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Abstract

Diabetes mellitus (DB) is the most challenging and fastest-growing global public health challenge. An estimated 10.5% of

the global adult population has been suffering from diabetes, and almost half of them are undiagnosed. The growing at-

risk population further exacerbated the scarce health resources where the adults worldwide with impaired glucose tolerance

(IGT) and impaired fasting glycaemia (IFG) were estimated at around 10.6% and 6.2%, respectively. All the current diabetes

screening methods are invasive and opportunistic and must be conducted in a hospital or a laboratory by trained professionals.

At-risk subjects might remain undetected for years and miss the precious time window for early intervention in preventing

or delaying the onset of diabetes and its complications. This study was conducted at KK Women’s and Children’s Hospital

of Singapore, and five hundred participants were recruited (mean age 38.73 $\pm$ 10.61 years; mean BMI 24.4 $\pm$ 5.1

kg/m\textsuperscript{2}). The blood glucose levels, for most participants, were measured before and after 75g of sugary drink

using both the conventional glucometer (Accu-Chek Performa) and the wrist-worn wearable. The results obtained from the

glucometer were used as the ground truth measurements. We propose leveraging photoplethysmography (PPG) sensors and

machine learning techniques to incorporate this into an affordable wrist-worn wearable device to detect elevated blood glucose

levels ($\geqslant 7.8 mmol/L $) non-invasively. Multiple machine learning models were trained and assessed with 10-fold cross-

validation using subject demographic data and critical features extracted from the PPG measurements as predictors. Support

vector machine (SVM) with a radial basis function kernel has the best detection performance with an average accuracy of

84.7%, a sensitivity of 81.05%, a specificity of 88.3%, a precision of 87.51%, a geometric mean of 84.54% and F-score of 84.03%.

Hence, PPG measurements can be utilized to identify subjects with elevated blood glucose measurements and assist in the

screening of subjects for diabetes risk.

1



GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2021 1

BGEM™ : Assessing Elevated Blood Glucose
Levels Using Machine Learning and Wearable

Photoplethysmography Sensors
Bohan Shi , Satvinder Singh Dhaliwal , Marcus Soo, Cheri Chan, Jocelin Wong, Natalie W.C. Lam,

Entong Zhou, Vivien Paitimusa, Kum Yin Loke, Joel Chin, Chua Mei Tuan, Kathy Liaw Chiew Suan, Fadil

Fatin Insyirah, Shih-Cheng Yen , Arthur Tay and Seng Bin Ang

Abstract— Diabetes mellitus (DB) is the most challeng-
ing and fastest-growing global public health challenge. An
estimated 10.5% of the global adult population has been
suffering from diabetes, and almost half of them are undiag-
nosed. The growing at-risk population further exacerbated
the scarce health resources where the adults worldwide
with impaired glucose tolerance (IGT) and impaired fasting
glycaemia (IFG) were estimated at around 10.6% and 6.2%,
respectively. All the current diabetes screening methods
are invasive and opportunistic and must be conducted in
a hospital or a laboratory by trained professionals. At-risk
subjects might remain undetected for years and miss the
precious time window for early intervention in preventing
or delaying the onset of diabetes and its complications.
This study was conducted at KK Women’s and Children’s
Hospital of Singapore, and five hundred participants were
recruited (mean age 38.73 ± 10.61 years; mean BMI 24.4
± 5.1 kg/m2). The blood glucose levels, for most partici-
pants, were measured before and after 75g of sugary drink
using both the conventional glucometer (Accu-Chek Per-
forma) and the wrist-worn wearable. The results obtained
from the glucometer were used as the ground truth mea-
surements. We propose leveraging photoplethysmography
(PPG) sensors and machine learning techniques to incor-
porate this into an affordable wrist-worn wearable device
to detect elevated blood glucose levels (> 7.8mmol/L) non-
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invasively. Multiple machine learning models were trained
and assessed with 10-fold cross-validation using subject
demographic data and critical features extracted from the
PPG measurements as predictors. Support vector machine
(SVM) with a radial basis function kernel has the best
detection performance with an average accuracy of 84.7%,
a sensitivity of 81.05%, a specificity of 88.3%, a precision of
87.51%, a geometric mean of 84.54% and F-score of 84.03%.
Hence, PPG measurements can be utilized to identify sub-
jects with elevated blood glucose measurements and assist
in the screening of subjects for diabetes risk.

Index Terms— Diabetes mellitus, explainable AI, fea-
ture engineering, machine learning, photoplethysmogra-
phy, wearable sensor.

I. INTRODUCTION

D IABETES mellitus (DB) is a chronic and heterogeneous
metabolic disorder characterised by the presence of hy-

perglycemia due to deterioration of insulin secretion, defective
insulin action or both [1,2]. There are three main types of DB:
type-1 DB (T1DB), type-2 DB (T2DB) and gestational dia-
betes. T2DB is the most prevalent type of diabetes, affecting
over 95% of people with diabetes worldwide [3,4].

The prevalence of DB has been proliferating in recent
decades, and it is now the most prominent and fastest-
growing global public health challenge [5,6]. Uncontrolled
diabetes is associated with an increased risk of complications
such as cardiovascular disease, kidney failure, vision loss,
nerve damage, and overall mortality [7-9]. Based on the
latest diabetes prevalence estimate, 10.5% of the global adult
population has been suffering from diabetes, and almost half
of them are undiagnosed [10]. The growing at-risk population
has further strained scarce health resources. Globally, around
10.6% of adults have impaired glucose tolerance (IGT), and
6.2% have impaired fasting glycaemia (IFG) [4]. IGT and
IFG are reversible transitional conditions between normality
and diabetes. These conditions, also known as prediabetes, are
characterised by elevated blood glucose levels that are not high
enough to be classified as diabetic. However, individuals with
IGT or IFG are at increased risk of developing cardiovascular
disease, coronary heart disease, stroke, and even mortality
[11]. One of the challenges with IGT and IFG is that they

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no
longer be accessible.
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often do not have any obvious symptoms, which means they
can go undetected and undiagnosed for years. Moreover, a
follow-up study conducted in Singapore reported that a third
of these prediabetic individuals would likely develop T2DB
within eight years without lifestyle changes [12]. A similar
study with data from the United Kingdom has also reported
that a substantial proportion of prediabetes could progress to
T2DM within five years [13]. Therefore, predicting the risk
of diabetes in the asymptomatic population is a significant
health challenge that must be addressed. Early recognition
of prediabetes and undiagnosed T2DM will result in a better
health outcome or a more favourable long-term prognosis [14].

Currently, the diagnosis of diabetes and prediabetes is
well-established. The T2DM and prediabetes can be detected
through one of the four methods: 1) the fasting plasma glucose
(FPG) value, 2) the 2-hour plasma glucose value during a
75-g oral glucose tolerance test (OGTT), 3) Hemoglobin
A1c (HbA1c) and 4) a random plasma glucose test [3]. All
these diagnostic screening methods are invasive and oppor-
tunistic in nature and must be conducted in a hospital or
a laboratory by trained professionals. A confirmed diagnosis
usually requires repeated testing. As all the tests are single-
time-point screenings, adults above 35 are recommended to
have regular screening every three years [3]. Nevertheless,
at-risk individuals hardly comply with this recommendation,
especially in developing countries, due to the cost of diagnostic
tests and the scarce medical resources [6,15,16].

Unlike T1DB and gestational diabetes, the development
of T2DB and its complications are preventable or at least
controllable. A considerable amount of studies have shown that
lifestyle and behavioural interventions help diabetes patients
achieve adequate glycaemic control [17,18]. Recent evidence
also suggested that early lifestyle adjustment will help pre-
diabetes subjects get back to normoglycaemia and reduce the
risk of developing T2DM [19-21]. Frequent diabetes screening
identifies individuals with a high risk of T2DB 2.2 years
earlier [22], creating a precious time frame and opportunity for
taking early intervention in preventing or delaying the onset
of diabetes and its complications and improving the overall
clinical outcomes.

For established diabetics, constant monitoring of their blood
glucose concentration is crucial so that appropriate insulin
dosage can be administered timely to avoid acute and chronic
complications and delay the disease progression. The conven-
tional blood glucose measurement requires patients to prick
their fingers several times a day, which causes the development
of massive scarring and loss of sensation at the fingertips over
the year [23]. This measurement method is invasive, incon-
venient and expensive it is one of the barriers to effectively
self-manage diabetes in the elderly group [24,25]. To improve
the diabetes outcome and assist patients in self-managing
the disease, continuous glucose monitoring (CGM) devices
have entered the market and are made available for some
diabetic patients. However, most CGM sensors currently on
the market are still invasive and measure glucose concentration
in the subcutis by an electrochemical needle sensor [26]. Users

need to replace the sensor frequently and purchase different
components of the system regularly, which will cost from
$2,500 to $6,000 per year [27,28].

Advancement and utilisation in wearable technologies and
AI have gradually changed our daily lives as many people use
wrist-worn wearables daily for fitness and health monitoring
[29]. In recent years, the majority of consumer wearables
have integrated green light reflection photoplethysmography
(PPG) sensors into their products. These wearables can vastly
enhance the reach of other public health concerns by creating
a preventive approach to predicting abnormal characteristics in
a person’s physiological signals, evaluating one’s risk factors
of developing a disease and assisting patients in managing
chronic conditions and rehabilitation [30-33]. Current blood
glucose monitoring technologies often require invasive mea-
sures such as finger pricking or the use of skin sensors and
patches. These methods can be uncomfortable and inconve-
nient for users and can also be financially burdensome. To ad-
dress these issues, we propose a novel solution called BGEM™

(Blood Glucose Evaluation and Monitoring) that leverages the
latest advancements in signal processing, wearable technology,
and artificial intelligence to detect elevated blood glucose
levels and evaluate the risk of developing diabetes. With
BGEM, users only need to measure their PPG data using
a consumer-grade wrist-worn wearable. The AI model will
then compute relevant digital biomarkers and evaluate the
risk of prediabetes or T2DM by recognizing elevated blood
glucose levels (> 7.8mmol/L). This solution allows for
frequent blood glucose testing without the discomfort and
inconvenience of current technologies.

II. RELATED WORKS

In recent years, there has been a growing interest in utilising
optical-based wearables to detect or predict chronic diseases
and conditions, such as T2DM. In 2011, Monte-Moreno
demonstrated the use of PPG collected with a pulse oximeter
to estimate blood glucose levels [34]. From analysing the PPG
waveform, features such as respiration frequency, heart rate
variability and other physiological parameters can be extracted,
which are then fed into a random forest model, giving a
prediction accuracy of 87.7% based on the Clark Error Grid.

Rodin et al. proposed using a smartwatch with an inte-
grated biosensor as an indirect glucometry [35]. The biosensor
comprises a PPG sensor and an optically sensitive backglass
panel that changes its optochemical characteristics according
to the concentrations of specific sweat metabolites. Two hun-
dred adult participants were recruited, and each participant
wore a smartwatch to extract the PPG data while the blood
samples were collected from the antecubital vein concurrently.
The estimation of the blood glucose level is derived using
Spectrophon’s proprietary algorithm and compared against a
glucose lactate analyser (YSI 2300). The proposed biosensor
was able to detect anteprandial glucose with a mean absolute
percentage error (MAPE) of 7.40% and a normalised root
mean squared error (NRMSE) of 11.56%, while postpran-
dial glucose measurements gave 7.54% MPAE and 9.79%
NRMSE.
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Zhang et al. used a smartphone, taking a video of the
index finger covering the flash, to capture the fluctuation
in the light absorption associated with the change in blood
volume. The resulting RGB image was then transformed into
PPG data [36]. The Gaussian fitting method was applied to
model the components of the PPG waveform, from which
twenty-eight time-domain and frequency-domain features were
extracted. A support vector machine with a Gaussian kernel
was trained with data from eighty subjects to classify the user’s
glucose level as normal, borderline, or warning, giving an
accuracy of 81.49%, along with 79.85% sensitivity, 83.19%
specificity and 80.2% F-score. The study was conducted in
a highly-controlled environment with limited subjects, so the
generalisability of these results is subject to certain limitations.

The use of deep learning in the medical and healthcare
domain has shown great potential for solving a range of prob-
lems, such as detecting specific symptoms or abnormalities
[37,38]. However, the interpretability of deep learning models
remains a significant challenge, and it is often difficult for
clinicians to trust the decisions made by a black-box system.
For these reasons, we did not investigate the use of deep
learning in this study.

III. METHODS AND MATERIALS

PPG is a low-cost, non-invasive technique that measures
the volumetric fluctuation in arterial blood flow [39]. The
human wrist is one of the sites for measuring the PPG
signal since it has a rich arterial source and an excellent
sensor placement with minimal interference to one’s daily
activities. The PPG signal comprises superimposed pulsatile
alternating current (AC) components and direct voltage (DC)
components. A PPG signal is obtained by illuminating LED
light on the skin surface and measuring the variations in
light absorption or reflection that reflects the pulsatile flow
patterns as seen in Figure 1. The pulsatile AC component
corresponds to the cardiac cycle, characterising that the wrist’s
blood vessels expand and contract with each heartbeat. While
the DC component reflects constant light absorption by venous
and arterial blood, as well as other tissues [40]. The PPG
signal can detect vascular changes associated with diabetes
and contains substantial valuable information from heart rate
variability, which is significantly associated with diabetes [41].
Hence, it will be used in this study to extract valuable and
meaningful features to identify an individual’s glucose status
(elevated or normal).

A. Study Protocol

Before commencing the study, ethical clearance was ob-
tained from the SingHealth Centralised Institutional Review
Board of Singapore (CIRB Ref: 2020/2968). The detailed
study protocol was registered on ClinicalTrials.gov (Identifier:
NCT05504096).

Five hundred participants were recruited from Singapore
KK Women’s and Children’s Hospital (KKH). The partic-
ipants’ demographic is summarised in Table I. The blood
glucose levels, for most participants, were measured before

and after 75g of sugary drink using both the conventional glu-
cometer (Accu-Chek Performa) and the wrist-worn wearable.
Subjects who were excluded for the second measurement had
high blood glucose measurements > 11.8mmol/L on their
first measurement and hence were not administered the 75g
sugary drink.

TABLE I: Description of participants.

Demographic Data

Age (years) mean = 38.73 SD = 10.61

BMI (kg/m2) mean = 24.4 SD = 5.1

Male 10.2%Gender
Female 89.8%

Diabetes Profile

Family History

of Diabetes

Yes 31.4%

No 68.6%

Yes 3.4%Pre-diabetes
No 96.6%

Diabetes Yes 1.6%

No 98.4%

Yes 4.2%

No 85.6%
Gestational

Diabetes
N/A 10.2%

B. Study Device
The Actxa Spark+ Series 2, a low-cost and commercially

available wrist-worn wearable, was used in the project. This
multi-functional device, built for everyday activities, fitness,
and preventive health monitoring, provided adequate PPG
signal quality at 50 Hz. The wearable is equipped with
advanced PPG technology that enables accurate and reliable
measurement of heart rate and other physiological parameters.
This is similar to the devices used in Singapore’s national-wide
healthcare campaigns, such as the National Steps Challenge™.
It is also worth noting that our proposed solution is device-
agnostic and can be easily integrated into other wearables
with PPG capabilities, allowing for a scalable and cost-
effective assessment of risk-based populations, including high-
risk subjects, subjects with undiagnosed diabetes and patients
in need of primary prevention interventions.

C. Pre-processing
The raw PPG signal was collected using both wrist-worn

wearables in 16-bit binary format. We first perform a Digital-
to-Analog Conversion (DAC) using the formula:

Vi = 5 × Signali
216

(1)

Liang et al. suggested that a fourth-order Chebyshev II filter
provides the optimal processing performance for short PPG
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Fig. 1: Illustration of the working principle of a PPG sensor. Changes in blood flow represent different phases within the
cardiac cycle. During the diastolic phase, blood volume, arterial diameter, and hemoglobin concentration in the measurement
site are minimised, leading to minimum absorption of light by blood and, consequently, an increase in light intensity detected
by the sensor system. The reverse is valid for the systolic phase, where a decrease in light intensity is detected instead

signals [42]. Hence we adopted the recommended filter design
to remove the low-frequency drift and high-frequency noise
using a band-pass Chebyshev II filter. The proposed band-
pass filter has a lower cut-off frequency of 0.3 Hz and an
upper cut-off frequency of 4 Hz.

The filtered PPG signals still contain various forms of
outliers, such as peaks with abnormally high amplitudes or
distortion in the oscillating waveform, which can be caused
by movement from the upper extremity or improper contact
between the sensor and skin. Features derived from signals
that possess outliers may not be accurate, so a Z-scores outlier
detection with a cut-off value of third standard deviations of
the mean. The identified outliers or regions of outliers were
excluded from the HRV feature extraction afterwards.

The data pre-processing steps are illustrated in Figure 2.

D. Feature Extraction
The pre-processed data were suitable for generating reliable

features, and a total of 246 features were generated. These
features can be classified under seven categories: 1) heart rate
variability (HRV) features, which encompass time-domain,
frequency-domain and non-linear HRV features, 2) waveform
features, 3) heart rate features, 4) energy measures features, 5)
complexity measure features, 6) continuous wavelet transform
features and 7) patient demographics. The complete features
set and a brief description of these features are summarised
in the appendix session (see Table IV and Table V). However,
these 246 feature candidates are not all relevant to the change
in glucose level, and the redundant features might cause
prediction performance deterioration. The details of the feature
engineering and the feature selection process are discussed in
the section.

1) HRV Features: HRV is the variation in time intervals
between consecutive heartbeats and is widely used as the non-
invasive physiological biomarker of autonomic nervous system

response [43-45]. HRV provides a proxy to measure sympa-
thetic (SNS) and parasympathetic (PNS) activity, which reflect
the ability to respond to and recover from abrupt physical,
psychological and environmental changes [45-47]. As HR es-
timated at any given time represents the net effect of the neural
output of the PNS, which slows HR and SNS which accelerates
HR, HRV also detects imbalance in the autonomous nervous
system resulting from over or under stimulation of SNS and
PNS. Therefore, the fluctuation in HRV values contains useful
insights into many clinical applications, such as mental stress,
exercise and rehabilitation, cardiovascular fitness, an indication
of the pathological state, the progression of chronic disease,
and even predicting the onset of diseases [48-52]. Depending
on the application, HRV features are usually extracted from an
ultra-short-term (< 5 minutes), short-term (around 5 minutes)
or whole day 24 hours time frame [53]. Most HRV features
can be grouped under time-domain, frequency-domain or non-
linear categories. In this project, most of the widely used
HRV features were included in our analysis and were extracted
using a 5-minute time frame. These HRV features are briefly
explained in Table IV with feature indices (F1-F71).

2) Waveform Features: Previous studies have reported that
the characteristics of the PPG waveform extracted from
healthy and diabetic subjects exhibited statistical differences
[36,54]. Nirala et al. also suggested that the first and second
Eigenvalues derived from the first derivative of the PPG signal
are the top features to identify T2DM [54]. In addition, several
studies thus far have revealed a functional relationship between
the PPG signal and blood glucose levels [34,55]. Likewise,
respiratory information can also be extracted from the PPG
waveform [33,56]. However, PPG waveforms derived from
signals using a wrist-worn PPG sensor often have a non-
detectable diastolic peak and dicrotic notch, unlike signals
collected using fingertip PPG.
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Fig. 2: The workflow of data pre-processing.

Waveform features (F72 - F183) derived from the PPG
waveform (Table V) were included in the feature set and the
definition of the waveform features are illustrated in Figure 3.

3) Heart Rate Features: Prior studies have noted the influ-
ence of impaired blood glucose on heart rate, especially the
resting heart rate [57,58]. Hence, HR was extracted by finding
the number of peaks for every 30 seconds of filtered PPG
signal. The statistical features of HR were then calculated and
used as part of the feature inputs ( F184 to F193). and shown
in Table V ( F184 to F193).

4) Energy Measure: Several studies, for example,
[34,59,60], have utilised the energy features extracted
from PPG signals to estimate blood glucose. The Kaiser-
Teager Energy (KTE) operator and Logarithmic Energy
(LogE) are two commonly used methods to analyse the
energy profile.

a) Kaiser-Teager Energy Operator: KTE operator is a well-
known method to provide time-frequency analysis on the
instantaneous energy of the PPG signal from the amplitude

and frequency. Using the implementation strategy explained
by Monte-Moreno [34], we computed the energy profile of
the PPG signal at the frame level, and the KTE operator for
the n-th frame is computed using Equation 2:

KTEn(i) = x2frame(i) − xframe(i+ 1) ∗ xframe(i− 1),

which holds for i = 2, 3, ..., Lframe − 1
(2)

The statistical metrics were computed for each frame, and
the average of the metric for the n frame was then calculated
and represented as F193 - F202.

b) Logarithmic Energy Features: To estimate the respiration
rate from the PPG signal, we used the LogE value calculated
at the frame level (see Equation 3). The autoregressive model
coefficients of order seven were estimated using the Yule-
Walker method, and the python function aryule was used for
this purpose. In addition, other statistical parameters were also
computed (F203 - F219).



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2021

Fig. 3: Definition of the PPG waveform features. An additional explanation of each feature can be found in Table V.

LogEn = (

Lframe∑
τ=1

S2
frame(τ, n)) (3)

5) Complexity Measures:
a) Sample Entropy: Sample entropy (SampEn, F220) mea-

sures the unpredictability of physiological signals [61] and is
commonly used in heart rate variability analysis. The lower
the SampEn, the more regular the signal is.

SampEn can be defined after first calculating the template
vector Φm which is the probability that two sequences will
match for m points without allowing self-counting [62]:

Φm(r) =
1

N −m− 1

N−m+1∑
i=1

Cr
m(i) (4)

SampEn(m, r,N) = ln[Φm(r) − Φm+1(r)] (5)

where m denotes the embedding dimension, tolerance r equals
to 0.2 ∗ standard deviation, and the number of data points
is represented as N.

b) Multiscale Entropy: SampEn is a tool to analyse phys-
iological time-series data, but it does not evaluate the data’s
complexity in different time scales. Hence, we applied the mul-
tiscale entropy (MSE) analysis on raw PPG signals to evaluate
the hypothetical difference in signal complexity across various
time scales for normoglycemia and elevated glucose levels. We
found that the sample entropy calculated from PPG signals
during periods of elevated blood glucose was significantly
higher than that of blood glucose in the normal range at time
scale factors between 8 and 14 (τ ). This information was then
used to create features for detecting elevated blood glucose.
Each time scale factor between 8 and 14 was used as a separate
feature. Additionally, the mean of adjacent time scale factors
was derived to create additional features. These MSE features

were represented in the feature vector with feature indices
F221 to F240.

6) Wavelet Analysis: A considerable amount of literature
has applied wavelet transformation to analyse the HRV data
associated with a wide variety of healthcare applications.
Earlier research has utilised features derived from continuous
wavelet transform (CWT) to predict blood glucose level [63].
In this project, we applied CWT to the PPG signal using the
Mexican Hat mother wavelet. The mean, standard deviation
and maximum value of the resulting CWT matrix were in-
cluded in the feature vector (F241- 243).

E. Feature Selection

Considering the AI ethics and the practicality of implement-
ing the algorithm, some demographic data, such as skin colour,
race and personal lifestyle habits, were not used as the input
to the models. However, other general personal particulars
associated with the risk of developing T2DM, such as age,
gender, BMI and family health history of diabetes, are added
to the feature vector before the feature selection process.

The redundant or irrelevant features might hinder the predic-
tion model’s performance. To reduce the dimensionality of the
input features, we applied an ensemble strategy which utilises
multiple feature selection algorithms. This creates an optimal
feature subset that minimises the prediction error rate and is
most relevant in predicting the target variable. The ensemble
feature selection steps are summarised below:

• Six feature selection methods, including ANOVA corre-
lation coefficient, mutual information (MI), dispersion ra-
tio, recursive feature elimination (RFE), lasso regression
and eXtreme Gradient Boosting (XGBoost), were used to
choose the 30 best features independently.

• We combined the features obtained from each feature
selection method and ranked the features using a majority
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vote approach to find the common features selected by
more than one model.

• The highly correlated features were dropped from the
selected feature subset.

Twelve features were selected from the entire feature set and
ranked based on the feature selection strategy’s result (shown
in Table II). In our study, these selected features are the most
sensitive predictors to capture the characteristics of a subject’s
elevated blood glucose. Note that gender was not selected as
a top feature in our feature selection algorithm. However, it
was previously identified as a sensitive predictor for T2DM,
where the prevalence of T2DM in men is higher than in women
[64]. This discrepancy could be attributed to gender imbalance
in the dataset ( male 10.2% and female 89.8%). Therefore,
we included gender as one of the top features to provide a
complete user profile for future investigation and development.

TABLE II: The selected top features after the ensemble feature
selection method.

Rank Feature Rank Feature Rank Feature

1 Welch hf rel 6 A Pulse iqr 11 familyHistory

2 AR hf rel 7 KTE skew 12 A ratio max

3 A FE mean 8 LOG std 13 Gender*

4 A ratio mean 9 BMI

5 age 10 MSE sum 13 14

IV. RESULTS

All experiments and analyses were performed using Python
3.9 and relevant libraries. The final model was deployed on
Amazon Web Services (AWS).

A. ML Model Performance

Seven widely used machine learning algorithms, including
the naive Bayes (NB) classifier, K-nearest neighbours (KNN)
algorithm, logistic regression (LR), random forest (RF), sup-
port vector machine (SVM), eXtreme Gradient Boosting
(XGB) and light gradient boosting machine (LGBM), were
trained with the selected features as input. Each model was
fine-tuned accordingly and validated under the 10-fold cross-
validation scheme. Six evaluation metrics, accuracy, sensi-
tivity, specificity, precision, geometric mean (G-mean) and
F-score, were used to evaluate the model’s performance, as
accuracy alone cannot provide a comprehensive examination
of the model performance due to data imbalance. G-mean and
F-score are the critical evaluation criteria to assess the models’
performance as they are robust to significant label imbalance.

The prediction result from each model is reported with the
mean and standard deviation of the evaluation metrics, and
Table III shows the summary of the results.

As shown in Table III, SVM with the Radial Basis Function
(RBF) kernel has shown the best prediction performance
with an average accuracy of 84.7%, a sensitivity of 81.05%,
a specificity of 88.35% and a precision of 87.51%. Most
especially, the average G-mean of 84.54% and F-score of
84.03%.

B. Model interpretation using explainable AI approach

As the proposed ML model is designed to complement the
existing diabetes detection solution and is relatively new to
the clinical community, the features selected in the previous
chapter must be interpretable and exhibit a certain level of
agreement with existing findings. A family history of diabetes,
being a male, being over 45 years old, and having an increased
BMI have been identified as major risk factors in the literature
for developing prediabetes, or T2DM [64-66]. These four risk
factors were part of the selected predictors, and this paper
provides a preliminary attempt to explain how the selected
predictors contribute to detecting elevated blood glucose using
the SHapley Additive exPlanations (SHAP) framework. SHAP
is a game theoretic approach that provides global and local
explanations of the association between ML output and input
features [67].

(a) SHAP beeswarm plot.

(b) SHAP waterfall plot

Fig. 4: The SHAP explanation plots indicate the association
between the selected features and their impact on the predicted
outcome.
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TABLE III: The prediction results obtained from 10-fold cross-validation using various machine learning models.

Classifier

Metrics Accuracy Sensitivity Specificity Precision G-mean F-score

µ σ µ σ µ σ µ σ µ σ µ σ

NB 60.51 4.63 66.17 7.44 54.87 5.78 59.43 4.12 60.08 4.6 62.51 5.19

KNN 76.7 3 90.45 4.30 62.94 4.15 70.97 2.47 75.4 3.09 79.5 2.68

LR 63.1 4.65 64.56 7.07 61.66 4.30 62.65 4.16 63 4.67 63.52 5.37

RF 76.76 5.73 76.84 8.18 76.69 6.42 76.81 6.08 76.64 5.72 76.68 6.23

SVM (RBF) 84.7 4.14 81.05 6.77 88.34 4.19 87.51 4.26 84.54 4.18 84.03 4.58

XGB 78.06 4.91 77 6.58 79.12 4.98 78.7 4.88 78 4.89 77.77 5.15

LGBM 77.9 3.98 75.54 7.36 80.27 4.45 79.35 4.1 77.74 4.07 77.24 4.81

Figure 4 (a) illustrates the SHAP values of each feature
across all predictions from the training set. The features are
ranked by their mean SHAP values, with larger values shown
in red and smaller values shown in blue. The beeswarm plot
reveals that a family history of diabetes, increasing age, and
higher BMI are associated with a higher probability of elevated
blood glucose levels. These observations are consistent with
previous research and demonstrate that the ML algorithm has
successfully captured the relationship between these features
and elevated blood glucose. In addition, other proposed fea-
tures also showed varying levels of impact on the model’s
output. However, the gender feature did not have any apparent
effect on the model’s predictions.

In Figure 4 (b), each row in the plot shows how the
contributions of different features move the model’s output
from the expected value (E[f(x)]) to the actual prediction
output f(x) for a single sample with a positive class prediction
(blood glucose level > 7.8mmol/L) in the test set. The
expected value, E[f(x)], is determined by the entire training
dataset. As expected, most features give positive SHAP values
in this sample, which collectively push the model’s output
towards the correct prediction. However, this specific test
subject’s BMI was in the healthy range, which pushed the
model’s output towards the normal class and might result in a
false negative prediction. This shows that relying on a single
feature or demographic data alone may not give an accurate
prediction of blood glucose levels.

Using the SHAP values, we can understand the model’s
overall behaviours and how features affect the output positively
or negatively, which can help improve the prediction model in
the future.

C. Assessment of the elevated blood glucose levels from
multiple measurements

Diagnostic tests are generally not both highly sensitive
and highly specific. For this reason, repeated measurements
of the wrist-worn wearable were combined and assessed in
an optimum fashion to maximise sensitivity, specificity and
precision.

Consecutive measures of blood glucose were combined in
parallel using the “AND” and “OR” rules to assist in the

detection of elevated blood glucose measurement levels. The
“OR” rule increases the overall sensitivity, and the “AND” rule
increases the overall specificity, greater than that of either test
alone [68].

V. DISCUSSION AND CONCLUSIONS

While the healthcare landscape is changing, the rapidly
ageing society and the need for improved population health
outcomes call for new models of care to effectively prevent
the onset and delay the progression of chronic diseases. Fur-
thermore, short-term health behaviours contribute significantly
towards longer-term health outcomes, while unattended and
frequent glucose spikes might result in prediabetes and, even-
tually, diabetes. The availability of non-invasive and device-
agnostic blood glucose detection solution will allow for a more
frequent and better monitoring of blood glucoselevels, hence
reducing the risk of developing T2DM.

BGEM™ is a cloud-based solution that can fre- quently
monitor multiple digital biomarkers with minimal disrup-
tion to daily life. Developed using the advanced Machine
Learning Operations (MLOps) practice, BGEM™ can easily
scale to meet the increasing demand for healthcare services.
The solution includes a user-friendly mobile app that can
screen a large population to identify high-risk individuals,
people with undiagnosed diabetes, and those who need primary
prevention intervention. It also provides timely feedback to
users through the app, informing them of their diabetes risk
and providing targeted, actionable insights to empower them
to take a proactive approach to monitor their glucose levels.

In this study, we performed sophisticated feature engineer-
ing, and we found that the features derived from multiscale
entropy analysis of PPG signals effectively detect blood glu-
cose changes. We will discuss this set of novel features in
more detail in a separate paper. To reduce bias and evaluate the
model’s generalizability, we used 10-fold cross-validation to
assess its performance. The SVM with RBF model performed
the best, with an average accuracy of 84.7%, a G-mean of
84.54%, and an F-score of 84.03%. Previous models were
developed using smaller samples and had lower model perfor-
mance measures [36]. Our model was developed with larger
sample of 500 subjects, and most subjects assessed before and
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after consumption of a sugary drink. It also achieved better
detection accuracy.

Our study has limitations. Non-fasting blood glucose mea-
surements were collected from subjects, and most of the
participants were female. There was also no longitudinal
follow-up of participants. External validation of our model on
an independent sample needs to be undertaken to further assess
the detection accuracy and the generalizability of the results.

We demonstrated that the deployed ML model was able
to detect elevated blood glucose levels, where consecutive
measurements could be combined in an optimal manner to
provide high sensitivity, specificity and precision. Further
research is required to address the limitations discussed.

APPENDIX

The complete set of features analysed in this study was
summarised in Table IV and Table V.
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