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Abstract

Evolutionary sequential transfer optimization (ESTO), which attempts to enhance the evolutionary search of a target task using

the knowledge captured from several previously-solved source tasks, has been receiving increasing research attention in recent

years. Despite the tremendous approaches developed, it is worth noting that existing benchmark problems for ESTO are not

well designed, as they are often simply extended from other benchmarks in which the relationships between the source and

target tasks are not well analyzed. Consequently, the comparisons conducted on these problems are not systematic and can only

provide numerical results without a deeper analysis of how an ESTO algorithm performs on problems with different properties.

Taking this clue, this two-part paper revisits a large body of solution-based ESTO algorithms on a group of newly developed test

problems, to help researchers and practitioners gain a deeper understanding of how to better exploit optimization experience

towards enhanced optimization performance. Part A of the series designs a problem generator based on several newly defined

concepts to generate benchmark problems with diverse properties, which are competitive in resembling real-world problems. Part

B of the series empirically revisits various algorithms by answering five key research questions related to knowledge transfer.

The results demonstrated that the performance of many ESTO algorithms is highly problem-dependent, which suggest the

necessity of more research efforts on transferability measurement and enhancement in ESTO algorithm design. The source code

of the benchmark suite developed in part A is available at https://github.com/XmingHsueh/Revisiting-S-ESTOs-PartA.
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Abstract—Evolutionary sequential transfer optimization
(ESTO), which attempts to enhance the evolutionary search
of a target task using the knowledge captured from several
previously-solved source tasks, has been receiving increasing
research attention in recent years. Despite the tremendous
approaches developed, it is worth noting that existing
benchmark problems for ESTO are not well designed, as they
are often simply extended from other benchmarks in which the
relationships between the source and target tasks are not well
analyzed. Consequently, the comparisons conducted on these
problems are not systematic and can only provide numerical
results without a deeper analysis of how an ESTO algorithm
performs on problems with different properties. Taking this clue,
this two-part paper revisits a large body of solution-based ESTO
algorithms on a group of newly developed test problems, to help
researchers and practitioners gain a deeper understanding of
how to better exploit optimization experience towards enhanced
optimization performance. Part A of the series designs a
problem generator based on several newly defined concepts to
generate benchmark problems with diverse properties, which
are competitive in resembling real-world problems. Part B of the
series empirically revisits various algorithms by answering five
key research questions related to knowledge transfer. The results
demonstrated that the performance of many ESTO algorithms
is highly problem-dependent, which suggest the necessity of
more research efforts on transferability measurement and
enhancement in ESTO algorithm design. The source code
of the benchmark suite developed in part A is available at
https://github.com/XmingHsueh/Revisiting-S-ESTOs-PartA.

Index Terms—optimization experience, sequential transfer op-
timization, test problems, benchmark suite.

I. INTRODUCTION

Knowledge transfer-enhanced optimization, known as trans-
fer optimization [1], has received increasing research interests
in the past years. Similar to transfer learning [2, 3], transfer
optimization aims to improve the performance of an optimizer
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on target task(s) using knowledge extracted from related
tasks [4–6]. Since evolutionary algorithms (EAs) are easy to
be implemented and do not require optimization problems to
have the nice mathematical properties needed by mathematical
programming algorithms, a variety of transfer optimization
techniques using EAs as optimizers have been developed and
recognized as evolutionary transfer optimization (ETO) in the
literature [7]. According to the conceptual realizations in [1],
ETO can be classified into three categories: evolutionary mul-
titasking [8–10], evolutionary multiform optimization [11–13],
and evolutionary sequential transfer optimization (ESTO) [5,
14–16]. Specifically, ESTO refers to an evolutionary search
paradigm that leverages the searching experience captured
from previously-solved optimization tasks to speed up the
search when solving an unseen target task [16].

In the literature, a variety of ESTO algorithms have been
proposed. In terms of “what to transfer”, existing ESTO
algorithms can be categorized into three types: algorithm-
based methods [17], model-based methods [18], and solution-
based methods [5]. Fig. 1 presents a timeline that illustrates the
development of each type of ESTO. In each row, the height
of each shaded area denotes the number of publications of
each type over years. In algorithm-based ESTO, algorithm
configuration [17, 19, 20], algorithm selection [21, 22], and
algorithm portfolio [23–25] are three representative meth-
ods [26]. Algorithm configuration transfers the set of optimal
parameters obtained on a group of source tasks to the target
task [20]. Algorithm selection reuses the algorithm with the
best performance among a group of candidate algorithms on
the target task [27]. Algorithm portfolio transfers candidate
algorithm(s) and its parameters simultaneously [23]. Moreover,
knowledge can also be transferred in the form of model in-
formation in ESTO, i.e., model-based methods. Model biasing
[28–30] and model aggregation [31, 32] are two well-known
methods in this category. Model biasing captures the model
information from source tasks and uses them to bias the
initial search distribution on a target task [28], while model
aggregation constructs a mixture distribution by aggregating
the optimized source distributions into the target one [33]. Fur-
thermore, in solution-based ESTO (S-ESTO), the knowledge
is transferred in the form of solution(s) across tasks. Due to its

https://orcid.org/0000-0001-6836-7245
https://orcid.org/0000-0003-1997-1854
https://orcid.org/0000-0002-8356-7242
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https://orcid.org/0000-0003-2756-4984
https://orcid.org/0000-0002-6802-2463
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2

Fig. 1: A timeline graph of showing the development of various ESTO approaches. The height of each shaded area denotes
the number of publications related with theoretical research or practical applications.

ease of implementability and optimizer-independent property1,
S-ESTO has obtained increasing research attention in the past
decades, as shown in Fig. 1. However, exiting studies mainly
focus on designing knowledge transfer methods, without rig-
orous analyses on the performance obtained by knowledge
transfer and how different algorithms perform on problems
with varying properties. This paper thus presents an attempt
to fill this gap.

First of all, in evolutionary computation, using benchmarks
is a common way of investigating various algorithms, which
can provide valuable insights of the performance of different
methods and arouse important concerns in designing better
algorithms. However, existing test problems in S-ESTO are
simply extended from other benchmarks [14, 34], in which the
relationships between source and target tasks are not analyzed,
limiting their ability to represent real-world problems. Besides,
there are no common test problems for S-ESTO study, and
existing S-ESTO methods are evaluated on different problems,
which could result in unfair comparisons, since an algorithm
that performs well on one problem set often shows unsatisfac-
tory performance on another group of problems [35]. Thus, it
is desirable to design a common benchmark suite containing
problems with diverse properties to promote the competition
between different algorithms and, as a consequence, boost the
development of S-ESTO.

Next, algorithm design in S-ESTO mainly focuses on so-
lution selection and solution adaptation [34, 36]. In solution
selection, a similarity metric is often employed to identify
transferable source solution(s) [5, 37–39]. However, the se-
lected solutions are hard to ensure their usefulness for the
target task due to the intrinsic uncertainty of similarity met-
ric in measuring transferability. Towards positive knowledge
transfer from source to target task, solution adaptation is
proposed to adapt the source solutions(s) for a higher transfer-
ability [14, 40, 41]. Moreover, solution selection and solution
adaptation are also integrated to curb the negative transfer
in multi-source problems [34]. However, it is still unclear
what factors contribute to the efficacies of solution selection
and solution adaptation. Therefore, it is worth conducting an
in-depth investigation of various S-ESTO algorithms on a

1As knowledge is transferred in the form of solution(s), S-ESTO does not
rely on the configuration of EA solvers.

common benchmark suite, to help researchers and practitioners
gain a deeper understanding of how to exploit optimization
experience more effectively.

In the light of the above, in this two-part paper, we intend
to design a common benchmark suite for S-ESTO, and ex-
perimentally revisit and analyze existing S-ESTO algorithms
on the designed test problems. Part A of the series covers
important concepts, design guidelines, and key ingredients
for generating S-ESTO benchmarks. Firstly, we introduce the
basic concepts to characterize sequential transfer optimization
problems. Based on the newly defined concepts, we discuss an
important design feature named similarity distribution, which
describes the similarity relationship between tasks. Then, a set
of design guidelines and a problem generator for designing
benchmarks are proposed. Lastly, a benchmark suite contain-
ing 12 individual problems is built. To provide deeper insights
on the design of S-ESTO algorithms, part B employs the new
test problems developed in part A to empirically revisit a wide
variety of knowledge transfer techniques by addressing the
following five research questions (RQs):

1) RQ1: How do existing similarity metrics perform in
solution selection for S-ESTO?

2) RQ2: Which factor is essential to the effectiveness of
similarity metrics in S-ESTO?

3) RQ3: How do existing adaptation techniques perform in
solution adaptation for S-ESTO?

4) RQ4: What contributes to the effectiveness of solution
adaptation models in S-ESTO?

5) RQ5: How to integrate solution selection and solution
adaptation for S-ESTO?

Part A is organized as follows. Section II presents the
problem definitions and discusses key transfer strategies in
S-ESTO. Then, we introduce several important concepts to
characterize sequential transfer optimization problems in Sec-
tion III. After that, Section IV summarizes the crucial design
features and general guidelines for designing S-ESTO bench-
marks. In Section V, we build a S-ESTO benchmark suite
containing 12 individual problems based on the discussions in
Section IV. Lastly, Section VI concludes part A of this series.
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II. PRELIMINARIES

Firstly, the definitions of ESTO and S-ESTO are presented.
Thereafter, we review a number of representative S-ESTO
algorithms and the key transfer strategies involved in these
methods. Lastly, the deficiencies of existing test problems are
analyzed.

A. Definitions of ESTO and S-ESTO

With a number of previously-solved source tasks, sequential
transfer optimization (STO) aims to improve the solving
efficiency of a target task with the aid of knowledge captured
from the source tasks, which can be formally portrayed as [1]:

min
x∈Ω

[
f t (x) |M,Pt

]
(1)

where x represents the decision vector, Ω is the decision space,
f t denotes the scalar objective function of the target task,
M represents the database containing available information
drawn from the k source tasks, Pt = {P tj , F tj , j = 1, ..., t}
denotes the evaluated solutions of the target task from the first
generation to generation t (P tj is the population data at the jth
generation and F tj represents the fitness values of the solu-
tions at the jth generation). STO using EAs as its optimizer is
termed evolutionary sequential transfer optimization (ESTO).

Given a sequential transfer optimization problem2 (STOP),
its knowledge database often contains evaluated solutions
on source tasks and the collected partial information of the
source and target tasks. This is particularly the case for
many combinatorial optimization problems [42]. For example,
partial information such as nodes’ locations in a traveling
salesman problem is readily accessible [43]. Leveraging such
information for better solving efficiency is very common in
EA and STO [41, 44]. In this study, we will not cover ESTO
methods using problem information since these studies are
usually problem dependent. Instead, we focus on black-box
ESTO in which the knowledge is extracted from searched
solutions. This type of ESTO is expected to benefit a wider
range of practical applications [5]. Particularly, ESTO that
transfers solution(s) is recognized as solution-based evolution-
ary sequential transfer optimization (S-ESTO). The available
source data in S-ESTO is simply evaluated solutions of the k
source tasks:

M = {Ps1,Ps2, ...,Psk} (2)

where Psi = {P sij , F sij , j = 1, ..., G} is the population data
of the ith source task, P sij denotes the evaluated solutions of
the ith source task at the jth generation and F sij represents
the fitness vector of the ith source task at the jth generation.

B. S-ESTO Algorithms

The general framework of existing S-ESTO algorithms is
shown in Fig. 2. The knowledge transfer module is often
independent of evolutionary optimizers, making an S-ESTO

2We distinguish “problem” from “task” in this work. A sequential transfer
optimization problem contains source and target optimization tasks.

Fig. 2: The general framework of S-ESTO algorithms.

algorithm can be easily modularized. Without loss of gener-
ality, any of other population-based optimizers (e.g., particle
swarm optimization [45], PSO) can be used to replace the
conventional EAs in Fig. 2. In the knowledge transfer module,
task information in the form of evaluated solutions is fed
into a knowledge extraction phase for generating transferable
solutions. For tasks with different decision spaces, one can
transform them into a common space and extract the transfer-
able solution(s) therein. Then, the transferable solution(s) in
the common space is transformed to the target task for further
evaluation. For convenience, all the subsequent discussions
about solution are assumed in the context of common space. In
the selection phase, the transferred solutions with competitive
or superior fitnesses will be automatically reserved to the
next generation, while those with poor fitness values will be
discarded. In the past years, many S-ESTO approaches have
been proposed in the literature, which focus either on the
selection or adaptation of solutions for transfer across tasks.
Generally, existing S-ESTO approaches can be classified into
the following three categories:

1) Solution selection-based S-ESTO [5, 46]: To identify the
most transferable solution(s), solution selection employs
a similarity metric to select the most similar source task
to the target task and then extracts solution(s) for transfer.

2) Solution adaptation-based S-ESTO [14, 47]: To overcome
the task heterogeneity, solution adaptation adapts trans-
ferable solution(s) for a higher transferability, where the
source task that provides the solution(s) is often randomly
selected.

3) S-ESTO that integrates selection and adaptation [32, 34]:
Towards more effective knowledge transfer in a multi-
source scenario, solution selection and solution adaptation
are integrated in S-ESTO. Firstly, the most similar source
task to the target task is identified by solution selection
to provide transferable solution(s). Then, the transferable
solution(s) is adapted and transferred to the target task
via solution adaptation.

More detailed technical reviews of the above three types of
S-ESTO approaches are provided in part B of this series.
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C. Existing Test Problems

To the best of our knowledge, there is no common bench-
mark suite for ESTO in the literature. Existing test problems
considered in the literature are often different in each study,
which are either extended from other benchmark problems
or generated from particular practical problems with limited
variations.

1) Problems Extended from Other Benchmarks: In [14, 47],
the test problems are from two commonly used benchmarks,
including 5 MOPs in ZDT family [48] and 7 MOPs in DTLZ
family [49]. It is important to note that these problems are
designed for the research of multi-objective optimization rather
than S-ESTO. The optima of all the problems are set to be
zero vectors for convenience, as they are solved independently.
However, due to the closer optima of source and target tasks,
one should scrutinize these problems before applying them to
evaluate S-ESTO algorithms. On these problems, the direct
reuse of source solutions often leads to a significant speedup
of the search in the target task. However, the closer optima of
source and target tasks are very rare in real-world problems.
Moreover, in [16], the test problems are extended from the
benchmark functions in single-objective and multi-objective
optimization, in which the optima of source and target tasks
are randomly configured. However, the relationship between
the randomly configured optima can only represent the rela-
tionship of a particular type of STOPs. As shown in Part B,
an S-ESTO algorithm that shows superior performance on the
problems in [16] does not work well on many other STOPs.

2) Problems Generated from Practical Instances: In [5],
the empirical studies are conducted on three practical ap-
plications: combinational circuit design, strike force asset
allocation, and job shop scheduling. To ensure a certain degree
of solution similarity, they generate source tasks based on the
parameters of the target task. Similarly, in [34], source tasks
are synthesized via sampling the parameters in objectives and
constraints of the target task. As a result, the optima of the
generated source tasks are close to the target one. However, an
underlying assumption in Eq. (1) is that the source tasks are
independently accumulated before the target task. Thus, the
prespecified similarities in [5, 34] are unrealistic in practice.

In summary, the relationships between the optima of source
and target tasks in existing test problems are configured in
an unsystematic manner. The limited patterns of such rela-
tionships make the test problems insufficient for evaluating
various S-ESTO algorithms. In Section III, we will introduce
a number of basic concepts to characterize STOPs, which can
help us figure out an important feature ignored by previous
studies, i.e., similarity distribution.

III. BASIC CONCEPTS

To characterize STOPs, we first define a number of basic
concepts. The newly defined concepts and their relations with
several well-established notions in ESTO are illustrated in Fig.
3. Particularly, in view of multiple individual tasks (i.e., source
and target tasks) in an STOP, we define a concept named task
family to refer to a task set from which the source and target
tasks are sampled. Next, since S-ESTO transfers knowledge in

Fig. 3: An illustration of the newly defined concepts.

the form of solution(s), it is necessary to analyze the relation-
ship between the optimal solutions of source and target tasks.
A novel concept named task-optimum mapping is defined to
connect a task to its optimum. Thus, given a task family, there
will be a set of optima corresponding to the elementary tasks,
which is termed the image of task-optimum mapping. Then,
we define optimum coverage to describe the relative size of
the image over the decision space. Finally, by measuring the
similarity between two tasks based on the distance of their
optimal solutions, we introduce an important problem feature
of STOPs named similarity distribution, which describes the
similarity relationship between the k source tasks and the
target task in an STOP. In part B, the experimental results
reveal that the performance of an S-ESTO algorithm is very
susceptible to similarity distribution. To help readers digest all
the newly defined concepts, we present an illustrative example
at the end of this section.

A. Task Family

Firstly, we introduce the concept of task family referring
to a task set from which the tasks in an STOP are sampled,
which is given by:

Definition 1. A task family F (x;A) consists of a set of ele-
mentary optimization tasks f (x;a) with the decision variable
x in a decision space Ω, which is given by:

F (x;A) = {f (x;a) |a ∈ A}, x ∈ Ω (3)

where A is a task space that contains all the realizations of an
elementary task; a denotes a feature vector that characterizes
a particular optimization task in F .

The concept of task family can be exemplified by different
optimization problems. For instance, minimization tasks of n-
dimensional quadratic functions with distinct coefficients can
be regarded as a task family. A realization of the coefficients
deterministically characterizes a specific quadratic optimiza-
tion task. Moreover, in combinational optimization, traveling
salesman optimization tasks with n cities can be treated as
a task family. The coordinate information deterministically
characterizes a specific task. Notably, the task family here is a
fairly general concept whose elementary tasks depend on the
application of interest. Given a task family F , we assume that
an elementary task f ∈ F is a random variable with a latent
distribution, which is given by:
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f (x;a) ∼ f (x; pA) (4)

where pA denotes the distribution of the parametric features.
According to the definition of task family, knowledge trans-

fers in S-ESTO can be divided into two categories: intra-family
transfer and inter-family transfer. Specifically, in the intra-
family transfer, source and target tasks are drawn from the
same family, thus sharing similar landscape modalities. By
contrast, source and target tasks in the inter-family transfer
are from different families.

B. Task-Optimum Mapping

Given a task family F (x;A), f (x;a) ∈ F (x;A) is a
regular optimization task [50]. Without loss of generality,
the elementary tasks are considered to be single-objective
minimization optimization tasks3, which can be formulated as
follows:

x∗ = min
x∈Ω

f (x;a) (5)

where x∗ denotes the optimal solution. Generally, for a task
with given fixed features, its optimum is unique. Thus, we
define task-optimum mapping to describe the relation between
the features and optimum of a task.

Definition 2. Given a task family F (x;A), its task-optimum
mapping ΦF : A → Ω models the relationship between
features and optimum:

ΦF (a) = x∗, x∗ ⊆ Ω (6)

where ΦF (·) denotes the task-optimum mapping of F (x;A).

The task-optimum mapping defined here is a fairly gen-
eral concept that can refer to the optimization process of
any optimization task of interest. For tasks with an explicit
relation between features and optimum, an analytical solution
of task-optimum mapping is often available. For example,
the optimal solution of a convex quadratic optimization task
can be analytically derived based on its coefficients [51].
More often, features and optimum of a task are implicitly
related. In this case, an optimizer is usually employed to
search for the optimum by iteratively evaluating the objective
function. Importantly, the concept of task-optimum mapping
still holds despite the implicity, allowing us to learn opti-
mization experience. In particular, given a set of previously-
solved tasks {f

(
x;ais

)
, i = 1, ..., k} from a task family

F (x;A), their optima are represented as {x∗si, i = 1, ..., k}.
The task-optimum mapping of this family can be estimated
via a supervised learning algorithm [52–55]:

Φ̃F = min
Φ∈Θ

k∑
i=1

l
(
Φ
(
ais
)
,x∗si

)
(7)

where Θ represents a mapping space with candidate mappings,
l (·, ·) denotes a metric function for measuring the discrepancy
between the predicted optimum and the true optimum. Now,

3The generalization to multi- and many-objective tasks is trivial. A maxi-
mization task can be converted to the minimization task via multiplying the
objective function by -1.

given an unsolved target task f (x;at) ∈ F , its optimum can
be predicted as follows:

x̃∗t = Φ̃F (at) (8)

Furthermore, a task-optimum mapping is uniformly contin-
uous if it is continuous on the task space (i.e., A). The uniform
continuity states that ∀x, y ∈ A, ∃δ > 0, ∀ε > 0:

|x− y| < δ ⇒ |Φ (x)− Φ (y) | < ε (9)

This property suggests that two similar tasks in the feature
space possess closer optimal solutions, which forms the foun-
dation of many STO algorithms using problem information
(i.e., at) for similarity measurement. Several representative
methods can be found in [38, 56–59]. Given a task family, the
image of its task-optimum mapping is the set of all optimal
solutions in the decision space [60], as illustrated in Fig. 3.
The following subsection defines a concept named optimum
coverage used for describing the relative size of this image.

C. Optimum Coverage

Given a task family F (x;A), its task-optimum mapping
ΦF often has the following two properties:

– Non-injective: ∃ai,aj ∈ A : Φ (ai) = Φ (aj) ; ai = aj .
– Non-surjective: Φ (A) 6= Ω.
The first property implies that different tasks from the same

family may share a common optimal solution. For instance, a
minor change of edge information in a short-path optimization
task may not result in the alteration of the shortest path.
The second property means that the image of task-optimum
mapping, i.e., Im (ΦF ), is distributed over a subregion of the
decision space. Fig. 3 shows the relationship between the task
space A and the decision space Ω connected by the task-
optimum mapping ΦF . The image of ΦF is the set of all
optimal solutions corresponding to the tasks in A. According
to Eq. (4) and the definition of task-optimum mapping, we
have the distribution of optimal solutions as follows:

ΦF (a ∼ pA) = x∗ ∼ qA (x∗) (10)

where qA represents the optimum distribution of the elemen-
tary tasks in F . Here, the event space of optimum x∗ is
equivalent to the image of ΦF . Next, we define the concept of
optimum coverage to describe the relative size of such image
over the decision space.

Definition 3. Given a set of task families Θ = {F1, ...,Fm}
from which the source and target tasks of an STOP are
obtained, where m is the number of task families, optimum
coverage is defined as the ratio of the image Im (ΦΘ) to the
common space Ωc:

γ =

∫
x∈Im(ΦΘ)

dx∫
x∈Ωc

dx
(11)

where γ denotes the optimum coverage. Im (ΦΘ) is Im (ΦF )
in the common space for a single family, while it equals to
Im (ΦF1) ∪ Im (ΦF2) ∪ ... ∪ Im (ΦFm) for multiple families.
Apparently, m is equal to 1 in intra-family transfer while it is
greater than 1 in inter-family transfer.
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Fig. 4: A schematic diagram of the interval coverage task.

In particular, γ ≈ 0 if all the tasks in a family set share a
common optimum, γ = 1 when the optimal solutions spread
over the whole search space. It is noted that most problems
fall between these two extreme cases. To some degree, the
optimum coverage of a task family can reflect one’s prior
knowledge about this family. Generally, for a task family with
little prior knowledge, one often adopts a large decision space
due to his weak prior beliefs about the optimal solutions. In
this case, the optimum coverage is small. By contrast, one
always adopts a small decision space if some priors about the
optima are available, resulting in a large optimum coverage.
Therefore, optimum coverage is a highly problem-dependent
property of task family. When using S-ESTO algorithms, one
can readily obtain the target optimum by reusing the source
optima if γ ≈ 0. However, if γ is large, it is challenging
to acquire the target optimum based on a limited number
of diversely distributed source optima. Next, to characterize
the relationship between the optimal solutions of source and
target tasks more clearly, we define a concept named similarity
distribution in what follows.

D. Similarity Distribution

When the source and target tasks of an STOP are obtained
from a family set Θ = {F1, ...,Fm}, the accumulation of
the tasks can be seen as an increasing number of independent
samples drawn from the joint task distribution of the m task
families. Suppose the source and target tasks are obtained
as {f

(
x;ais

)
, i = 1, ..., k} and f (x;at), we have their

optima as {x∗si, i = 1, ..., k} and x∗t , which are denoted as
{osi, i = 1, ..., k} and ot in the common space. Since S-ESTO
transfers optimized solution(s), the similarity between the opti-
mal solutions of two tasks largely reflects their transferability4.
Therefore, we measure the similarity between the ith source
task and the target task using the Chebyshev distance5 between
their optimal solutions, which is given by,

Si = 1−DCheb (ot,osi) = 1−max
j

(
|oj

t − oj
si|
)

(12)

where Si ∈ [0, 1] denotes the similarity value between the ith
source task and the target task, DCheb (·, ·) is the Chebyshev
distance function, oj

t and oj
si represent the jth variables of ot

and osi, respectively.

4A formal definition of transferability in S-ESTO is provided in part B.
5Without loss of generality, other distance functions can also be used here.

Fig. 5: A great number of interval coverage tasks in F (x;L)
and the locations of their optima in Ω1, Ω2 and Ω3.

With Eq. (12), we can characterize the similarity relation-
ship between the k source tasks and the target task using the
set of similarity values {Si, i = 1, 2, ..., k}. To eliminate the
effect of the varying number of source tasks, one can estimate
a probability density function of the set of similarity values
using the kernel smoothing technique [61], which is given by,

p̂ (S) = K (S1, ..., Sk) (13)

where p̂ (S) represents the estimated probability density func-
tion, K (·) denotes the kernel smoothing estimate. For brevity,
we term the estimated function similarity distribution.

According to Fig. 3 and Eq. (13), we can see that the
similarity distribution of an STOP explicitly describes the sim-
ilarity relationship between the k source tasks and the target
task in the search space. This problem feature quantitatively
reflects the distribution of source tasks with different degrees
of similarities to the target task, which is influenced by the
following three main factors:
• Optimum coverage of the family set(s) of interest.
• Optimum distribution induced by the task distribution.
• Randomness of sampling tasks for constituting the STOP.
Next, we present a toy example to help readers digest all the

newly defined concepts and show how similarity distribution
changes with the three factors.

E. A Toy Example

Given an 1-dimensional interval with unit length and two
stations within the interval, one aims to minimize the radiuses
of the two stations with the satisfaction of covering the whole
interval. Fig. 4 shows a schematic diagram of this optimization
task. More formally, an interval coverage optimization task
f (x; l) with the feature vector l = [l1, l2] (i.e., the locations
of the two stations) can be formulated as follows:

min
x∈Ω

x1 + x2 (14)

s.t. The interval is covered.

where x = [x1, x2] denotes the decision vector that represents
the radiuses of the two stations, Ω represents the decision
space configured by a practitioner. It is noteworthy that the
box-constrained spaces from [0, 1]

2 to [0,∞]
2 are all feasible

settings with no influence on the optimal solutions. Next, we
use this example to demonstrate the concepts defined earlier
and show the necessities of introducing them into S-ESTO.
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Task family: The task family F (x;L) contains an infinite
number of elementary tasks characterized by the feature vector
l in the feature space L : [0, 1]

2. An elementary task f (x; l)
can be drawn from F (x;L). The feature space L here implies
that the two stations of an elementary task can be anywhere
within the interval. To illustrate, we sample a large number
of elementary tasks that are uniformly distributed over the
feature space, as shown in the left part of Fig. 5. Each solid
square within the shaded area (i.e., L) represents a particular
elementary interval coverage optimization task.

For a practitioner who routinely optimizes many such
interval coverage tasks, it is the case of STO where a few
previously-solved source tasks can be used for better solving
a target task. That is why we introduce task family to refer to
the task set from which these tasks are obtained.

Task-optimum mapping: The task-optimum mapping ΦF
of this family maps the features of an interval coverage task
to its optimum. To illustrate, we optimize all the elementary
tasks sampled before and show the locations of their optima
as solid squares in the right part of Fig. 5. The task-optimum
mapping is displayed in the form of many dotted parabolas
that connect the features of elementary tasks to their optima.

As mentioned earlier, it is desirable to analyze the relation-
ship between the optimal solutions of source and target tasks
in S-ESTO. To this end, we can use task-optimum mapping
to map a collection of tasks in the family to their optimal
solutions for such analysis. The set of optimal solutions of all
the elementary tasks is known as the image of task-optimum
mapping, i.e., Im (ΦF ).

Optimum coverage: Optimization coverage is defined as
the ratio of the image Im (ΦF ) to the decision space. It is
noted that the size of decision space relies on our prior beliefs
about the optimal solutions of a task family. If some priors
are available, one always prefers to adopt a smaller decision
space to enable an optimizer find the optimum effortlessly.
In this example, we consider three cases of decision spaces
(i.e., Ω1, Ω2, and Ω3) and calculate the optimum coverages by
discretizing the decision spaces. The optimum coverages under
the three cases of decision spaces are γ1 = 0.34, γ2 = 0.17,
and γ3 = 0.01, respectively. Intuitively, a larger decision space
results in a lower optimum coverage.

According to Definition 3, we observe that optimum cover-
age is a problem-dependent property of a task family, which
is controlled by two factors: the intrinsic nature of task family
that determines the distribution of optimal solutions and the
human priors that influences the size of decision space. Since
the source and target tasks in an STOP are alway a subset
of elementary tasks in a task family (or multiple families
in the inter-family transfer), their similarity relationship is
sensitive to optimum coverage, which will be discussed further
in similarity distribution below.

Similarity distribution: In this example, we can compose
an STOP by sampling an arbitrary number of elementary tasks
from F (x;L). Specifically, 103 tasks are optimized and stored
into the database to serve as the source tasks, while an un-
solved task serves as the target task. The similarity relationship
between the 103 source tasks and the target task in terms of
optimum can be described by similarity distribution defined

Fig. 6: Similarity distributions of STOPs under different situa-
tions: (a) Ω = Ω2, qF ∼ U, Realization 1; (b) Ω = Ω3, qF ∼
U, Realization 1; (c) Ω = Ω2, qF ∼ G, Realization 1; (d)
Ω = Ω2, qF ∼ U, Realization 2.

in Eq. (13). Next, we employ the variable-controlling method
to investigate the three aforementioned factors responsible for
the variation of similarity distribution in different STOPs.

Firstly, we investigate how similarity distribution changes
with optimum coverage. The similarity distributions of two
STOPs with the same optimum distribution U [0, 1]

2 but dis-
tinct optimum coverages are shown in Fig. 6(a) and Fig. 6(b).
It can be seen that similarity distribution is highly susceptible
to optimum coverage. As optimum coverage decreases (i.e.,
from 0.17 under Ω = Ω2 to 0.01 under Ω = Ω3), the overall
similarities of the source tasks to the target task improve a lot.
This is because the optimal solutions are closer in the common
space when optimum coverage is smaller, thus resulting the
higher similarities. Secondly, we investigate the influence of
optimum distribution on similarity distribution. Two STOPs
with the same optimum coverage under Ω2 but different
optimum distributions are considered, whose similarity dis-
tributions are shown in Fig. 6(a) and Fig. 6(c). The optimum
distributions are the uniform and Gaussian distributions. It can
be seen that the two STOPs with distinct optimum distributions
have entirely different similarity distributions. Lastly, we find
that the randomness of sampling tasks also greatly impacts
similarity distribution. As shown in Fig. 6(a) and Fig. 6(d), the
similarity distributions of two STOPs with the same optimum
coverage and optimum distribution can differ.

Based on the above analyses, we find that similarity distri-
bution is a highly problem-dependent feature of STOPs. Even
for two STOPs from the same task family, their similarity
distributions can be entirely different. However, as reviewed in
Section II-C, the patterns of similarity relationship in existing
test problems are very limited, making them insufficient for
evaluating various S-ESTO algorithms. Therefore, to endow
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Fig. 7: Illustrative examples of intra-family and inter-family
transfers: (a) intra-family transfer; (b) inter-family transfer.

test problems with diverse similarity relationships for mim-
icking complex real-world problems better, one should take
this important problem feature (i.e., similarity distribution) into
account when designing benchmarks. In part B of this series,
we will show that the performance of an S-ESTO algorithm
is very sensitive to similarity distribution.

IV. A PROBLEM GENERATOR

In this section, we develop a problem generator of STOP
that can flexibly configure similarity distribution. Firstly, we
propose a set of guidelines to show how to make similarity
distribution of an STOP configurable. After that, a problem
generator with detailed algorithmic implementation is pro-
posed. Lastly, we compare the important characteristics of the
proposed test problems with those used in previous studies.

A. Design Guidelines

In a problem domain, one always sequentially encounters a
variety of optimization tasks with different parameters under
the same formulation, which can be modeled as a task family
defined in this work. When a certain number of intra-family
source tasks are available, we can choose to trigger the intra-
family transfer. However, intra-family source tasks may be
scarce, especially at the early stage of solving the tasks from
a family. In this case, one often employs some out-of-family
tasks to serve as source tasks for guiding the target search,
which is known as the inter-family transfer.

Given a task family, different elementary tasks normally
possess distinct fitness landscapes and thus may have varying
optimal solutions. Since optimum is just one of the features of
fitness landscape, landscape modality is more resistant to the
change of tasks than optimum. In other words, two similar
elementary tasks are more likely to have similar landscape
modalities with distinct optimal solutions than having close
optima under entirely different landscape modalities. For sim-
plicity, intra-family tasks are deemed to possess a common
landscape modality with variable optima in this work, which
can be realized by a single-objective minimization function
with configurable optimum. To illustrate, we present two 2-
dimensional examples in Fig. 7, where the source and target
tasks are colored red and blue, respectively. In the intra-family
transfer, source and target tasks with distinct optimal solutions
are drawn from the Sphere family. In the inter-family transfer,
the target task is from the Ackley family, while the source

Fig. 8: Two box-constrained images of task-optimum mapping
in a 2D case: (a) ξ = 0.25; (b) ξ = 0.75.

tasks are sampled from the Sphere family. In this way, we can
configure the functions and optimal solutions of the tasks in an
STOP independently. In the intra-family transfer, we can use
the distribution of optimal solutions of tasks to model the task
distribution directly. In the inter-family transfer, the optimal
solution of tasks can be configured in the same way, with the
only difference being the outer-family functions for the source
tasks. Therefore, the key design guideline of generating an
STOP is to configure the optima of its source and target tasks,
which can be done via the following two-step procedure:

1. Range of optima of source and target tasks: generate the
image of task-optimum mapping with adjustable optimum
coverage in the common space Ωc = [0, 1]

d.
2. Instantiated optima of source and target tasks: configure

the optimal solutions of source and target tasks under a
specific similarity distribution within the obtained image.

1) Image of Task-Optimum Mapping: As mentioned before,
the optimum coverage of the image from a task family depends
on the intrinsic distribution of optima and the decision space.
In an extreme case where the optimal solutions of all the
elementary tasks are located in a single point, the optimum
coverage is 0. The other extreme case is when the image fills
the decision space, leading to the optimum coverage of 1.
However, most problems are more likely to fall between these
two extreme cases. Thus, an image with adjustable optimum
coverage is expected to resemble a wider range of problems.
For simplicity, we consider box-constrained image6 of task-
optimum mapping, which is given by:{

x̂ilb = rand ∗ (1− ξ) , i = 1, 2, ..., d

x̂iub = x̂ilb + ξ, i = 1, 2, ..., d
(15)

where x̂ilb and x̂iub denote the lower and upper bounds of the
image with respect to the ith variable, respectively, rand is a
uniformly distributed random number from 0 to 1, 0 ≤ ξ ≤ 1
is a prespecified parameter for adjusting optimum coverage.

Fig. 8 illustrates two 2-dimensional box-constrained images
with different optimum coverages. We can see that the images
are randomly generated within the common space, and opti-
mum coverage increases with the parameter ξ. Particularly, the
decision space is filled by the image when ξ = 1, while the
optimal solutions of all the elementary tasks are situated on a
single point if ξ = 0.

6Without loss of generality, images with other shapes can also be used.
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2) Optima of Source and Target Tasks: As discussed earlier,
similarity distribution of STOPs is highly problem-dependent.
Different STOPs are likely to have distinct similarity distribu-
tions, resulting in varying relationships between the optimal
solutions of source and target tasks. To better simulate the
diversity of such similarity relationships, our strategy is to
consider STOPs with different representative similarity distri-
butions as many as possible. To configure the optimal solutions
of source and target tasks, one can sample the latent optimum
distribution shown in Eq. (10), which mimics the process of
sequentially encountering the optimization tasks in an STOP.
It is noted that the latent optimum distribution also depends on
the intrinsic nature of a task family. Without loss of generality,
we first examine the uniform distribution, in which the optimal
solutions of source and target tasks can be obtained as follows:{

osi = x̂lb + r× (x̂ub − x̂lb) , i = 1, 2, ..., k

ot = x̂lb + r× (x̂ub − x̂lb)
(16)

where osi is the optimum of the ith source task, ot denotes the
optimum of the target task, r ∈ [0, 1]

d is a randomly generated
real vector from the multivariate uniform distribution.

With Eq. (16), we have the optimal solutions of source and
target tasks that are uniformly distributed over the image in the
common space. If we consider that two tasks are sufficiently
similar when their similarity defined in Eq. (12) is greater
than 1 − ε, where ε is a very small positive real number, the
probability for a source task that is sufficiently similar to the
target task can be estimated as follows:

p (S > 1− ε) = p (DCheb < ε)

=

d∏
j=1

p
(
|oj

t − oj
si| < ε

)
≈ (2ε/ξ)

d

(17)

The “sufficient similarity” here implies that the source task
possesses a Chebyshev distance with no more than ε to the
target task, thus ensuring the transferability of the source
optimum for accelerating the target search. The expected
number of source tasks needed to meet the sufficient similarity
can be estimated as follows:

η (ε, ξ, d) =
1

p (S > 1− ε)
=

(
ξ

2ε

)d

(18)

When ε = 0.1, the contour graph of η with respect to ξ
and d is illustrated in Fig. 9. From the figure, we can see
that sufficient similarity is consistently satisfied by a small
number of source tasks when ξ is close to 0 regardless of the
problem dimension. However, on problems with large opti-
mum coverages, the number of source tasks needed to satisfy
the sufficient similarity increases exponentially. Specifically,
when ξ = 1 and d = 10, η is about 1010. This is impractical
in real-world applications since the number of source tasks is
always limited. In other words, the transferability of source
solutions is difficult to be ensured when the optimal solutions
are uniformly distributed over a large image of task-optimum
mapping, especially on high-dimensional problems with a
limited number of source tasks. To examine the relationship

Fig. 9: Contour graph of η w.r.t. ξ and d when ε = 0.1.

between the optimal solutions configured using Eq. (16), we
generate 104 source tasks under different ξ to observe the
similarity distribution defined in Eq. (13), as shown in Fig.
11(a), Fig. 11(e), and Fig. 11(i). We can see from Fig. 11(a)
that the sufficient similarity is consistently satisfied when ξ
is zero regardless of the problem dimension. However, as
optimum coverage increases, the cumulative probability of
meeting the sufficient similarity decreases a lot, as illustrated
in Fig. 11(e) and Fig. 11(i). The results here are consistent
with the observations in Fig. 9. It is worth noting that the
assumption for optimum distribution here (i.e., the uniform
distribution) may not hold on many other task families due
to its problem-dependent nature, on which the sufficient sim-
ilarity may be easier to be satisfied. Since our ultimate goal
is to generate STOPs with diverse similarity distributions, we
propose to configure similarity distribution directly without the
need of sampling the latent optimum distribution. This can be
done by introducing a weight parameter τ ∈ [0, 1] used for
controlling the relationship between the optimal solutions of
source and target tasks,

ob
si = x̂lb + r× (x̂ub − x̂lb) , i = 1, 2, ..., k

ot = x̂lb + r× (x̂ub − x̂lb)

osi = ot × (1− τi) + ob
si × τi, i = 1, 2, ..., k

(19)

where τi is the weight parameter imposed on the optimum of
the ith source task. We can see that Eq. (19) turns into Eq. (16)
when τ is equal to a constant value of 1. By adopting different
distributions of τ , one can obtain a number of representative
similarity distributions. In this study, we consider three types
of distributions of τ , whose probability density functions are
presented as follows:
• The uniform distribution: pd (τ) = 1, τ ∈ [0, 1].
• The increasing distribution: pd (τ) = 2τ, τ ∈ [0, 1].
• The decreasing distribution: pd (τ) = 2− 2τ, τ ∈ [0, 1].
Fig. 10 shows the distribution of τ corresponding to Eq. (16)

and the three customized distributions of τ . In the uniform
optimum distribution, we do not enforce the relationship
between the optimal solutions of source and target tasks by
setting τ = 1, as shown in Fig. 10(a). In addition, we
consider three representative similarity distributions, in which
the relationship between the optimal solutions of source and
target tasks are governed by the customized distributions of τ
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Fig. 10: Four types of probability density functions of τ : (a) τ = 1; (b) pd (τ) = 1; (c) pd (τ) = 2τ ; (d) pd (τ) = 2− 2τ .

Fig. 11: Four types of similarity distributions under different ξ: (a) p̂c, ξ = 0; (b) p̂u, ξ = 0; (c) p̂i, ξ = 0; (d) p̂d, ξ = 0; (e)
p̂c, ξ = 0.5; (f) p̂u, ξ = 0.5; (g) p̂i, ξ = 0.5; (h) p̂d, ξ = 0.5; (i) p̂c, ξ = 1; (j) p̂u, ξ = 1; (k) p̂i, ξ = 1; (l) p̂d, ξ = 1.

shown in Fig. 10(b) to Fig. 10(d). For brevity, the similarity
distributions corresponding to the distributions of τ from
Fig. 10(a) to Fig. 10(d) are denoted by p̂c, p̂u, p̂i, and p̂d,
respectively. To illustrate, we generate 104 source tasks using
Eq. (19) under each of the customized distributions of τ to
obtain their similarity distributions. As shown in Fig. 11(a)
to Fig. 11(d), when optimum coverage is extremely small,
all the source tasks from any of the similarity distributions
possess incredibly high similarities to the target task. This
is because the optimal solutions of source and target tasks
are exactly the same when optimum coverage is 0. However,
as can be seen from Fig. 11(e) to Fig. 11(l), the difference

between the similarity distributions gradually shows up as
optimum coverage increases. As discussed earlier, when opti-
mal solutions are uniformly distributed over the image under
ξ = 1, the transferability of source tasks is difficult to be
ensured. By contrast, the three similarity distributions based
on the customized distributions of τ can provide a certain
number of source tasks similar to the target task, thus ensuring
that there are always a few source tasks containing highly
transferable solutions for guiding the target search. Moreover,
the proportions of source tasks that show different degrees
of similarities to the target task can be flexibly adjusted by
modifying the distribution pd (τ), as demonstrated in Fig. 11(i)
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TABLE I: The important characteristics of our problems against those in previous studies.

Publications The Number of Source Tasks (k) Transfer Scenario (T ) Similarity Distribution (p̂)

[14, 18, 47] fixed inter-family not applicable, fixed

[16] fixed inter-family p̂c, fixed

[5, 34] adjustable intra-family p̂c, fixed

Ours adjustable intra-family & inter-family p̂c, p̂u, p̂i, p̂d, adjustable

Algorithm 1: A Problem Generator of STOP
Input: Υ (candidate families), t (the index of target family),

T (transfer scenario), ξ (the parameter that controls
optimum coverage), pd (τ) (the distribution that
controls similarity distribution), d (dimension), k (the
number of source tasks), O (evolutionary optimizer)

Output: f t (x) (the target task), M = {Ps1, ...,Psk} (the
knowledge base)

// Generate the source and target tasks
1 [x̂lb, x̂ub]← Eq. (15) based on ξ;
2 [τ1, ..., τk]←Sample k weight scalars from pd (τ);
3 [ot,os1, ...,osk]← Eq. (19) using [x̂lb, x̂ub] and [τ1, ..., τk];
4 f t (x)← Υ (t,ot);
5 for i = 1 to k do
6 if T = Ta then // intra-family transfer
7 s← t;

8 else // inter-family transfer
9 s←Randomly select from IΥ \ t;

10 fs
i (x)← Υ (s,osi);

// Construct the knowledge base
11 M = ∅;
12 for i = 1 to k do
13 Psi = EvolutionarySearch (O, fs

i );
14 M←M∪Psi;

15 return f t (x) and M;

to Fig. 11(l). Here, as can be observed, we are not chasing for
a single all-embracing similarity distribution, as it can only
represent a specific class of problems. Instead, we consider
several representative similarity distributions to mimic the
diverse similarity relationships of real-world problems.

B. A Problem Generator

According to the design guidelines discussed above, one
can build an STOP by instantiating three aspects: transfer
scenario, box-constrained image, and similarity distribution.
Algorithm 1 summarizes the detailed implementation of the
proposed problem generator. When generating the source and
target tasks, we configure their functions and optimal solutions
independently. Firstly, the optimal solutions of the source
and target tasks are determined based on the settings of ξ
and pd (τ), as shown in lines 1 to 3. Then, the objective
functions of the source and target tasks are determined based
on the transfer scenario and the obtained optimal solutions, as
shown in lines 4 to 10. For brevity, the intra-family and inter-
family transfers are represented by Ta and Te, respectively.
Lastly, we need to optimize the k source tasks using an
evolutionary optimizer and store their evaluated solutions into
the knowledge base M, to complete the construction of the

STOP. The optimizer-independent feature enables any other
evolutionary optimizers to be embedded into the generator
for solving source tasks. Following the implementation in
Algorithm 1, we name an STOP as F-T -ξ-S-d-k, where F
denotes the target family, T represents the transfer scenario,
ξ is the optimum coverage-related parameter, S represents
the distribution pd (τ) that governs similarity distribution, d
denotes the problem dimension, k is the number of source
tasks.

C. Comparison with Existing Test Problems
Table I provides the important characteristics of our prob-

lems against those used in previous studies. In [14, 18, 47], the
problems are composited by the commonly used benchmarks
in multiobjective optimization. The source and target tasks
in the derived STOPs have distinct objective functions but
possess the same optima, which can be seen as a specific
class of problems produced by the generator under T = Te
and ξ = 0. The similarity distribution of these problems is
exactly the one shown in Fig. 11(a), which lacks the desired
diversity of similarity relationship. To mimic the heterogeneity
of problems in terms of optimum, the authors in [16] use the
randomly generated optima to configure their STOPs. Since
the optimal solutions are uniformly sampled in the common
space, the resultant similarity distribution can be seen as p̂c.
In this way, the test problems in [16] can be treated as a
special class of STOPs with the specific similarity distribution
p̂c. Moreover, the number of source tasks in all of the above
STOPs is fixed. In [5, 34], an arbitrary number of source
tasks are synthesized based on the target task. However, the
diversity of the generated tasks is greatly constrained to ensure
the similarities between the source and target tasks, which thus
leads to a similarity distribution with incredibly high similarity
values. In this sense, the STOPs in [5, 34] belong to a special
type of problems from the proposed generator under T = Ta
and small ξ.

In summary, the highlights of our proposed problem genera-
tor are as follows. (1) The number of source tasks is adjustable.
(2) Both the intra- and inter-family transfer scenarios are avail-
able. (3) Unlike the fixed patterns of similarity distribution in
existing problems, similarity distribution of our test problems
can be systematically configured by modifying the distribution
pd (τ), leading to a closer resemblance of the diversity of
similarity relationship in real-world problems.

V. A BENCHMARK SUITE

In this section, we design a benchmark suite containing
12 STOPs with varying properties. Firstly, the available re-
alizations of the parameters for building STOPs are provided.
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Then, we develop a benchmark suite with detailed problem
specifications. Lastly, the evaluation criterion for comparing
S-ESTO algorithms on the developed benchmark suite is
provided.

A. Available Realizations of the Parameters

According to Algorithm 1, we can see that there are six
necessary parameters for building STOPs: task family, transfer
scenario, optimum coverage of the box-constrained image,
similarity distribution, problem dimension, and the number of
source tasks. Here, we provide the available realizations of
these six parameters, which will then be used for designing
benchmarks.

1) Task Family: We choose eight single-objective functions
with a configurable optimum to serve as candidate families due
to their widespread use in the area of continuous optimization.

– Sphere family:

min f1 (x) =

d∑
i=1

(xi − oi)2
, x ∈ [−100, 100]

– Ellipsoid family:

min f2 (x) =

d∑
i=1

(d− i+ 1) (xi − oi)2
, x ∈ [−50, 50]

– Schwefel 2.2 family:

min f3 (x) =

d∑
i=1

|xi − oi|+
d∏

i=1

|xi − oi|, x ∈ [−30, 30]

– Quartic family with noise:

min f4 (x) = ε+

d∑
i=1

i× (xi − oi)4
, x ∈ [−5, 5]

– Ackley family:

min f5 (x) =− 20exp

−0.2

√√√√ 1

D

D∑
i=1

z2
i

− exp

(
1

D

D∑
i=1

cos (2πzi)

)
+ 20 + e, zi = xi − oi, x ∈ [−32, 32]

– Rastrigin family:

min f6 (x) =

d∑
i=1

{
(xi − oi)2 + 10cos

[
2π (xi − oi)

]}
+ 10d, x ∈ [−10, 10]

– Griewank family:

min f7 (x) =1 +
1

4000

d∑
i=1

(xi − oi)2

−
d∏

i=1

cos

(
xi − oi√

i

)
, x ∈ [−200, 200]

– Levy family:

min f8 (x) =sin2 (πω1) +

d−1∑
i=1

(ωi − 1)2 [1 + 10sin2 (πωi + 1)
]

+

(ωd − 1)2 [1 + sin2 (2πωd)
]
, ωi = 1 +

zi

4
, x ∈ [−20, 20]

TABLE II: The available realizations of the six parameters for
building STOPs.

Aspect Configuration

Task Family (Υ) {f1, f2, f3, f4, f5, f6, f7, f8}
Transfer Scenario (T ) {Ta, Te}
Optimum Coverage (γ) ξ ∈ [0, 1]
Similarity Distribution (p̂ (S)) {p̂c, p̂u, p̂i, p̂d}
Problem Dimension (d) N+
The Number of Source Tasks (k) N+

where d is the problem dimension, xi denotes the ith decision
variable, and oi represents the optimal solution of the ith
variable, ε ∼ U (0, 1) denotes the random noise. The eight
functions here constitute the set of candidate families (i.e., Υ)
in Algorithm 1. It should be noted that the design here is not
limited to the eight selected functions and can be generalized
to any set of functions with a configurable optimum.

2) Transfer Scenario: In this work, we consider the intra-
and inter-family transfers. In the intra-family transfer, source
and target tasks are from the same family. By contrast, source
tasks in the inter-family transfer are from the families that
differ from the target one, as shown in line 9 of Algorithm 1.

3) Optimum Coverage of the Image: By adjusting the pa-
rameter ξ ∈ [0, 1] in Eq. (15), we can obtain a box-constrained
image with an arbitrary value of optimum coverage, ranging
from 0 to 1. Moreover, by introducing a parameterized mani-
fold to describe the image, one can construct a nonlinear image
with adjustable optimum coverage to meet their own needs.

4) Similarity Distribution: Instead of modeling optimum
distribution explicitly, we propose to use a parameterized
distribution pd (τ) to manipulate the similarity relationship
between the optimal solutions of the source and target tasks
in STOPs, thus enabling us to generate different similarity
distributions directly. Four customized similarity distribution,
i.e., p̂c, p̂u, p̂i, and p̂d, are generated to mimic the diversity
of similarity relationships in various STOPs. The design here
also allows one to construct STOPs with customized similarity
distributions to meet their own needs.

5) Problem Dimension: Following the from-simple-to-
complex way of research [62], we suggest the problem di-
mensions from 25 to 50 to avoid the curse of dimensionality.
Notably, different STOPs can be configured with different
dimensions, but the source and target tasks in a single STOP
have the same dimensions.

6) The Number of Source Tasks: The possible values of
the number of source tasks are positive integers ranging from
1 to ∞. Both the single-source and multi-source scenarios
can be set up using the proposed problem generator. Table II
summarizes the available realizations of the six parameters.
With these realizations, we formulate a benchmark suite with
12 individual STOPs in the next subsection.

B. A Benchmark Suite

One of key rationales behind designing benchmark problems
is to provide a set of representative test problems with diverse
properties, which can create a good resemblance to a wide
range of real-world problems [63]. Thus, the configurations
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TABLE III: A benchmark suite of STOPs.

Similarity
Relationship

Problem Specification
(F -T -ξ-G-d-k)

Problem
ID

High Similarity (HS)

Sphere-Ta-0-p̂c-50-k STOP 1

Ellipsoid-Te-0-p̂u-25-k STOP 2

Schwefel-Ta-0-p̂i-30-k STOP 3

Quartic-Te-0-p̂d-50-k STOP 4

Mixed Similarity (MS)

Ackley-Ta-1-p̂i-25-k STOP 5

Rastrigin-Te-1-p̂u-50-k STOP 6

Griewank-Ta-0.7-p̂i-25-k STOP 7

Levy-Te-0.7-p̂d-30-k STOP 8

Low Similarity (LS)

Sphere-Ta-1-p̂c-25-k STOP 9

Rastrigin-Te-0.7-p̂c-30-k STOP 10

Ackley-Ta-0.7-p̂c-50-k STOP 11

Ellipsoid-Te-1-p̂c-50-k STOP 12

in Table II should be adequately considered when designing
an STOP benchmark suite. In this study, we develop three
categories of problems with different types of similarity rela-
tionships between source and target tasks: 1) STOPs full of
source tasks that are highly similar to the target task in terms
of optimum; 2) STOPs containing source tasks with mixed
similarities to the target task in terms of optimum; 3) STOPs
full of source tasks with low similarities to the target task
in terms of optimum. These three categories of STOPs are
termed HS, MS, and LS problems for short, respectively, each
of which contains four individual STOPs. Thus, a benchmark
suite with a total number of 12 STOPs is built here. The
eight task families and two transfer scenarios are alternately
configured across the 12 problems. The number of source tasks
is a user-defined parameter, which can be configured to cater
to the needs of studies on STOPs with different amount of
optimization experience.

Table III lists the twelve problems in the benchmark suite,
which can be readily produced by the proposed generator
(i.e., Algorithm 1) according to the specifications. For the
first category of problems from STOP 1 to STOP 4, their
optimum coverages are zero so that the source and target tasks
in the STOPs share the same optimal solution, making the
optimal solutions of all the source tasks are highly transferable
for accelerating the target search. For the second category
of problems from STOP 5 to STOP 8, three customized
distributions of τ (i.e., p̂u, p̂i, and p̂d) are used to adjust the
relationship between the optimal solutions of source and target
tasks based on Eq. (19), making the proportion of source tasks
with different degrees of similarities to the target task flexibly
adjustable, as shown from Fig. 11(j) to Fig. 11(l). Therefore,
STOP 5 to STOP 8 contain source tasks with mixed similarities
to the target task. As for the last category of problems from
STOP 9 to STOP 12, the optimal solutions of source and target
tasks are configured using the similarity distribution p̂c, often
making the optimal solutions of all the source tasks dissimilar
to the target optimum, as shown in Fig. 11(i). Consequently,
the optimal solutions of all the source tasks in STOP 9 to

STOP 12 are unhelpful for accelerating the target search. It is
worth mentioning that similarity here indicates that whether
the unadapted optimal solution of a source task is similar to
the target one. If the solution can be adapted properly, its
similarity to the target optimum can be improved a lot.

C. Evaluation

The minimum value of all the target tasks in the benchmark
suite is zero. When comparing multiple algorithms using the
proposed benchmarks, the computational budget in terms of
function evaluation allocated to each algorithm should be the
same. Meanwhile, the usage of machine learning models that
may require high computational costs should be carefully
examined despite the promising results reported since our
benchmarks are not considered computationally expensive. To
examine the significance of the results, we recommend the
methods of using statistical significance tests in [64].

VI. CONCLUSION

In this part of the series, we have first proposed a number of
fire-new concepts to characterize tasks in an STOP, including
task family, task-optimum mapping, optimum coverage, and
similarity distribution. Particularly, similarity distribution is
an important problem feature of STOPs ignored by previous
studies. The empirical results in part B reveal that the per-
formance of an S-ESTO algorithm is highly susceptible to
similarity distribution. Therefore, this important problem fea-
ture should be adequately taken into account when designing
benchmark STOPs. Since similarity distribution of STOPs is
highly problem-dependent, our strategy is to make it flexibly
configurable to mimic the diversity of similarity relationship in
real-world problems. To this end, we propose general design
guidelines to generate an STOP whose similarity distribu-
tion can be flexibly adjusted by modifying a parameterized
distribution pd (τ). Based on the design guidelines, we have
proposed a problem generator with superior extendability and
scalability, allowing one to generate STOPs to cater to their
own studies’ needs. Lastly, to build an arena for analyzing S-
ESTO algorithms, we have developed a benchmark suite with
12 individual STOPs using the proposed problem generator.
To the best of our knowledge, this is the first study on how to
generate STOPs systematically.

In the next part of this series, we will empirically revisit
many knowledge transfer methods in the context of S-ESTO
on the benchmark problems developed in this part. Five key
research questions related to knowledge transfer techniques
are addressed to help practitioners and researchers gain a
deeper understanding of how to better exploit the optimization
experience using S-ESTO approaches. Moreover, we present
a few potential challenges and promising future directions to
facilitate the development of S-ESTO algorithms.
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