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Abstract
In this paper, we present a performance-oriented approach for calculating magnetostatic fields produced by circular coils. Those
include the magnetic vector potential, magnetic flux density and magnetic field gradient, together addressed as fields.

Many inductive elements used in a wide range of applications can be modeled as circular coils with a rectangular cross-section,
and this is reflected in the number of papers on the subject. Instead of extensively utilising analytic methods, we focused on
achieving maximum performance by efficiently implementing the Gauss-Legendre quadrature and applying it to expressions
which are simple with respect to computational intensity. To properly leverage this, we implemented our approach in the C++
programming language. The CUDA framework enabled us to utilise the full power of Nvidia graphics cards, especially when
multiple coils are present. Our approach can also be used from Python and MATLAB with a small performance penalty.

Performance of field compute methods is primarily expressed in the number of field values calculated every second. Processor
performance was tested on multiple systems and exceeded one million points per second on all of them. Graphics card perfor-
mance is particularly noteworthy, with over 5 million magnetic flux density values computed every second for a system of 100
coils, placing effective performance at more than 500 million points per second on a contemporary laptop graphics card.

The meticulous implementation, available on GitHub, and unique performance are the highlights of our work.
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Novel Hardware Accelerated Magnetic Field Calculation Approach
for Circular Coils With Rectangular Cross Section

Davor Dobrota, Nikola Sočec, Lara Vrabac, and Dario Bojanjac, Member, IEEE

This paper presents a framework for calculating the magnetic vector potential, magnetic field, and magnetic field gradient in the
case of circular coils with a rectangular cross section. Filaments, pancakes, and thin coils are also included. Unlike surveyed
approaches, emphasis is placed on an efficient implementation in a compiled programming language, specifically C++, with
multithreading support and hardware accelerated computation. Since all elementary functions, except for the square root, are
slow compared to basic arithmetic operations, the approach heavily utilises numerical integration. Specifically, the Gauss-Legendre
quadrature was implemented with precomputed parameters. The result are precise and performant methods which can calculate
over a million field values every second when using the processor and over 100 million values when using hardware acceleration.
Hardware acceleration is implemented for Nvidia graphics cards using the CUDA toolkit. Precision was evaluated by generating
field images and it was found that field computation is accurate outside of the coil with some artefacts inside. We aim to provide
comprehensive precision testing and additional use cases in a follow-up paper. For ease of use, the C++ code is wrapped in a Python
module which can also be used from MATLAB. The code is available on GitHub and the repository name is C-Coil.

Index Terms—Circular coil, CUDA, magnetic field, magnetic gradient, magnetic vector potential, multithreading, Python module.

I. INTRODUCTION

C IRCULAR coils are some of the most widely used
electromagnetic elements, from small wireless charging

coils in modern smartphones, to large superconducting mag-
nets found in MRI machines and particle accelerators. Conse-
quently, many approaches have been developed to calculate the
relevant physical quantities of circular coils, with ever increas-
ing efficiency and precision. Some of these quantities include:
mutual inductance, force, torque, and values associated with
magnetostatic fields - magnetic vector potential and magnetic
flux density. The aforementioned quantities are usually tackled
separately and often for specific cases, such as a common axis.

Our principal goal is to create a coherent framework which
would allow for fast and precise calculation of magnetostatic
fields, as well as interactions between circular coils in the
form of mutual inductance, force, and torque. It is important
to note that this model is satisfactory when the coil is made
of a homogeneous material, with no radial current, or when
the field near the coil is not of great interest, in the case of a
compactly wound solenoid with a large number of turns. The
coils are geometrically characterized by their inner radius R,
thickness a, and length b. Additionally, the number of turns N
and the current I are required to calculate the current density
J .

Depending on the relationship of thickness and length, 4
types of coils are distinguished:

Manuscript received October 14, 2022; revised TBD; accepted TBD.
Date od publication TBD; date of current version TBD. Recommended for
publication by ... (Corresponding author: Davor Dobrota.)

The authors are with the Faculty of Electrical Engineering and
Computing, University of Zagreb, 10000 Zagreb, Croatia (email: da-
vor.dobrota@gmail.com; nikola.socec@gmail.com; vrabaclara@gmail.com;
dario.bojanjac@fer.hr).

Color versions of one or more of the figures are available online at http://
ieeexplore.ieee.org. (NOTE: Only Used with Printed Publications).

Digital Object Identifier TBD

1) Filament (loop) - negligible length and thickness
2) Thin solenoid (thin) - negligible thickness
3) Pancake coil (flat) - negligible length
4) Circular coil with a rectangular cross section (thick)

All four types are included, but more emphasis is placed
on thick coils, as few approaches tackle the problem of a
large number of thick circular coils, positioned and oriented
in an arbitrary way. Significant performance improvements are
possible with a dedicated implementation optimized for multi-
coil systems.

Many approaches and methods have been devised to cal-
culate mutual inductance between pairs of circular coils. A
large number of approaches, such as [1], [2], [5], [6], and
[7], focus on the common axis (coaxial) case, while some
of them tackle the parallel axis case, such as [4], [8], and
[10]. The only method that calculates mutual inductance in the
general case, with satisfactory precision (relative error smaller
than 1E-6), is the one shown in [9]. This method represents
the most important performance and precision benchmark for
our approach; computation takes several seconds to attain 8
significant digits of precision. Another, more recent approach,
presented in [11] is less relevant since the error often exceeds
0.1% and computation time is unknown.

Approaches concerning force and torque are less prevalent,
most likely because force and toque can be approximated with
a numerical derivative of mutual inductance. Approaches [3]
and [6] tackle the coaxial force case, whereas [14] presents
a precise general method for calculating force between two
filaments. The general case with 3 thick coils is covered in
[13] and [15], however, the claimed precision is comparatively
low and derived from only one test case.

Unlike other surveyed approaches, our focus is, first and
foremost, on achieving maximum attainable performance.
That was primarily accomplished by using C++, a compiled
programming language, which enables the use of AVX2 in-
structions [19] and powerful compiler optimisations. AVX2
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instructions are SIMD (Single Instruction Multiple Data)
instructions that can improve performance by several times
in heavy floating-point compute workloads, while also being
supported on most desktop and laptop processors.

Since most modern processors have 4 or more cores, and
8 or more hardware threads, extensive multithreading support
has also been implemented. If 6 significant digits of preci-
sion are sufficient, hardware acceleration with a dedicated
Nvidia GPU (Graphics Processing Unit) can further improve
performance over multithreading by a factor of 10 to 100,
depending on the GPU. Full precision can be obtained with
specific GPUs which have a low penalty for executing double-
precision calculations, such as the Nvidia Titan V.

The design of our approach has been constrained to simple
expressions in order to efficiently implement it in the C++
programming language and Nvidia CUDA framework [20].
Basic arithmetic operations are exceedingly fast, especially
when addition is coupled with multiplication in FMA (Fused
multiply-add) instructions [21], often used to benchmark
floating-point performance. All other mathematical functions
should be used scarcely, except for the square root, which
can be executed quickly on the processor, owing to the use
of AVX2 instructions. Performance of the square root on the
GPU is much lower than that of FMA, but better than other
elementary functions. In contrast, other approaches use a very
high level programming language, such as MATLAB (Math-
works Inc.) and Mathematica (Wolfram Research Inc.), which
have support for powerful functions (e.g. elliptic integrals), but
sacrifice performance.

The developed framework is called C-Coil (Circular Coil
Object-oriented Interaction Library) [25]. It consists of mul-
tiple C++ classes centered around class Coil which models
the aforementioned circular coils. Another noteworthy class is
CoilGroup used for faster calculations with multi-coil systems,
especially when using the GPU. This paper will tackle the
field calculation side of our framework. Interactions between
coils are easily computed directly from the vector potential
and magnetic field. Interaction methods are already available
for use in C-Coil, but their expressions and precision will be
explored in a follow-up paper.

When the term “method” is used, we refer to the object
oriented programming concept. The term “fields” encompasses
the magnetic vector potential A (potential), magnetic flux
density B (magnetic field), and magnetic field gradient G
(total derivative of B, gradient). The gradient has been added
due to its use in MRI imaging and particle simulations. It can
also be used to approximate the force on a coil if that coil is
sufficiently small or far away.

II. BASIC EXPRESSIONS

Since our primary goal is to attain simple expressions, it
makes sense to begin with the Biot-Savart law for vector
potential and magnetic field [16], given by

A[r] =
µ0

4π
I

∫
C

dl

|r −R|
, (1)

B[r] =
µ0

4π
I

∫
C

(dl× (r −R))

|r −R|3
. (2)

This form is apt for expressing the fields due to single loop
of wire, but for our purposes, a more useful form is the one
with a specified current density J ,

A[r] =
µ0

4π

∫∫∫
Ω

JdV

|r −R|
, (3)

B[r] =
µ0

4π

∫∫∫
Ω

(J × (r −R))dV

|r −R|3
. (4)

The last field that we need to define is the gradient. Its
definition follows from the force a magnetic dipole moment
m experiences in a non-uniform magnetic field. The potential
energy is given by U = −m ·B. The force and torque are

F dipole[r] = ∇(m ·B[r]) = (m ·∇)B[r] = G[r]m, (5)

τ dipole[r] = m×B[r]. (6)

Expression (5) holds for static fields and a fixed moment. The
gradient G is then represented by a symmetric 3x3 matrix

G[r] =


∂Bx

∂x
∂Bx

∂y
∂Bx

∂z
∂By

∂x
∂By

∂y
∂By

∂z
∂Bz

∂x
∂Bz

∂y
∂Bz

∂x

 (7)

Other approaches strive to reduce the number of integration
layers for the sake of reducing computation times and increas-
ing precision, but we are unable to do so to the same extent
due to the aforementioned restrictions. To compensate for this,
we chose to implement our approach using the highly accurate
Gauss-Legendre quadrature while also devising an increment
balancing algorithm to better allocate available computational
resources to different integration layers.

III. CALCULATION APPROACH

A. Coordinate Transformation

To make the calculation as simple as possible, the loop is
positioned in the xOy plane and centered at the origin. The
cylindrical coordinate system is used due to the symmetry
about the z-axis. A coordinate transformation is required to
enable arbitrary position and orientation in space. To achieve
this, two angles which rotate the normal vector of the plane in
which the loop lies are chosen, such that they mimic spherical
angles. The respective angles are given as (θ, ϑ), θ ∈ [0, π],
ϑ ∈ [0, 2π].

The basic rotation matrices which rotate the Cartesian
basis vectors about a specified axis are Rx[θ], Ry[θ], Rz[θ].
An arbitrary rotation can be achieved by multiplying certain
arrangements of those 3 matrices with 3 appropriate rotation
angles. These angles are Euler angles and there are 12 valid
arrangements, usually called conventions. The Z1Y2Z3 con-
vention is well suited to our use case because of the loop’s
symmetry around the z-axis. It was concluded that choosing
the same angle ϑ for rotations about Z1 and Z3, and angle θ
for rotation about Y2, produces the desired transformation. It
must be noted that the loop will then rotate by 2ϑ if θ = 0,
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Fig. 1. Biot-Savart law schematic for a loop, after the transformation has
been applied, P ′ is the transformed original point P

but this is not an issue due to symmetry and is corrected by
an inverse transformation. The rotation matrix is defined as

T[θ, ϑ] =

 cθc
2
ϑ − s2ϑ −cθsϑcϑ − sϑcϑ sθcϑ

cθsθcϑ + sϑcϑ −cθs
2
ϑ + c2ϑ sθsϑ

−sθcϑ sθsϑ cθ

 ,

cθ = cos θ, sθ = sin θ, cϑ = cosϑ, sϑ = sinϑ. (8)

The coil is positioned at rc. First, the input radius vector r
is transformed to T[−θ,−ϑ](r−rc), and the field is calculated
in the transformed coordinate system. Transformation T[θ, ϑ]
is then applied to the calculated field. The entire operation, in
the case of magnetic field calculation, may be summarised as

Bp[r] = T[θ, ϑ]B[T[−θ,−ϑ](r − rc)]. (9)

B. Field Expressions

The problem is now greatly simplified and only the loop
in xOy plane needs to be considered. The setup is shown in
Figure 1. To use the Biot-Savart law given by (1) and (2), the
loop must first be written in parametric form. The position
vector is written in cylindrical coordinates (z, r, α)

R = R cos (φ+ α)i+R sin (φ+ α)j, (10)

r = r cos (α)i+ r sin (α)j + zk. (11)

dl =
dR

dφ
dφ = Rdφ(− sin(φ+ α)i+ cos(φ+ α)j), (12)

D = |r −R|2 = r2 +R2 + z2 − 2rR cosφ. (13)

Inputting these expressions, the final integrals are obtained as

A[r] =
µ0

4π
I

∫ 2π

0

dφ
R cos(φ)

D1/2
α̂, (14)

B[r] =
µ0

4π
I

∫ 2π

0

dφ
zR cos (φ) r̂ +

(
R2 − rR cos (φ)

)
ẑ

D3/2
.

(15)
Expressions are given in cylindrical unit vectors as this is the
simplest representation. Conversion to Cartesian unit vectors

Fig. 2. Biot-Savart law schematic for a thick coil, after the transformation
has been applied, P ′ is the transformed original point P

can be performed after calculation. The expression for the gra-
dient is somewhat more complicated and it will be explicitly
written only for the thick coil.

In the case of a thick coil, expanding (14) and (15) for
varying R and z is the simplest approach. R is replaced by
radius ρ of a particular loop, and h is the z-axis offset of the
loop. The general expressions are then obtained as

J =
NI

ab
, (16)

D′ = r2 + ρ2 + (z + h)
2 − 2ρr cosφ, (17)

A[r] =
µ0

4π
J

∫ R+a

R

dρ

∫ b/2

−b/2

dh

∫ 2π

0

dφ
ρ cosφ

D′1/2
α̂, (18)

B[r] =
µ0

4π
J

∫ R+a

R

dρ

∫ b/2

−b/2

dh

∫ 2π

0

dφ
Krr̂ +Kzẑ

D′3/2
, (19)

Kr = (z + h) ρ cosφ, Kz = ρ2 − ρr cosφ.

The gradient is considered next. Starting from the definition
of the gradient matrix (7), and applying the Leibniz integral
rule as well as the multi-variable chain rule to (19) yields

G[r] =

 P2c
2
α + P1s

2
α (P2 − P1)sαcα P4cα

(P2 − P1)sαcα P2s
2
α + P1c

2
α P4sα

P4cα P4sα P3

 , (20)

cθ = cos θ, sθ = sin θ, cϑ = cosϑ, sϑ = sinϑ,

P1[r] =
µ0

4π
J

∫ R+a

R

dρ

∫ b/2

−b/2

dh

∫ 2π

0

dφPi1, (21)

Pi1 =
1

r

(z + h) ρ cosφ

D′3/2
,

P2[r] =
µ0

4π
J

∫ R+a

R

dρ

∫ b/2

−b/2

dh

∫ 2π

0

dφPi2, (22)

Pi2 =
3ρ (z + h) (ρ cosφ− r) cosφ

D′5/2
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P3[r] =
µ0

4π
J

∫ R+a

R

dρ

∫ b/2

−b/2

dh

∫ 2π

0

dφPi3, (23)

Pi3 =
3ρ (z + h) (r cosφ− ρ)

D′5/2
,

P4[r] =
µ0

4π
J

∫ R+a

R

dρ

∫ b/2

−b/2

dh

∫ 2π

0

dφPi4, (24)

Pi4 =
ρ cosφ

(
2ρ2 + 2r2 − (z + h)

2 − ρr cosφ
)
− 3ρ2r

D′5/2

It is important to note that the use of cylindrical coordinates
introduces a singular case when r = 0. The matrix is then
simplified as expressions (21) and (24) become 0, while (22)
and (23) are easily integrated. The identity P3 = −2P2 is
obtained, and by using ∇ ·B = 0, the matrix simplifies to

Gz[r] =

P2 0 0
0 P2 0
0 0 P3

 . (25)

These expressions are what we will be referring to as
slow methods, because there are 3 layers of integration. It
was noticed that they can be integrated over length b and
consequently a layer of integration can be eliminated. Those
will be regarded as fast methods, and are used for field
calculations with thin and thick coils. They will only be
represented in the form of a sum in the next subsection. Further
reducing the number of integration layers introduces many
additional terms containing functions beside the square root,
lowering performance and increasing complexity.

C. Gauss-Legendre quadrature

The Gauss-Legendre quadrature [17] is a special case of
Gaussian quadrature for definite integrals. When the change

of interval is present, it is defined as∫ b

a

f [x]dx =

n∑
i

wn,i
b− a

2
f

[
b+ a

2
+

b− a

2
pn,i

]
. (26)

The quadrature of order n is defined by special weights wn,i

and positions pn,i within the standard interval of integration
[−1, 1]. Values were obtained from [18] for orders [1, 100], and
are implemented as a static matrix for maximum performance.

This particular quadrature is perfect for our use as it con-
verges quickly, offers great precision, and is numerically stable
for high orders. Additionally, when arguments are passed to
the GPU for computation, they can be stored in arrays and
filled up to a certain index. The maximum order for the
GPU is set to 80 because the CUDA kernel argument space
size is limited to 4096 bytes at the time of writing. This is
exceeded when using double precision with quadrature orders
over 80. These limits, while providing substantial performance
improvements, can reduce precision. The GPU limit is is not
flexible, whereas on the processor, the integration interval can
be divided into equal partitions. This allows for increased
precision, if it is required, as a shorter integration interval
means a quadrature of lower order is needed to reach the
maximum theoretical precision of 15 significant digits.

Choosing order 1 for a certain layer effectively removes it.
Slow methods are used for flat coils (2 layers) and loops (1
layer), whereas fast methods are used for thick coils (2 layers)
and thin coils (1 layer). The points within the integration
domain is discretized as

ρi = R+
a

2
(1 + pna,i) , hj =

b

2
pnb,j , φk =

π

2
(1+pnφ,k),

(27)
Figure 3. shows the final expressions for slow methods, and
Figure 4. for fast methods.

Fig. 3. Gauss-Legendre sums for slow methods. P1, P2, P3, and P4 are components of matrix (20)

Di,j,k = r2 + ρi
2 + (z + hj)

2 − 2ρir cosφk, (28)

A[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nb∑
j

wnb,j

2

nφ∑
k

wnφ,k

2

ρi cosφk√
Di,j,k

α̂, (29)

B[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nb∑
j

wnb,j

2

nφ∑
k

wnφ,k

2

(z + hj) ρi cosφkr̂ + (ρi
2 − ρir cosφk)ẑ

Di,j,k

√
Di,j,k

, (30)

P1[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nb∑
j

wnb,j

2

nφ∑
k

wnφ,k

2

1

r

(z + hj) ρi cosφk

Di,j,k

√
Di,j,k

, (31)

P2[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nb∑
j

wnb,j

2

nφ∑
k

wnφ,k

2

3ρi (z + hj) (ρi cosφk − r) cosφk

Di,j,kDi,j,k

√
Di,j,k

, (32)

P3[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nb∑
j

wnb,j

2

nφ∑
k

wnφ,k

2

3ρi (z + hj) (r cosφk − ρi)

Di,j,kDi,j,k

√
Di,j,k

, (33)

P4[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nb∑
j

wnb,j

2

nφ∑
k

wnφ,k

2

ρi cosφk

(
2ρ2i + 2r2 − (z + hj)

2 − ρir cosφk

)
− 3ρi

2r

Di,j,kDi,j,k

√
Di,j,k

. (34)
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ht = z +
b

2
, hb = z − b

2
, (35)

Dt,i,k = ht
2 + r2 + ρi

2 − 2ρir cosφk, Db,i,k = hb
2 + r2 + ρi

2 − 2ρir cosφk,

Ci,k = r2 + ρi
2 − 2ρir cosφk,

C1,i,k =
(
ρi

2 + r2
)
cosφk − 2ρir, C2,i,k = ρi

2 − rρi cosφk,

C3,i,k = 2ρi
2r2 cosφk

(
cos2 φk + 2

)
− ρir

(
3 cos2 φk + 1

) (
ρi

2 + r2
)
+ cosφk(r

4 + ρi
4),

A′[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nφ∑
k

wnφ,k

2
ρi cosφk

(
sinh−1 ht√

Ci,k

− sinh−1 hb√
Ci,k

)
α̂, (36)

B′[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nφ∑
k

wnφ,k

2

((
ρi cosφk√

Db,i,k

− ρi cosφk√
Dt,i,k

)
r̂ +

C2,i,k

C1,i,k

(
1

Dt,i,k
3/2

− 1

Db,i,k
3/2

)
ẑ

)
, (37)

P ′
1[z, r] =

µ0

2
NI

na∑
i

wna,i

2

nφ∑
k

wnφ,k

2

ρi cosφk

r

(
1√
Db,i,k

− 1√
Dt,i,k

)
, (38)

P ′
2[z, r] =

µ0

2
NI

na∑
i

wna,i

2

nφ∑
k

wnφ,k

2
ρi cosφkC2,i,k

(
1

Dt,i,k
3/2

− 1

Db,i,k
3/2

)
, (39)

P ′
3[z, r] =

µ0

2
NI

na∑
i

wna,i

2

nφ∑
k

wnφ,k

2
ρiC2,i,k

(
1

Dt,i,k
3/2

− 1

Db,i,k
3/2

)
, (40)

P ′
4[z, r] =

µ0

2
NI

na∑
i

wna,i

2

nφ∑
k

wnφ,k

2

ρi
C2

i,k

(
ht

(
C1,i,kDt,i,k +

C3,i,k

D
3/2
t,i,k

)
− hb

(
C1,i,kDb,i,k +

C3,i,k

D
3/2
b,i,k

))
. (41)

Fig. 4. Gauss-Legendre sums for fast methods. P1, P2, P3, and P4 are components of matrix (20)

D. Increment balancing

Increment balancing is an important feature of our approach
as it allows users to select the number of increments that is
used in computation, consequently determining execution time
and precision. We define the precision factor p ∈ [1.0, 15.0].
The base number of increments is defined for p = 1.0 and
increasing p by 1.0 doubles the number of increments.

A relevant dimension is every layer of integration that is not
negligible in calculations, or more simply ni > 1. The total
number of increments for k relevant dimensions is then

nt =

k∏
i=1

ni ≈ mk · 2p−1. (42)

The base number of increments per integration layer is denoted
as m, and we decided to set it to 10. In the case of field
calculations, there are at most 2 relevant dimensions: angular
increments and thickness increments. The relation is then

nt = nanϕ ≈ 102 · 2p−1. (43)

Increments are assigned by a balancing algorithm which
will be discussed in the follow-up paper.

IV. PERFORMANCE RESULTS

A. Used Computers

Multiple computer and operating system configurations are
considered. In our case, performance is measured in two
meaningful ways: real world performance, expressed in num-
ber of field computations performed every second (comps/s),

and algorithmic performance, which measures how efficiently
the algorithm has been implemented. Algorithmic efficiency
is expressed in terms of iterations (increments) per second
(Inc/s). These two metrics are linked by the precision factor
which determines the total number of increments. When
calculating with thick and flat coils, algorithms consist of two
for loops. More and more time is spent in the inner loop as
the precision factor becomes larger, increasing the efficiency of
the algorithm for higher order quadrature. Differences between
operating systems are expected due to different compilers and
thread schedulers. Five computers are used:

• Computer A: AMD Ryzen 9 5900HX 8C/16T @4.2GHz,
Nvidia RTX 3080 Laptop 16GB 115W, 32GB DDR4-
3200 RAM, Windows 10 19044 and Pop!OS 22.04

• Computer B: AMD Threadripper 1950X 16C/32T
@4.0GHz, Nvidia RTX 2080 Ti 11GB, 32GB DDR4-
3200 RAM, Windows 10 19044

• Computer C: Intel Core i7 7700HQ 4C/8T @3.4GHz,
Nvidia GTX 1050 4GB, 16GB DDR4-2400 RAM, Win-
dows 10 build 19044

• Computer D: Intel Core i7 8700K 6C/12T @4.4GHz,
Nvidia RTX 2080 Ti 11GB, 32GB DDR4-3000 RAM,
Windows 11 22000.739 and Pop!OS 22.04

• Computer E: Intel Core i7-8750H 6C/12T @3.6GHz,
Nvidia RTX 2070 Mobile 8GB, 16GB DDR4-2667 RAM,
Windows 11 22000.856 and Pop!OS 22.04

Computer A will be tested most extensively as that is
a modern laptop (from 2021) and represents performance
attainable by most contemporary systems. Computer B is an
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older workstation computer with 16 processor cores and a
last generation graphics card. Computers C, D, and E all
have processors with a nearly identical architecture but with
different clock speeds and core counts. GPU performance will
only be showcased for Computer A.

B. Field performance
While our testing suggests that using a basic GPU, such as

the Nvidia GTX 1050 in Computer C, can greatly improve
performance, using double precision removes that advantage
on most systems. Hence, we decided to focus on proces-
sor performance. All showcased performance graphs can be
obtained from functions implemented in module Benchmark,
from Python or C++. Python support was implemented with
pybind11 [22] to achieve performance similar to native C++
code. The Python module can also be used from MATLAB.

The code works best on Linux with the required GCC
compiler. Windows is also well supported but the performance
of Microsoft Visual C++ (MSVC) compiler tends to be lower
overall, especially when using Python (about 3 times lower in
some instances). MacOS support is planned.

Since performance on Linux (more specifically Pop!OS)
has been much more consistent, it is used in most of the
benchmarks. The computer and operating system are always
denoted. Performance benchmarks for slow magnetic field and
slow gradient methods are omitted because they were observed
to be very similar to slow potential. Performance of different
computers and operating systems is shown for one case (4
threads and fast magnetic field). Performance depends on the
number of calculations, and 1 000 000 points are chosen for
testing. The tested coils have R = 0.1 m and a = 0.4 m.

From Figures 5-9, we observe that our approach delivers
very high performance, especially on Linux. Performance
scaling with respect to threads on Windows was unpredictable,
fluctuating by as much as 20% between consecutive runs.
Scaling on Linux is almost linear, until the number of threads
matches the number of cores. When the workload is sub-
stantial, using the number of threads equal to the number of
hardware threads was observed to yield the best performance.
Figure 10 shows that performance on older computers is also
good, especially on Linux. Precision factors between 3.0 and
5.0 offer a good balance between precision and performance.

Finally, performance scaling with respect to the number of
points is shown in Figure 11 for 1 coil, and in Figure 12 for
a large system of 100 coils. Precision factor is set to 3.0. Coil
dimensions are R = 0.1 m and a = 0.1 m.

Multithreading can significantly boost performance, roughly
by a factor equal to the number of cores. Points are dis-
tributed into similarly sized blocks, and there are as many
blocks as there are threads. Efficiency is further improved by
using the thread pool [23] approach. For multi-coil systems,
coarse-grained multithreading is employed and it significantly
increases performance if a large number of cores are utilised.

GPU performance is 10 times higher than with multithread-
ing when using 1 coil, and 60 times higher when using 100
coils, exceeding half a billion computations per second. For
precision factor 1.0, performance between 1 and 2.5 billion
computations per second was observed for all methods.

Fig. 5. Slow potential performance (Computer A Win10)
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Fig. 6. Slow potential performance (Computer A Pop22.04)
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Fig. 7. Fast potential performance (Computer A Pop22.04)
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Fig. 8. Fast field performance (Computer A Pop22.04)
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Fig. 9. Fast gradient performance (Computer A Pop22.04)
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Fig. 10. Comparison of fast field performance (4 threads)

1 2 3 4 5 6 7 8
0

400

800

1,200

1,600

2,000

2,400

Precision factor

A
lg

or
ith

m
ef

fic
ie

nc
y

[M
In

c/
s]

A Pop22.04 A Win10 B Win10 C Win10
D Win11 D Pop22.04 E Win11 E Pop22.04

Fig. 11. Performance scaling for fast field, 1 coil (Computer A Win10)
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Fig. 12. Performance scaling for fast field, 100 coils (Computer A Win10)
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To conclude our testing, Figure 13. shows an image of the
magnetic field, generated using [24]. It was compared to an
image obtained with Simcenter MAGNET. The field outside
of the coil is exact, but artefacts, which look like a series of
deliberately arranged thin coils, are found inside.

V. CONCLUSION

A performant new approach for calculating the magnetic
vector potential, magnetic flux density and magnetic gradient
was presented. In contrast to other approaches, it is based
on simple expressions which are numerically integrated and
efficiently implemented in a compiled programming language.
The Gauss-Legendre quadrature was used for numerical in-
tegration and its parameters were precomputed. Support for
multithreading and hardware accelerated computation are also
included and implemented separately for a single coil and a
system of coils. Multithreading performance was extensively
tested and found to be excellent, especially on Linux. Hard-
ware acceleration significantly increases performance over
multithreading, especially in multi-coil systems. Precision
and use cases will be evaluated in a follow-up paper. The
framework, named C-Coil, is implemented in C++ and CUDA,
with a supported Python module accessible from MATLAB.
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Fig. 13. Absolute value of the magnetic field [T]. Coil specifications are:
R = 0.03 m, a = 0.03 m, b = 0.12 m, N = 3600, and I = 10A.
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