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Abstract

Unmanned air vehicles (UAVs) popularity is on the rise as it enables the services like traffic monitoring, emergency com-

munications, deliveries, and surveillance. However, the unauthorized usage of UAVs (a.k.a drone) may violate security and

privacy protocols for security-sensitive national and international institutions. The presented challenges require fast, efficient,

and precise detection of UAVs irrespective of harsh weather conditions, the presence of different objects, and their size to

enable SafeSpace. Recently, there has been significant progress in using the latest deep learning models, but those models

have shortcomings in terms of computational complexity, precision, and non-scalability. To overcome these limitations, we

propose a precise and efficient multiscale and multifeature UAV detection network for SafeSpace, i.e., \textit{MultiFeatureNet}
(\textit{MFNet}), an improved version of the popular object detection algorithm YOLOv5s. In \textit{MFNet}, we perform

multiple changes in the backbone and neck of the YOLOv5s network to focus on the various small and ignored features required

for accurate and fast UAV detection. To further improve the accuracy and focus on the specific situation and multiscale UAVs,

we classify the \textit{MFNet} into small (S), medium (M), and large (L): these are the combinations of various size filters in

the convolution and the bottleneckCSP layers, reside in the backbone and neck of the architecture. This classification helps to

overcome the computational cost by training the model on a specific feature map rather than all the features. The results show

significant performance gain even for unseen feature maps with minimal loss in accuracy. Results show a significant reduction

in training parameters, inference, and increased pattern in FPS and GFLOPs for \textit{MFNet} compared to YOLOv5s.

\textit{MFNet-M} performance evaluation in terms of precision, recall, mean average-precision (mAP), and IOU increased

around 1.8\%, 2.2\%, 0.9\%, 1.7\% compared to YOLOv5s. Furthermore, \textit{MFNet-M} achieves the best performance

with 96.8\% precision, 88.4\% recall, 95.9\% mAP, and 51.1\% IoU for UAV detection. The dataset and code are available as

an open source: github.com/ZeeshanKaleem/MultiFeatureNet.
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SafeSpace MFNet: Precise and Efficient
MultiFeature Drone Detection Network

Mahnoor Dil, Misha Urooj Khan, Muhammad Zeshan Alam, Farooq Alam Orakazi,
Zeeshan Kaleem, Senior Member, IEEE, Chau Yuen, Fellow, IEEE

Abstract—Unmanned air vehicles (UAVs) popularity is on the
rise as it enables the services like traffic monitoring, emer-
gency communications, deliveries, and surveillance. However,
the unauthorized usage of UAVs (a.k.a drone) may violate
security and privacy protocols for security-sensitive national and
international institutions. The presented challenges require fast,
efficient, and precise detection of UAVs irrespective of harsh
weather conditions, the presence of different objects, and their
size to enable SafeSpace. Recently, there has been significant
progress in using the latest deep learning models, but those
models have shortcomings in terms of computational complexity,
precision, and non-scalability. To overcome these limitations, we
propose a precise and efficient multiscale and multifeature UAV
detection network for SafeSpace, i.e., MultiFeatureNet (MFNet),
an improved version of the popular object detection algorithm
YOLOv5s. In MFNet, we perform multiple changes in the
backbone and neck of the YOLOv5s network to focus on the
various small and ignored features required for accurate and fast
UAV detection. To further improve the accuracy and focus on the
specific situation and multiscale UAVs, we classify the MFNet into
small (S), medium (M), and large (L): these are the combinations
of various size filters in the convolution and the bottleneckCSP
layers, reside in the backbone and neck of the architecture.
This classification helps to overcome the computational cost
by training the model on a specific feature map rather than
all the features. The results show significant performance gain
even for unseen feature maps with minimal loss in accuracy.
Results show a significant reduction in training parameters,
inference, and increased pattern in FPS and GFLOPs for MFNet
compared to YOLOv5s. MFNet-M performance evaluation in
terms of precision, recall, mean average-precision (mAP), and
IOU increased around 1.8%, 2.2%, 0.9%, 1.7% compared to
YOLOv5s. Furthermore, MFNet-M achieves the best perfor-
mance with 96.8% precision, 88.4% recall, 95.9% mAP, and
51.1% IoU for UAV detection. The dataset and code are available
as an open source: github.com/ZeeshanKaleem/MultiFeatureNet.

Index Terms—Birds, Multi-scale Detection, MultiFeatureNet,
UAV Detection, YOLOv5s.

I. INTRODUCTION

The market for unmanned aerial vehicles (UAVs, a.k.a
drones) was valued at USD 10.72 billion in 2019, and by
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Fig. 1: UAV’s applications and its implications in security-
sensitive areas. UAVs have applications in numerous fields
ranging from performing complex tasks for military to deliv-
ering foods in homes [2].

2027, expected to grow to USD 25.13 billion [1], and this
predicted surge is due to the rising need for automation and
accelerated developments in technology. Due to their low price
and ease of use, UAVs are employed for numerous tasks
like surveillance, healthcare, animal tracking, and disaster
response as shown in Fig. 1. But drones can contravene the
security protocols of many national institutions by entering
sensitive security areas. Any unauthorized organization or any
individual carrying explosive and chemical materials could
commit these breaches [2]. Therefore, drone misuse endangers
and compromises public safety and security, and also, UAVs
flying at low speeds upon collision in mid-air could result in
aerial accidents. Those problems highlight the importance of
automated drone detection technology, which can avert unnec-
essary drone interventions and quickly detect and deactivate
unknown drones.

Kaleem et al. mentioned that drone neutralization ap-
proaches have improved ineffectiveness, but they rely on
expensive and specialized equipment [3]. Therefore, high-
performance and low-cost hardware-based drone detection
systems are required. Usually, there are two ways of detecting
UAVs: The first one is ground-to-air detection (GAD), in
which cameras are installed on the ground to identify flying
UAVs, and the second way is air-to-air detection (AAD), in
which a flying UAV uses onboard cameras to identify other
flying UAVs. In many GAD activities, ground cameras are
immobile or move passively, whereas the background of target
UAV shots is a bright or cloudy sky. A flying UAV in an
AAD deployment may observe the target UAV from the top
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or side view perspectives. As a consequence, the background
of the target UAV would have complex scenes such as urban or
natural settings. As the onboard camera is flying dynamically,
the appearance of the target UAV, such as its form, scale, and
color, may change significantly [4], and this method results in
less performance compared to GAD.

According to Lykou et al. in [5], around 6% commercial
UAV detection systems designed on acoustic sensors, 26%
are using radio frequency (RF), 28% are radar-based, and
40% adopted visual sensors for detection. Mostly those sensors
adopted for drone detection and classification are: radar (radio
detection and ranging on several different frequency bands for
both active and passive sensing) [6], cameras for the visible
spectrum sensing [4], cameras detecting thermal or infrared
(IR) emissions [7], LIDAR (light detection and ranging) [8],
microphones/acoustic sensors for acoustic vibration detection
[2], and RF [9], [10] monitoring sensors for the detection of
radio signals [11].

UAV detection methods using acoustics and RF sensing usu-
ally have higher costs or low range and accuracy of detection
[6]. Contrarily, camera-based detection using visible images
does not face these difficulties due to their high resolution,
which is the main reason for their popularity in classification
and object recognition. However, their utilization has several
challenges, including light shifting, occluded sections, and
crowded backgrounds, which necessitate the research of an
effective detection method. The existing literature lacks signif-
icant research on UAV detection using thermal and IR cameras
in challenging weather conditions [7]. Moreover, sensor fusion
[8], [12] is one of the hottest open research areas that could
further improve UAV detection accuracy.

A. Challenges and limitations

Advanced hardware with excellent accelerated abilities and
deep learning technologies have made accurate and robust
UAV detection possible. Convolution neural network (CNN)-
the most basic deep learning model classifies UAVs by
using visual and acoustic information [11], [13] and have
improved more feature extraction technique than traditional
object recognition algorithms. Complex deep learning models,
such as YOLO (you only look once) [13], have excellent
object recognition precision and speed compared to the basic
models. They are also faster than region-based techniques due
to their simplified architectural design. The proposed research
methodologies in the existing literature faced the following
challenges during drone detection and classification;

• UAVs vs. birds classification: UAVs are physically
similar to birds, which generates the false alarm for birds
during the UAVs identification stage.

• Crowded backgrounds: The inability to accurately seg-
regate UAVs from the background makes UAVs detection
difficult when present in a dense /cluttered background
having clouds, flames, mist, sun, and smoke in the sky.

• Different-size UAVs: It’s quite exigent to train a deep
learning model which is sensitive to different-size UAVs
[8].

B. Contributions

In this paper, we propose a precise and efficient multi-
feature and multi-scale UAV detection network, i.e., SafeSpace
MultiFeatureNet (MFNet), an improved version of the popular
object detection algorithm YOLOv5s [14]. In MFNet, we
perform multiple changes in the backbone and neck of the
YOLOv5s to focus on the various small and ignored features
required for accurate and fast UAV detection shown in Fig. 2.
Moreover, we also conclude that If we train a deep learning
model on one particular feature set, then it can be equally
beneficial for unseen features with minimal loss in accuracy
and precision. The key contributions are summarized here:

• Baseline YOLOv5s [14] takes an input image and ex-
tracts informative features by using a neck block that
helps YOLOv5s generalize well on object scaling and
identification of the object at different sizes. To further
improve the feature sensitivity and kernel scale-ability
of the YOLOv5s model, we modify the kernel size
(KS) in the backbone and neck to change the size of
extracted feature maps. This alteration would help the
model to perform well on unseen data with improved
precision. The proposed MFNet connections are the same
as YOLOv5s with the difference in kernel sizes and their
adjustment in the layers.

• Its a challenge to find which type of extracted features
from feature pyramids would be the best for UAV detec-
tion in challenging backgrounds with complex conditions.
We address this challenge by evaluating three different
versions of MFNet: small (S), medium (M), and large
(L). MFNet-S extracts small feature maps with the input
grid size of the Conv and Bottleneck CSP layers set to
256× 256 and 128× 128, with a stride of 1 and 2. The
proposed MFNet-M extracts medium feature maps as we
set KS in the backbone to 512 × 512 and 256 × 256 in
the neck. However, the MFNet-L generates larger feature
maps than the previous ones as we fix the KS for the head
and backbone to 1024×1024 and 512×512, respectively.
This feature-based extraction provides optimized results
for extracted feature size because it requires fewer pa-
rameters and a GPU requirement.

• Although MFNet is trained only on a single-size feature
map, it performs well on images containing other-sized
feature maps with minimal loss and good confidence
scores.

• We consider only the famous drones vs. birds binary-class
classification problem with challenging backgrounds. We
also tested the trained model on kite images and videos
(i.e., no drones and birds, and can be any image except
these two) with our trained classifiers performed well
with no misclassification.

• We train MFNet on a dataset with multiple environmental
backgrounds such as fog, rain, sunlight, water, forest,
and mountains images with complex scenarios in an
image such as; the number of birds or drones, single bird
or drone, varying drone size, multiple types of drones
(General Atomics MQ-9 Reaper, Dassault nEUROn, DJI
phantom), and different kinds of birds (eagle, parrot, etc.).
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• MFNet extracts a minimal number of parameters and
gradients compared to the CT-Net-Middle [15], YOLOv5s
[15], Improved YOLOv5s [16] Fine-tuned YOLOv5x [14]
YOLOv5s [17], SAG-YOLOv5s [18], TransVisDrone [19].
It proves the increased learning ability of MFNet for
UAVs and birds and significantly decreases the false
detection and missed alarms with improved precision,
recall, and mAP compared to the available literature.

II. LITERATURE REVIEW

Recently, Li et al. in [1] adopted a software-defined radio
(SDR) for the detection and classification of different types
of jamming attacks on UAVs. They trained the conventional
machine learning algorithms with a 35% false alarm (FA),
while with deep learning models around 0.03% FA to perform
spectrogram-based classification. The machine learning (ML)
framework considering acoustic sensors protected institutional
security from amateur drones. Mel-frequency and linear pre-
dictive cepstral coefficients with support vector machines
(SVM) achieved 96.7% accuracy [2]. Zheng et al. in [4]
utilized the monocular cameras to perform AAD on micro
UAVs, which proved vital for vision-based swarm and mali-
cious UAV detection. They introduced Det-Fly, a novel dataset
containing 13,000 images of a flying target UAV in multiple
circumstances. Detailed experimental evaluation of eight deep-
learning systems resulted in the highest accuracy of 82.4%.

Authors in [6] used a hybrid synthetic framework with
deep features for robust UAV classification and detection.
They used acoustic, image/video, and wireless RF signals as
system inputs. As UAV indoor flights place greater emphasis
on stability and localization accuracy, Gerwen emphet al.
in [8] used a flexible sensor fusion platform. The deployed
system targeted the influence of multiple sensors on 3D in-
door location accuracy when faced with different-sized UAVs.
In [11], the authors adopted RF signals and spectral-based
audio characteristics with SVM for drone identification and
classification. They adjusted the spectral feature parameters
for drone signal categorization. The achieved results reduced
computation with improved classification performance.

Alsanad et al. improved YOLOv3 by using dense connect-
ing modules and multiple-scale detection. The improved model
was trained on drone images with a 70:30 ratio and achieved
95.60% accuracy, 0.36 mAP, and 60 FPS [13]. The authors
presented the LIDAR-assisted UAV detection scheme in [20]
to detect and track various types of drones with varied sizes.
The experimental results proved that the LIDAR detected
multiple UAVs at different ranges. In [21], SqueezeNet was
used to extract multiple features from an RF dataset for a
range of signal-to-noise ratio (SNR) [5-30]dB. The results
showed significant improvement compared to the conventional
machine learning classifiers like k-nearest neighbors (KNN)
and SVM. Moreover, Wisniewski et al. in [22] adopted CNN
to spot drones in real-time anti-UAV demonstration videos.
They varied the parameters like model orientation, backdrop
graphics, and textures via domain randomization in synthetic
images. This proposal saved the time spent on individual
drone labeling and provided a pixel-level mask of the drone’s
position.

Similarly, the authors proposed an online drone-based target
detection system using an adaptive motion planner and feature
pyramid feedback. The designed system was evaluated in
various environmental conditions like fog, day, night, and
high and low altitudes and eliminated the influence of the
dynamic background. The proposed system proved that it had
less detection duration and precise target detection in complex
environments [23]. Moreover, Daiet al. trained 700 drone
images on a pre-trained YOLOv5s model and used it as a
sensor to calculate the in-front drone’s relative position [24].
Result-level fusion-based 2D-CNN for binary classification
with audio signals was adopted in [25]. They extracted the
Log-Mel spectrogram and Mel frequency cepstral coefficients
and achieved the highest average accuracy of 93.5% by the
fusion of these two features as summarized in Table I.

Authors in [26] proposed DIAT-RadSATNet containing
modules from SqueezeNet and MobileNet for multi-class clas-
sification. They summarized the effects of different dimension
filters on computing cost, multiscale kernels, UAV targets,
and the impact of down-sampling on classification accuracy.
Moreover, Elsayed et al. presented a visual drone detection
method that relied on videos with a uniform background. Its
detection phase leverages the CNN classifier’s background
removal algorithm, while its tracking phase handles the missed
detection tracks [27]. Global-local feature-enhanced network
(GLF-Net) with a multiscale feature fusion module was pro-
posed in [28] to extract the affective features of UAVs in
complex backgrounds. They considered the model to have
three main modules: a feature recombination module, a lo-
cal feature extraction, and a global feature extraction. Their
highest detection accuracy was 86.52% mAP on the RO-UAV
dataset. Ye et al. proposed convolution–transformer network
(CT-Net) by integrating an attention-enhanced transformer
block and a feature-enhanced multi-head self-attention for
low-altitude object detection. The achieved mAP score of
0.966 on small objects was superior to the baseline YOLOv5
[15]. Object detection algorithms during training, specifically
for UAV detection, faced problem in hierarchical feature
extraction for multilevel representations from pixel to high-
level semantic features. Many hidden factors of input data
were tangled through multilevel nonlinear mappings, which
reduced model’s expressive capability on real-time and unseen
images. Some algorithms also faced problems when dealing
with high-dimensional data having multi-class problem.

After reviewing the existing literature, we highlighted lim-
itations: datasets used for training contained only one type of
drone image and ignored challenging weather conditions or
complex environments. The details of the number of samples
in each class of dataset were missing and neglected the data
augmentation techniques to balance the imbalanced classes.
Moreover, they also ignored the model’s training time and
evaluation metrics like mAP, IoU, etc., which are necessary
to decide the computational resources required to train the
datasets. These limitations and challenges have motivated us
to present the scheme, which can improve precision, efficiently
target multiscale UAVs, and provide balanced results in chal-
lenging weather conditions.
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TABLE I: Literature review

Reference +
Publication
Year

Dataset Problem Statement Achieved Results

Li et al 2022 [1] Self-collected dataset using B210
SDR from National Instruments
and GNURadio

Jamming detection and classification in
UAVs

92.20% with 1.35% false-alarm in real noisy
environment

Anwar et al 2019
[2]

Self-collected dataset in real noisy
environment

Sound-based amateur drone detection 96.7% accuracy in real noisy environment

Zheng et al 2021
[4]

Self-collected dataset named as
Det-fly

Air-to-air visual detection of micro-UAVs 82.4% average precision.

McCoy et al
2022 [6]

Publicly available RF, image and
audio dataset

Multi-modal UAV classification Precision: 91.84% F1: 92.78%

Gerwen et al
2022 [8]

IMU, sonar, SLAM camera based
dataset

Sensor fusion based indoor drone position-
ing

Average 6 ultra-wideband (UWB) anchors
3D error: 10.7cm

Kılıç et al 2021
[11]

DroneRF dataset Drone classification 4 class average accuracy:98.67% 10 class
average accuracy:95.15%,

Alsanad et al
2022 [13]

Extracted 5000 drone images from
online videos

Drone detection 96% average precision, 95.60% accuracy

Dogru et al 2022
[20]

Sparse Lidar measurements Drone detection 88% of the environment is detected

Medaiyese et al
2021 [21]

Self-collected RF dataset UAV Detection 98.9% accuracy at 10 dB SNR

Wisniewski et al
2022 [22]

Self-generated synthetic dataset Drone classification 92.4% accuracy, 88.8% precision, 88.6%
recall, 88.7% F1-score

Wang et al 2022
[23]

Online UAV dataset Online target detection system 12.26 s/frame is achieved by YOLOv4 dur-
ing pre-processing of 1280 × 720 image

Dai et al 2022
[24]

700 drone images Platooning control of drones Trained model can process images at 15
FPS

Dong et al 2022
[25]

Self-collected sound dataset Drone detection 94.5% accuracy

Kumawat et al
2022 [26]

Radar-based self-collected dataset Small UAV targets detection and classifica-
tion

97.1% detection and 97.3% classification

Elsayed et al
2022 [27]

Drone vs bird challenge dataset Visual drone detection 90.51% precision, 64.55% recall, 74.56% f1
score

Proposed
Methodology
2022

Roboflow Birds vs drone detection 96.8% precision, 90.4% recall, 95.9% f1
score, 96% mAP, 62.7% IoU for UAV de-
tection (MFNet-M)

Fig. 2: Proposed SafeSpace MFNet. Takes input in fixed size of 416 × 416, extract feature maps by using backbone block
and fused together in head block. Then using head layer performed final prediction and sketched bounding boxes.
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TABLE II: Number of filters and extracted features of the models.

YOLOv5s MFNet-S MFNet-M MFNet-L
Layer Kernel

size
Features Kernel

size
Features Kernel

size
Features Kernel

size
Features

0:Focus 64 3520 256
(↑4×)

14080
(↑4.3×)

512
(↑8×)

28160
(↑8.6×)

1024
(↑16×)

56320
(↑17.3×)

1:Conv 128 18560 256
(↑2×)

147712
(↑7.95×)

512
(↑4×)

590336
(↑31.80×)

1024
(↑8×)

2360320
(↑127.17×)

2:Bottleneck CSP 128 19904 128 24000
(↑1.20×)

512
(↑4×)

313088
(↑15.72×)

128 48576
(↑2.44×)

3:Conv 256 73984 256 73984 512
(↑2×)

590336
(↑7.97×)

1024
(↑4×)

295936
(↑4×)

4: Bottleneck CSP 256 161152 256 161152 512
(↑2×)

641792
(↑3.98×)

256 210304
(↑1.30×)

5:Conv 512 295424 256
(↓0.5×)

147712
(↓0.5×)

512 590336
(↑1.99×)

1024
(↑2×)

590848
(↑2×)

6:Bottleneck CSP 512 641792 512 609024
(↓0.94×)

512 641792 512 707328
(↑1.1×)

7:Conv 1024 1180672 256
(↓0.25×)

295168
(↓0.25×)

512
(↓0.5×)

590336
(↓0.5×)

1024 1180672

8:SPP 1024 656896 256
(↓0.25×)

41344
(↓0.062×)

512
(↓0.5×)

164608
(↓0.25×)

1024 656896

9:Bottleneck CSP 1024 1248768 1024 1052160
(↓0.84×)

512
(↓0.5×)

313088
(↓0.25×)

1024 1248768

10:Conv 512 131584 128
(↓0.25×)

32896
(↓0.25×)

256
(↓0.5×)

33024
(↓0.25×)

512 131584

11:Upsample 0 0 0 0 0 0 0 0
12:Concat 1 0 1 0 1 0 1 0
13:Bottleneck
CSP

512 378624 128
(↓0.25×)

36288
(↓0.095×)

256
(↓0.5×)

111488
(↓0.29×)

512 378624

14:Conv 256 33024 128
(↓0.5×)

4224
(↓0.127×)

256 16640
(↓0.50×)

512
(↑2×)

66048
(↑2×)

15:Upsample 0 0 0 0 0 0 0 0
16:Concat 1 0 1 0 1 0 1 0
17:Bottleneck
CSP

256 95104 128
(↓0.5×)

28096
(↓0.29×)

256 111488
(↑1.17×)

512
(↑2×)

345856
(↑3.63×)

18:Conv 256 147712 128
(↓0.5×)

36992
(↓0.25×)

256 147712 512
(↑2×)

590336
(↑3.99×)

19:Concat 1 0 1 0 1 0 1 0
20:Bottleneck
CSP

512 313088 128
(↓0.25×)

24000
(↓0.07×)

256
(↓0.5×)

95104
(↓0.30×)

512 378624
(↑1.20×)

21:Conv 512 590336 256
(↓0.5×)

36992
(↓0.062×)

256
(↓0.5×)

147712
(↓0.25×)

512 590336

22:Concat 1 0 1 0 1 0 1 0
23:Bottleneck
CSP

1024 1248768 128
(↓0.125×)

24000
(↓0.019×)

256
(↓0.25×)

95104
(↓0.076×)

512
(↓0.5×)

378624
(↓0.30×)

24:Detect [2, [P3,
P4, P5]]

18879 [2, [P3,
P4, P5]]

4095
(↓0.21 ×)

[2, [P3,
P4, P5]]

8127
(↓0.43 ×)

[2, [P3,
P4, P5]]

16191
(↓0.85×)

III. PROPOSED MFNET ARCHITECTURE

A. MFNet blocks description

The proposed MFNet has four main blocks: input, back-
bone, neck, and head as shown in Fig. 2. The input block
transfers spatial information to the channel dimension on the
input images for faster inference with no mAP penalty. It also
handles the data preparation by employing mosaic data aug-
mentation (MDA) [29] and adaptive image filling (AIF) [29]
methods. MDA enables the MFNet to learn object detection at
a smaller scale than usual object detection algorithms, which
is advantageous in training and reduces the requirement for
mini-batch size. AIF adjusts picture cropping and aspect ratios
according to context, allowing MFNet to adapt a wide range of
visual patterns. MDA and AIF combine adaptive anchor frame
computation into the input for adaptability to varied datasets,
so it can automatically determine the initial anchor frame size.

The backbone retrieves feature maps of various sizes from
the input image by using cross-stage partial network (CSP)
[30] and spatial pyramid pooling (SPP) [31]. Here, we
adopted BottleneckCSP block that reduces the computation
and inference time. SPP extracts three-scale feature maps
to improve detection accuracy. For the neck block, feature
pyramid network (FPN) [32] is used, which extracts semantic
qualities from top to lower hierarchy, whereas path aggregation
network (PAN) [33] extract localization features from lower to
top order. These two structures collaborate to strengthen the
features acquiring capability from multiple network levels by
fusion, helping in increasing detection capabilities even more.
The last block named as head performs the final detection.
MFNet is able to conduct detection at three scales, which are
obtained by downsampling the dimensions of the input image
by 32, 16, and 8, respectively. The first detection is made after
the 17th layer feature map, the second detection is performed
after the 20th layer and third and final detection is formed at
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the 23rd layer feature map.

B. Anchor boxes

An anchor box is a predetermined collection of bounding
boxes with a specific height and breadth. These boxes are
chosen based on the object sizes in training datasets to capture
the scale and aspect ratio of various object classes. The
anchor boxes for MFNet are 8 × 8 (P3), 16 × 16 (P4), and
32 × 32 (P5) for the identification of smaller, medium, and
large objects. After a detailed evaluation of the results, we
notice that the larger feature maps have smaller anchor boxes
because if feature maps are repeatedly down-sampled, there is
a possibility of losing small-sized objects. Therefore, we adopt
large feature maps and smaller anchor boxes to detect the
small-sized objects in an image. When an object’s center falls
into a grid cell, the output neurons associated with that cell
are responsible for creating the object’s (x, y), width, height,
objectness score, and class. It helps to distinguish different-
sized elements in the same image at different scales.

C. Loss functions and target prediction

To optimize MFnet, we utilize adaptive moment estima-
tion (Adam) optimizer [34] and loss functions introduced
by YOLOv5 [15] named as class loss (Lcls), objectness
loss (Lobj), and localization loss (Lloc). Adam computes the
decaying averages of past mt and the past squared gradients
of vt.

m1 = γ1 ×m1(t−1) + (1− γ1)×∇t, (1)

m2 = γ2 ×m2(t−2) + (1− γ2)×∇2
t , (2)

where m1 is the first moment (the mean), m2 is the second
moment (the uncentered variance) of the gradients, γ1 is the
exponential decay rate for the m1, γ2 is the exponential decay
rate for m2, and ∇t is the gradient of the current mini-batch.
These estimates update the parameter θ using the following
equation as

θt = θ(t−1) −
η√

m̂2+ ∈
+ m̂1. (3)

η represents the learning rate, and the feature map of all
MFNet models is represented by g(f(Ix, y, t)) having ZxZ
grids in each cell, have B bounding boxes where prediction
losses are applied. The Lobj can only consider during the
presence of an object in a particular cell C.

Lobj =

Z2∑
l=0

B∑
m=0

1lmobj(Cl − Ĉl) + λn

Z2∑
l=0

B∑
m=0

1lmobj(Cl − Ĉl),

(4)
where 1lmobj has a value of 1 if the m-th bounding box in cell
l contains the object. λn is loss coefficient. Lcls is computed
using a square of the error between predicted conditional class
probability P̂ l(c) and ground-truth Pl(c) for cell l.

Lcls =

Z2∑
l=0

1lmobj
∑
c∈C

(Pl(c)− P̂l(c)), (5)

Here, Lloc returns the difference between the predicted and
true bounding boxes, and is computed as

Lloc =

Z2∑
l=0

B∑
m=0

1lmobj
[
(xl − x̂l)

2 + (yl − ŷl)
2
]
+

λcd

Z2∑
l=0

B∑
m=0

1lmobj

[
(
√
wl −

√
ŵl)

2 + (
√
hl −

√
ĥl)

2

]
.

(6)

(x̂l, ŷl) and (xl, yl) represent the top-left corner coordinates
of the predicted and ground truth bounding box, respectively.
Whereas (ŵl, ĥl) and (wl, hl) are the width and height of pre-
dicted and ground truth bounding box, respectively. Therefore,
the total loss for the MFNet model is

Lt = λ1 × Lcls + λ2 × Lobj + λ3 × Lloc. (7)

These are the MFNet losses: Lobj is the confidence of object
existence calculated using binary cross-entropy loss. Similarly,
Lloc is the bounding box regression loss calculated using mean
squared error, and Lcls is the classifying loss calculated using
cross-entropy. Here, λ1, λ2 and λ3 are loss coefficients.

MFNet calculates the target coordinates and target frame
size of the bounding box with a specific grid size. The network
predicts 4 coordinates for each bounding box, tx, ty, tw, th. If
the cell is offset from the top left corner of the image by
(cx, cy) and the bounding box prior has width and height
pw, ph and σ is the sigmoid activation function then the
predictions correspond to:

bx = (2 · σ(tx)− 0.5) + cx (8)

by = (2 · σ(ty)− 0.5) + cy (9)

bw = pw · (σ(tw))2 (10)

bh = ph · (σ(th))2 (11)

D. MFNet working procedure

MFNet processes the entire image using a single neural
network, divides it into grids and predicts bounding boxes
with probabilities for each grid cell. The predicted probability
weights the bounding boxes as it provides predictions after
only one forward propagation pass through the neural network.
Lastly, the max suppression algorithm ensures that the MFNet
identifies each object once. The network topology in Fig. 2 is
the same for all MFNet models; whereas the main difference
is the change in the kernel sizes of the backbone and head,
which in turn varies the number of extracted features, training
parameters, gradients, and GFLOPs. We propose MFNet to
compute the optimum size of feature maps that provides the
best and fast detection results for flying birds and UAVs in
challenging weather conditions. The anchor sizes, model depth
multiple (i.e., 0.33), and layer channel multiple (i.e., 0.50) are
the same for all MFNet models. For comparison, the applied
kernel sizes and the extracted features of each layer of the
proposed MFNet-S, M, L, and baseline YOLOv5s summarized
in Table II with differences are highlighted.
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TABLE III: Hyper-parameters qualitative analysis

Input size Epochs Batch size Layers Learning rate Momentum Weight Decay
416×416 120 32 232 0.01 0.937 0.0005

IV. DATASET AND IMPLEMENTATION

UAVs are challenging to detect because of their closeness to
birds in terms of radar cross-section (RCS), moderate veloci-
ties, and low flying altitudes. Generally, birds are misidentified
as UAV targets by the drone surveillance system resulting in an
unnecessarily high incidence of false reports and lowering the
efficacy of the surveillance technique. To overcome this, we
consider the birds vs. UAV detection problem to improve the
system’s precision and mAP compared to the existing schemes.

To train the proposed MFNet architecture, we gathered
around 5105 images of UAVs and birds from the publically
available open-source datasets provided on the Roboflow [35].
It includes various types of UAVs like multi-rotor (tri, quad,
Hexa, and octa-copter), single rotor, fixed wings, and various
types of birds. The images also contain different-sized (small,
medium, and large) birds and UAVs. We target the detection
of birds and UAVs problem, but we want our models to be
sensitive to multi-size and multi-types of birds and UAVs. The
final output image only gives information about the presence
of a bird and drone with a bounding box and confidence level,
and not any information about its type or size.

Among 5105 images, we consider 2605 images of UAVs
and 2500 images of birds. Moreover, we further divide the
(2605, 2500) images of UAVs and birds into (850, 833) small-
sized, (855, 833) medium-sized, and (900, 834) large-sized
drone images, respectively. To fulfill the muti-type UAV and
birds criteria, these small-, medium-, and large-sized images
contain different drone models and different types of birds
(white stork, crane, rüppell’s vulture, eagle, bar-tailed godwit,
and common blackbird). Moreover, 5105 images contain eight
backgrounds: clear sky, cloudy, sunny, fog, rainy, water, moun-
tains, and forest. We have approximately 325 UAV images per
background (e.g., cloudy background) and 312 birds images
per background.

For dataset pre-processing, we resize the images to a
dimension of 416 × 416 pixels. Contrast enhancement is
applied to get a fixed range of intensity values to reduce
the intensity spread, training time, and exponential increase
in computational resources. All the datasets are pre-annotated
and imported in the Roboflow- YOLO Darknet TXT format for
training the YOLOv5s and the proposed MFNet models. We
split the total 5105 pre-processed images into 4340 training
images (85%), 510 validation images (10%), and 255 test
images (5%). Fig. 3(a) shows the ground truth images with
respective bounding boxes and classes.

We plot the distribution of the drone sizes and positions
in the dataset in Fig. 3(b). The diversity of drone size is
a substantial problem for YOLOv5 models to identify and
classify tiny drone objects against an ambient background.
Therefore, the input images of the dataset used for training
contained images with multiple region proposals of various
sizes for drone objects. All experiments are separately run on

(a) Ground-truth im-
ages of the annotated
dataset (b) Dataset Distribution

Fig. 3: Graphical representation of the merged dataset.

the Google Colab environment with an NVIDIA Tesla T4 GPU
and 12GB RAM.

The hyper-parameters for all models are set at the same
values to have a fair comparison with the state-of-the-art
as given in Table IV. The learning rate specifies the model
alteration rate with the predicted error each time the model
weights are adjusted. Therefore, it is difficult to calculate the
optimal weights since a small number may lead to a prolonged
training time, and high values may result in an inconsistent
training process. Hence, we set an initial learning rate (lr0)
of 0.01 for SGD and the Adam optimizer. The momentum
is adjusted at 0.937 to accelerate learning in low-curvature
directions while remaining steady in high-curvature directions.
We used a weight decay of 0.0005 to minimize overfitting by
penalizing heavy weights. This selection increases optimizer
convergence by; promoting lower weights, training efficiency
and also minimizes the time it takes to converge on a response.
We set the warm-up epoch to 3.0 with an initial warm-up
momentum and initial bias of 0.8 and 0.1, respectively. These
warm-up parameters lessen the predominant impact of the
early training instances on the optimizer. It enables the com-
putation of the exact gradients from the start, whereas more
epochs are required without it to obtain optimal convergence.
classes.

V. PERFORMANCE EVALUATION

We evaluate the proposed MFNet architecture detection per-
formance by using the evaluation metrics; precision (P ), recall
(R), mean accuracy precision (mAP ), and intersection over
Union (IoU ), respectively, and mathematically represented as;

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

mAP =
1

N

N∑
c=1

(
TP

TP + FP

)
(14)

IoU =
GroundTruth ∩ DetectedBox
GroundTruth ∪ DetectedBox

(15)
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(a) Class loss (b) Object loss (c) Box loss

(d) Recall (e) Precision (f) mAP

(g) IoU

Fig. 4: MFNet and YOLOv5s performance comparison under
various metrics.

These metrics computation requires four attributes; true
positive (TP), true negative (TN), false positive (FP), and false
negative (FN). We apply the classification loss shown in Fig.
4(a) to train the classifier head and to find the targeted object
type. Here, YOLOv5s shows an increased classification loss
compared to MFNet-M/L, which proves its high detection
accuracy in unknown scenarios. Moreover, we compare the
objectness loss for YOLOv5s and MFNet in Fig. 4(b) during
the training session, which shows MFNet-M/L have high
precision values as of achieving low objectness loss compared
to YOLOv5s. Similarly, box loss of YOLOv5s has higher
values than MFNet-S/M/L during the training session shown
in Fig. 4(c), which proves MFNet-S/M/L excellent capability
to locate an object’s center point with a predicted bounding
box. Moreover, we plot the recall, precision, mAP, and IoU
results shown in Fig. 4(d)-(f) over 120 epochs for both models
that show an increasing trend which proves the correctness of
the trained model.

In Table IV, the proposed MFNet-M achieves 92.3% av-
erage P , 88.4 % R, 91.5% mAP , and 51.1 % average IoU
compare to YOLOv5s model. We achieve significant gains for
other MFNet models as well. UAV has the highest precision of
96.8% for MFNet-M models, while birds achieved the highest
precision of 87.7% with MFNet-M. That proves that MFNet-M
is most sensitive to multi-sized flying birds and other targeted
objects in complex background conditions.

TABLE IV: Evaluation metrics of trained models.

Class Precision (%) Recall (%) mAP (%) IoU (%)
MFNet-S

Bird 86.7(↑ 0.9) 83.1(↑ 0.6) 86.3(↑ 0.8) 37.4(↓ 0.1)
UAV 95.2(↓ 0.8) 90(same) 95.4(↓ 0.2) 60.8 (↓ 0.5)
Average 91 (↑ 0.5) 86.6 (↑ 0.4) 90.8 (↑ 0.2) 49.1 (↓ 0.3)

MFNet-M
Bird 87.7 (↑ 1.6) 86.4(↑ 3.9) 87.1(↑ 1.6) 39.4(↑ 1.9)
UAV 96.8(↑ 0.8) 90.4(↑ 0.4) 95.9(↑ 0.3) 62.7 (↑ 1.4)
Average 92.3 (↑ 1.8) 88.4(↑ 2.2) 91.5 (↑ 0.9) 51.1 (↑ 1.7)
MFNet-L
Bird 87.4(↑ 2.3) 82.1(↓ 0.4) 86.1(↑ 0.6) 36.8 (↓ 0.7)
UAV 95.8(↓ 0.2) 88.2(↓ 7.2) 95.6(↓ 0.4) 61.1(↓ 0.2)
Average 91.6 (↑ 1.1) 85.2(↓ 1) 90.9(↑ 0.3) 49 (↓ 0.4)

YOLOv5s
Bird 85.1 82.5 85.5 37.5
UAV 96 90 95.6 61.3
Average 90.5 86.2 90.6 49.4

A. Impact of varying network attributes on extracted features
and model detection performance

Table II gives detailed insight into the effect of changing
input network attributes on model outputs. We select the kernel
sizes in MFNet-S backbone and neck to 128 and 256, respec-
tively, which extracts 61.52% fewer features (i.e., 2,789,023)
compared to baseline YOLOv5s 7,249,215 features. Similarly,
when MFNet-M Kernel sizes of backbone and neck changed
to 512 and 256, respectively, it reduced the features by
27.92% (i.e., 5,223,231) compared to YOLOV5s. However,
the opposite trend is noticed for MFNet-L when Kernel sizes
in backbone and neck changed to 1024 and 512, respectively,
which increased the 41% features (i.e., 10,222,111) of MFNet-
L compared to YOLOv5s, which increased its resource con-
sumption.

One of the key finding of this research is that we extract the
best suitable feature map for differentiating drones from birds.
Results prove that MFNet-M achieved the best results for the
conv and BottleckCSP layers with 512×512 and 256×256 fil-
ters, respectively. These filters covered the complete attributes
of small-sized targets and half the features of large-sized
objects. Although MFNet-S/M/L is trained on one specific-
sized feature map, they all performed well on multi-sized
drones and bird images upon testing. Results displayed in Fig.
5 - Fig. 8 show that MFNet-M is the best-performing model
as it detected small, medium, and large-sized drones with 95%
accuracy. Moreover, MFNet-M achieves a detection accuracy
of 92%, 96%, and 95% for small, medium, and large-sized
birds, respectively, which shows that MFNet-M performance
is the most consistent among all models. We conclude that
even training images on one particular-sized feature map can
detect birds and drones effectively upon testing.

B. Image attributes affecting detection

We evaluate key aspects of the images such as environmen-
tal background, target scales, and other challenging conditions
on the detection performance. The performance of MFNet
is affected by many aspects such as insufficient training and
different parameters, we take the detection accuracy of these
algorithms as the criteria for a fair evaluation.
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(a)
YOLOv5s

(b)
MFNet-S

(c)
MFNetM

(d)
MFNet-L

Fig. 5: Detection results with respect to target scale (Top to
bottom) for small-sized, medium-sized, and large-sized drones
and birds.

1) Target scales: The image size of the target (small,
medium or large) greatly influences the model’s detection
performance. We plot the detection results of UAVs and birds
as the target on all the selected models in Fig. 5 and Fig. 6.
Results show that MFNet-M has the highest detection accuracy
(95%) for all sized UAV targets. MFNet-S and MFNet-M
scored the highest detection accuracy of 92% for small-sized
bird targets. MFNet-M had the highest detection accuracy
of 96% on medium-sized bird targets, while MFNet-S and
MFNet-M scored equally (95%) on large-sized bird targets.
Thus, MFNet-M proved an excellent choice for detecting birds
and drone targets of all sizes in challenging conditions.

2) Impact of varying environment backgrounds on detec-
tion: In Fig. 6 and Fig. 7, we compare the detection perfor-
mance of the proposed MFNet in different conditions with
challenging backgrounds for UAVs and birds, respectively.
YOLOv5s and MFNet-M achieve the highest detection ac-
curacy of 94% on UAV images in clear skies and cloudy
weather conditions. Similarly, MFNet-S and MFNet-M scored
the highest detection accuracy of 90% for UAV images with
sunny conditions. MFNet-M achieves a detection accuracy of
92% for UAVs with foggy backgrounds, 78% for UAVs with a
rainy situation, 65%for UAVs flying with water backgrounds,
and 96% for green forest backgrounds. YOLOv5s and MFNet-
M achieved 94% for UAVs flying in hilly areas.

For bird detection, MFNet-S and MFNet-M performed best
by achieving 95% accuracy with clear sky, whereas YOLOv5s
and MFNet-M have around 86% detection accuracy in rainy
and hilly areas and 94% in forests. Moreover, MFNet-M
performed best with a cloudy sky, sunny, and foggy conditions
by achieving an accuracy of 89%, 94%, and 94%, respectively.
We conclude that the rainy condition and the cloudy plus

(a)
YOLOv5s

(b)
MFNet-S

(c)
MFNetM

(d)
MFNet-L

Fig. 6: UAV detection performance for proposed MFNet and
baseline under challenging environmental conditions (Top to
bottom) like clear sky, cloudy conditions, sunlight, foggy
weather, Rainy situation, waterfall, mountains, and forest.

rainy conditions are the most challenging for UAV and bird
detection, respectively.

3) Multiple targets detection in a single scene with chal-
lenging conditions: Multiple UAVs (swarms) are attracting the
attention of domestic, commercial, and military users because
they can improve performance. However, such deployment
requires robust collision avoidance and detection technologies
in overcrowded airspace, which proves the necessity of multi-
target detection with high precision in challenging conditions.
The performance of the proposed MFNet is tested for multi-
targets in the scene with a challenging environment, as shown
in Fig. 8, where we achieve more accuracy for multi-birds and
multi-UAVs detection using MFNet-S.

We saved all the trained models’ weight files as .pt exten-
sion. To make sure that our trained models detect drones and
birds and avoid misclassification with other similar objects
(like a kite). We tested the trained networks for the scenario
when neither drones nor birds were in the images. We can
input any image and videos for testing the trained model
for verification. Therefore, we gave images containing kites
in eight different backgrounds to the models. As we set the
proposed model confidence level (threshold) to 40% (i.e., if
the proposed model detects with this much confidence), it
only gives the output. Otherwise, it generates no bounding box
by avoiding the misclassification of kites as birds or drones.
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(a)
YOLOv5s

(b)
MFNet-S

(c)
MFNetM

(d)
MFNet-L

Fig. 7: Bird detection performance for proposed MFNet and
baseline under challenging environmental conditions (Top to
bottom) like clear sky, cloudy conditions, sunlight, foggy
weather, Rainy situation, waterfall, mountains, and forest.

However, YOLOv5s identified a kite as a bird in a cloudy
background.

C. Computational complexity and inference time for UAV
detection

Inference rate plays an essential role in real-time system
deployment and improving the UAV detection speed. Commer-
cial and racing UAVs can fly around 50–70 mph and 150 mph,
respectively. Therefore, even a one-second delay translates to a
flying distance of 22m to 66m, which raises a serious security
threat. The computational interdependence qualities of features
can improve the detection time, which helped us to achieve
0.8-0.9 ms detection time. MFNet-S has the lowest inference
time of 8.7 msec with 114 FPS on Tesla T4 GPU shown in
Table V, which proves that model is the best for real-time
UAV fast detection.

The system’s computational complexity depends on training
time, extracted features, trained model size, and GFLOPs. The
training time indicates the amount of time required for training
data to pass through forward and backpropagation of the model
during the training phase. MFNet-S has a minimum training
time of around 2.182 hours and a model size of 5.9 MB.
MFNet-L has the GFLOPs of 157.6G, a training time of 4.072
hours, 10.8 million parameters, and a trained model size of
20.8 MB. However, YOLOv5s took 2.226 hours, 7.2 million
parameters, a model size of 14.8 MB, and 16.7 GFLOPs
as shown in Fig. 9. Thus, the computational complexity of

the MFNet-L due to the highest GFLOPs and extraction of
increased feature maps needs more memory requirement and
GPU capacity.

TABLE V: Proposed models performance on unseen test
dataset.

Model Pre-
process
(msec)

Inference
(msec)

NMS/image
(msec)

FPS

MFNet-S 0.3 8.7
(↓ 1.5)

0.8 (↓ 0.1) 114.94
(↑17.86)

MFNet-M 0.3 9.9
(↓ 0.6)

0.8 (↓ 0.1) 101.01
(↑ 3.93)

MFNet-L 0.3 17.7 (↓
0.8)

0.8 (↓ 0.1) 56.49 (↓
40.59)

YOLOv5s 0.3 10.3 0.9 97.08

D. Tradeoff in IoU and precision performance

The results prove that the average precision and mAP of
all MFNet models have significantly increased compared to
YOLOv5s. We achieved the average precision, recall, mAP,
and average IoU of 92.3%, 88.4%, 91.5%, and 51.1% by
MFNet-M, respectively. Moreover, we notice the increase in
average precision by 1.8%, average recall by 2.2%, mAP by
0.9%, and IoU by 1.9% compared to YOLOv5s as summarized
in Table IV. MFNet-M can accurately predict the TP cases
for UAV detection as it achieves the highest precision, recall,
mAP , and IoU. However, no improvement is noticed in the
recall by using MFNet-S for UAV detection. Similarly, the

(a)
YOLOv5s

(b)
MFNet-S

(c)
MFNetM

(d)
MFNet-L

Fig. 8: Multiple-targets (birds or drones) detection perfor-
mance in a single scene with challenging environmental con-
ditions.
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TABLE VI: Comparison with the state-of-the-art schemes for UAV detection.

Model Dataset Input size Precision
(%)

Recall
(%)

mAP
@0.5
(%)

FPS Parameters
(million)

GFLOPS CPU/GPU

CT-Net-Middle
[15]

26062 images 640×640 N/G N/G 95.1 78 14.67 41.7 NVIDIA
GeForce
GTX1080TI

YOLOv5s [15] 26062 images 640×640 N/G N/G 91.7 156 7.20 17 NVIDIA
GeForce
GTX1080TI

Improved
YOLOv5s [16]

1259 images 640×640 93.54 91.09 94.82 N/G N/G 9.19 NVIDIA
GeForce RTX
3050

Fine-tuned
YOLOv5x [14]

1359 images 416×416 94.7 92.05 94.1 N/G N/G N/G NVIDIA
RTX2070

YOLOv5s [17] 3600 images 512×512 77 79 N/G 5.69 N/G N/G Tesla K80
SAG-YOLOv5s
[18]

11,286 images 416×416 97.3 95.5 97.6 13.2 8.8 3.3 NVIDIA
GeForce RTX
2070 SUPER

TransVisDrone
[19]

2500 images 1280×1280 92 91 95 24.6 N/G N/G NVIDIA
Jetson Xavier
NX

Proposed
MFNet-S

5105 images 416×416 95.2 90 95.4 114.95 2.7 18.9 NVIDIA Tesla
T4

Proposed
MFNet-M

5105 images 416×416 96.8 90.4 95.9 101.01 5.2 75.3 NVIDIA Tesla
T4

Proposed
MFNet-L

5105 images 416×416 95.8 88.2 95.6 56.49 10.2 157.6 NVIDIA Tesla
T4

Fig. 9: Computational complexity of the trained models.

average recall of the MFNet-L model decreased by 1%, while
the average IoU for MFNet-S and MFNet-L decreased by 0.3%
and 0.4%, respectively. Therefore, there is always a tradeoff
between average IoU and precision.

E. Comparison with the state-of-the-art schemes

We compare our results with the latest available literature
that adopted the YOLOv5s model for UAV detection in order
to have a fair comparison. In [16] Liu et al., performed multi-
rotor drone detection by training improved YOLOv5s on 1259
drone images with 16 batch sizes, 150 epochs on a workstation
equipped with an AMD Ryzen 9 5900HS and 16 GB RAM.
The authors have improved the performance of YOLOv5s
by replacing the model backbone with Efficientlit and the
head with adaptive spatial feature fusion to achieve 93.54%
precision, 91.09% recall, and 94.82% mAP with 9.19 million
features for UAV detection. However, the proposed MFNet-M
gets 3.26% and 1.08% higher precision and mAP, respectively,
for UAV detection with 3.99 million less trained features. In

[14], the transfer learning method combined with YOLOv5s
for unauthorized UAV detection. The model was trained on
1359 drone images and achieved 94.7% precision, 92.5%
recall, and 94.1% mAP for UAV detection after training the
dataset on 100 epochs. The proposed MFNet-M achieves 2.1%
higher precision and 1.8% mAP greater than [14]. Similarly,
Hai et al. in [17] trained 3600 drone images on YOLOv5s,
with no changes in the model on NVIDIA Tesla K80 by using
Google Colab with 32 batch size, 300 epochs, and 512×512
input image size. It took a total training time of around one
day and 3 hours, and they achieved UAV detection accuracy of
92% at a drone size of 95×65 with 17.6 ms of inference time.
In comparison to [17], MFNet-S and MFNet-M took around
8.9 msec and 7.7msec less than [17] YOLOv5s inference time.
The training time taken to train 3600 images was 24.818
hours greater than the proposed MFNet-S trained on 5105
images, 24.582 hours greater than MFNet-M, and 22.928 hours
greater than the MFNet-L model. We have summarized this
performance comparison in Table VI with existing state of the
art models available in the latest literature for UAV detection.

VI. CONCLUSION

In this paper, we proposed the novel SafeSpace Multifea-
tureNet (MFNet) architecture that significantly improved the
precision and mAP in UAV detection compared to YOLOv5s.
To successfully implement the proposed architecture and test
its validity in challenging weather conditions, we gathered
the existing five datasets of birds and UAVs from the liter-
ature to verify its performance on three MFNet variants. All
algorithms’ detection performance was rigorously examined
and analyzed with varying environmental backgrounds (i.e.,
weather conditions) and target scales. Proposed MFNet-small,
MFNet-medium, and MFNet-large successfully detected and
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identified UAVs in 0.8msec with the highest UAV detection
precision of 95.2%, 96.8%, and 95.8%, respectively, compared
to YOLOv5s and the existing state-of-the-art schemes. For
the time being MFNet can only identify birds and drones,
to further improve it we to train all the models for multi-class
classification and identification.
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