy SM+BM+RD and
SM+BM, which illustrates that energy set-points derived from
re-dispatch optimization stress battery less.

Fig. 3. Real-time simulation algorithm

Fig. 4. Demonstration of wind and market data in one week: (a) DA,
HA, 5min-ahead forecast and measurement of wind power time series; (b)
Forecasted and actual SP time series; (c) Forecasted and actual RP time series

C. Net present value analysis

This subsection analyses the long-term economic perfor-
mance of the co-located wind-battery HPP by examining NPV
over 20 years. The equation to calculate NPV is as follows:

NPV = RHPP−CWPP−CBESS−OWPP−OBESS−CHPP

(37)
where RHPP , CWPP , CBESS , OWPP , OBESS , CHPP repre-
sent HPP revenues, the CAPEX of WPP and BESS, the OPEX
of WPP and BESS, as well as the cost of grid connection and
BOS, respectively. The calculations of each item in (37) are
described as follows.

1) HPP revenue: The computation of revenue is not the
discount factor based model as reported in [19], [24]. Instead,
we run the proposed EMS for several years until the remaining
energy capacity of first battery is reaching to 80% of the
rated energy capacity, when the battery needs to be replaced
[28]. An assumption behind is that market price and wind
power times series are identical in every year. However, the
incorporation of detailed battery degradation model avoids the
general assumption that number of cycles used in every year
are constant [19]. Then the HPP revenue can be estimated
based on the run of the first battery using (38).

RHPP = Rfirst × (Nb − 1) +Rlast (38)

Nb = ⌈20× 365

Dfirst
⌉ (39)

Rlast =

Dlast∑
d=1

Rfirst
d (40)

where Rfirst and Rlast are the revenues from the first and
last batteries, respectively. Nb is number of batteries used in
20 years. Dfirst and Dlast are the numbers of operation days
of first and last batteries, respectively.

2) CAPEX of BESS: The calculation of CAPEX of BESS
is based on [33], where the cost of energy component (62000
C/MWh), power conversion system (PCS) (160000 C/MW),
and other project costs (80000 C/MWh) are included.
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Fig. 5. Comparison of SM revenue, BM revenue, degradation cost and total profits of all operation strategies

TABLE IV
ANNUAL REVENUES AND COSTS OF HPP WITH DIFFERENT OPERATION STRATEGIES (MILLION C)

Operation strategy SM revenues BM revenues Total revenues Degradation costs Total profitsregulation revenues imbalance revenues Total

SM 14.7 0 -3.9 -3.9 10.7 0.4 10.3
SM+RD 14.5 0 -1.8 -1.8 12.7 0.5 12.2
SM+BM 14.6 3.9 -4.1 -0.2 14.3 0.7 13.6

SM+BM+RD 14.5 4.0 -4.1 -0.1 14.3 0.6 13.7

Fig. 6. Real-time power measurements and power schedules with different
operation strategies: (a) SM; (b) SM+RD; (c) SM+BM; (d) SM+BM+RD

3) OPEX of BESS: The OPEX consists of fixed and vari-
able operation and maintenance (O&M) cost [33], which are
540 C/MW/year and 1.8 C/MWh, respectively.

4) CAPEX and OPEX of WPP: The CAPEX of WPP
considered in this paper are wind turbine cost, civil work cost,
which are 851000 C/MW and 117000 C/MW, respectively.
The fixed O&M cost of WPP is 12800 C/MW/year.

5) CAPEX of grid connection and BOS cost: Apart from
the cost of individual assets, costs of other HPP infrastructures
are not negligible. This is categorized as cost of grid connec-
tion and BOS, which are 37100 C/MW and 120000 C/MW,
respectively.

Based on the above process, the profitability of the over-
planting HPP (100 MW grid capacity) for different operation
strategies are examined by computing the NPV. Table V
depicts all the results of NPV analysis, where Etotal is 20
years’ total dispatched energy of battery, which is related to
variable O&M cost and can embody the stress of the BESS.

Lfirst is the lifetime of the first battery in years. According to
Fig. 8, it is clear that all examined cases yield positive NPV,
suggesting a profitable investment for overplanting HPP in
2030. More specifically, the case with SM+BM+RD achieves
the highest NPV, which is 1.02 times, 1.55 times, and 3.6
times to SM+BM, SM+RD, and SM operation strategies,
respectively, which highlights the profitability of balancing
market. Additionally, the case with SM uses 2 batteries during
the 20 years while cases with other operation strategies use
3 batteries. This is reasonable that batteries degrades faster
when being used for more revenue streams. However, by
comparing with SM+BM+RD and SM+BM, intra-hour re-
dispatch extends the first battery lifetime for 0.1 years as
shown in Table V. It can be also observed from Table V, that
the energy throughput of SM+BM+RD is lower than SM+BM,
meaning that the operation strategy SM+BM+RD stresses the
BESS less. This can be explained from the fact that by utilizing
more accurate 5-min ahead forecast, the intra-hour re-dispatch
optimization is able to generate more easy-followed energy
plan.

Fig. 7 demonstrates the yearly cycles of the first batteries
with different operation strategies. It is obvious that cycles of
all operation strategies are not constant in every year, instead, it
shows an increase trend. The reason is that battery degradation
is faster in the early stage and becomes slower gradually,
therefore, the proposed EMS uses battery less in the early
stage and increases the use afterwards.

IV. CONCLUSION

This article has proposed an EMS for wind-battery HPP
in electricity markets, which allows HPPs to obtain revenues
from energy arbitrage, provision of balancing service, and
reduction of real-time imbalances. The annual simulation of
the HPP in sequential electricity markets towards 2030 has
been carried out to analyse the performance of EMS. In
addition, by considering different revenue streams, the long-
term profitability of the overplanting HPP against investment



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE V
RESULTS OF NPV ANALYSIS WITH DIFFERENT OPERATION STRATEGIES AND GRID CAPACITIES

Operation strategy Grid capacity (MW) Rtotal(MC) Etotal(GWh) Lfirst(years) Nb NPV (MC)

SM 100 214 485 10.7 2 26.1
SM+RD 100 260 822 8.0 3 60.6
SM+BM 100 293 1183 7.0 3 92.2

SM+BM+RD 100 294 1021 7.1 3 94.0

Fig. 7. Annual cycles of the first battery with different operation strategies
(the cycles of last year are not plotted due to incomplete year)

Fig. 8. NPV of the HPP with different operation strategies

has been examined through a set of case studies carried out in
Denmark by net present value analysis. The main outcomes
of this research are:

• Add intra-hour re-dispatch optimization to spot market
optimization or spot market optimization and balancing
market optimization enables the power schedules more
trackable for power management system. In the studied
cases, the root mean square errors reduce from 25.5 to
0.7 or from 4.4 to 1.1, respectively.

• Providing balancing service can improve the profits of
HPP by capturing the regulation revenue stream leading
to almost none penalties in balancing market.

• It is profitable for operating wind-battery hybrid power

plants in 2030 with the developed energy management
system. By considering balancing service as another rev-
enue stream on top of energy arbitrage and imbalance cost
management, the net present value of the overplanting
hybrid power plant has increased around 2.6 times and
55% comparing with only considering energy arbitrage
and considering both energy arbitrage and imbalance cost
reduction, respectively.

APPENDIX

A. Spot Market Optimization
The goal of spot market optimization is to decide how much

energy should be committed into the spot market based on
wind power forecasts and spot market price forecasts. This
model operates once a day, before the closure of spot market.

1) Objective function: The objective function in the spot
market optimization is to maximize profits, i.e. revenues minus
degradation cost, in spot market, namely:

max
∑
t∈T

λ̂sp
t · P sm

t ·∆t− Ψ̂(P dis
t , P cha

t ) (41)

where the first item is the revenues by committing energy in
spot market. ∆t is typically one hour.

2) Technical and operation constraints:

P sm
t = P sm,w

t + P sm,b
t (42)

P sm,b
t = P sm,dis

t − P sm,cha
t (43)

0 ≤ P sm,cha
t ≤ P b,max

t · (1− zt) (44)

0 ≤ P sm,dis
t ≤ P b,max

t · zt (45)

Esm,b
t+1 = Esm,b

t · (1− ηleak)−
P sm,dis
t

ηdis
·∆t

+P sm,cha
t · ηcha ·∆t

(46)

Emin ≤ Esm,b
t ≤ Emax (47)

0 ≤ P sm
t ≤ P grid (48)

0 ≤ P sm,w
t ≤ P̂w

t (49)

The constraints in spot market optimization are defined in the
similar way as for balancing market optimization, with just
the small difference that in spot market optimization hourly
resolution is applied according to the requirement from TSO.
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