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Abstract

Forest inventory forms the foundation of forest management. Remote sensing (RS) is an efficient means of measuring forest

parameters at scale. Remotely sensed species classification can be used to estimate species abundances, distributions, and

to better approximate metrics such as above ground biomass. State of the art methods of RS species classification rely on

deep learning models such as convolutional neural networks (CNN). These models have 2 major drawbacks: they require large

samples of each species to classify well and they lack explainablity. Therefore, rare species are poorly classified causing poor

approximations of their associated parameters. We show that the classification of rare species can be improved by as much

as 8 F1-points using a neuro-symbolic (NS) approach that combines CNNs with a NS framework. The framework allows for

the incorporation of domain knowledge into the model through the use of mathematically represented rules, improving model

explainability.
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Abstract—Forest inventory forms the foundation of forest man-
agement. Remote sensing (RS) is an efficient means of measuring
forest parameters at scale. Remotely sensed species classification
can be used to estimate species abundances, distributions, and
to better approximate metrics such as above ground biomass.
State of the art methods of RS species classification rely on
deep learning models such as convolutional neural networks
(CNN). These models have 2 major drawbacks: they require
large samples of each species to classify well and they lack
explainablity. Therefore, rare species are poorly classified causing
poor approximations of their associated parameters. We show
that the classification of rare species can be improved by as
much as 8 F1-points using a neuro-symbolic (NS) approach that
combines CNNs with a NS framework. The framework allows for
the incorporation of domain knowledge into the model through
the use of mathematically represented rules, improving model
explainability.

Index Terms—neuro-symbolics, explainable machine learning,
remote sensing, tree species classification, convolutional neural
network.

I. INTRODUCTION

FORESTS play a vital role in maintaining life on Earth
as we know it. They produce oxygen, are a habitat for

countless animals and provide fuel and production materi-
als for numerous industries. As a result, governments and
the forestry industry invest heavily in forest monitoring and
management. Traditional inventory methods rely on manual
field surveys that are used to estimate forest parameters
such as timber volume, biomass, tree mortality rates, species
abundances, and species distributions based on sampling plots
within the forest [1]. Though standard field survey plots are
less than 1 hectare in area, manual sampling is labor intensive
and therefore the number of plots inventoried is limited by
available people-power. Limited sampling ability hampers high
precision estimates of forest parameters at scale.

Since the 1970’s remote sensed data products have become
readily available [2]. RS can be done from satellites or aerial
platforms such as piloted aircraft or uncrewed aerial vehicles
(UAVs). RS data products can include optical images such as
RGB and hyperspectral (HS), as well as LiDAR point clouds
and synthetic aperture radar (SAR) returns. With the help of
automation, these data products are used for forest monitoring
at scales of 10’s to 1000’s of hectares [3], [4].

Recognizing species from RS data products is termed
species classification. Accurate species classification is par-
ticularly important for measuring species abundances, species
distributions, and biodiversity; non-species specific metrics
such as above ground biomass and basal area may be estimated
more accurately when species is taken into account [5].

Methods for classifying species based on LiDAR, HS images,
RGB images, SAR returns and almost every combination of
the aforementioned modalities have been developed [6]. In this
work we focus on optical imagery.

Early methods of species classification used parametric
statistical models such as linear discriminant analysis (LDA)
and quadratic discriminant analysis (QDA) or methods like
maximum likelihood estimation (MLE) [6]. Most modern
methods use decision tree classifiers or neural models on Li-
DAR, RGB, or HS data [6]–[8], with most studies suggesting
that using HS data gives superior performance.

Neural models have several drawbacks. Most prominently,
they typically require large training sets, can be computation-
ally intensive to train, and have low explainability [9], [10].
Guidelines for training deep neural models suggest 1,000’s of
instances of each class for optimal performance [10], [11].
Unfortunately, datasets are built by sampling from the real
world and ecological systems like forests typically contain a
few common species and many rare species [12]. Trees that
are rare in a forest are likely to be rare within the dataset.
This means that neural models for species classification are
typically poor at recognizing rare species. Depending on
the application, a species’ frequency within the dataset may
or may not positively correlate with the importance of its
recognition to the user.

One approach to reducing dataset size requirements and
improving explainability is neuro-symbolics (NS). NS archi-
tectures are a combination of neural and symbolic models [13].
Symbolic models use logical formalisms or distance metrics
to make inferences. Domain knowledge in symbolic models is
usually represented as a rule, an equation, a knowledge base,
or knowledge graph. First order logic (FOL) and propositional
logic are two commonly used formalisms for creating models
where inferences are made by reasoning over dataset instances
with a set of rules [14], [15].

While neural models are good at learning from labeled
examples, the “reasoning” behind their inferences is generally
unclear to humans. In comparison, models that make infer-
ences based on symbolic representations of data tend to have
higher explainability, but may learn poorly from examples. The
idea behind NS is that by combining the two approaches, we
can capture the best of both worlds: the high explainability of
symbolic models with the learning capacity of neural models.
Studies have also shown that NS models are better able to
learn in data constrained settings compared to purely symbolic
models [16]. In this work, we leverage this property to improve
classification on underrepresented species.

The use of NS models for species classification is not new to
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ecology. [17] combines a convolutional neural network (CNN)
with a knowledge graph and text embeddings to classify
bird species from RGB images. [18] combines a CNN with
text embeddings to classify tree species from RGB images.
However, the frameworks and methods used by [17] and [18]
are not easily applied to other models and require the user to
find auxiliary data in the form of text or knowledge graphs
to embed for semantic reasoning. Furthermore, there is no ad
hoc way to judge the amount and relevance of auxiliary data
needed for best model performance.

To address these shortcomings we propose using a modified
version of DeepCTRL, a NS framework created by Google
that uses a simplified form of semantic regularization [19].
DeepCTRL allows the user to create rules as equations that
incorporate domain knowledge into a neural network through
its loss function. Our method gives a simple way for users to
build NS and thus explainability into their models.

II. DATA

The dataset for our study comes from the Tea Kettle Exper-
imental Forest (TEAK). TEAK is one of 81 sites monitored by
the National Ecological Observatory Network (NEON). TEAK
is a mixed coniferous forest in the Sierra National Forest
east of Fresno California at 36°58’ N latitude and 119°1’ W
longitude. Its elevation is 2,086 - 2,734 m. Its mean annual
precipitation is 1,222.5 mm and its mean temperature is 8°C.
The mean canopy height is 35 m. The dominant species are
red fir, white fir, Jeffrey pine, and lodgepole pine [20], [21].

NEON annually surveys monitored forests from an airborne
observation platform that is instrumented with RGB and
hyperspectral cameras and both discrete and full-waveform
LiDAR. Flights occur annually over monitored sites when the
ecosystem is in a period of peak greenness. Data is collected
from an altitude of 1,000 m. The resolution of RGB and
hyperspectral data products are 0.1 m and 1 m respectively
[22].

The dataset we use was curated for [23]. It consists of HS
and RGB rasters, along with a co-registered canopy height
model (CHM). Data comes from a 2017 NEON survey of
TEAK along with a field sample conducted by Fricker et
al. in September of 2017. We supplement the dataset with
a digital elevation model (DEM) for TEAK created by the US
Geological Survey [24]–[27]. See [23] for more information
on dataset curation. The dataset is available for download at
https://zenodo.org/record/3468720.

The curated dataset has 8 classes, white fir (Abies con-
color), red fir (Abies magnifica), incense cedar (Calocedrus
decurrens), Jeffrey pine (Pinus jeffreyi), sugar pine (Pinus
lambertiana), black oak, (Quercus kelloggii), lodgepole pine
(Pinus contorta), and “dead”. Standing dead trees of any
species are assigned this label. Table I gives the number of
trees in each class and its abbreviation.

Using the CHM and DEM we identified differences in the
structural traits and topographic preferences of the species
within this dataset to be used as the foundation for symbolic
rules. The left plot in Fig. 1 shows the distribution of each
species’ height as represented by the dataset. It can be seen

TABLE I
THE NUMBER OF TREES AND PIXEL PATCHES IN EACH CLASS.

Code Species Abbreviation Tree Count Patch Count
0 white fir abco 119 2,908
1 red fir abma 47 851
2 incense cedar cade 66 1,853
3 Jeffrey pine pije 164 4,384
4 sugar pine pila 68 2,740
5 black oak quke 18 111
6 lodgepole pine pico 62 895
7 any species dead 169 3,520

Total — 713 17,262

that at this site black oak (quke) and lodgepole pine (pico) are
shorter compared to other species in the dataset and distinct
from each other in overall height distribution. Therefore we
use maximum crown heights from the training data as the
foundation for a pair of rules demonstrating how to leverage
the structural traits of species (Rules 1 and 2). The right
plot in Fig. 1 gives the distribution of each species’ elevation
range within the dataset. A number of species show distinctive
elevational distributions at the site. We chose the minimum
elevation for red firs (abma) as the basis for a rule demon-
strating how to leverage topographic distribution limits (Rule
3). Finally, we also demonstrate the use of a rule based only
on the imagery itself to differentiate between living and dead
trees using the green leaf index (GLI; Rule 4) [28].

Fig. 1. The left plot shows distribution of species’ crown height. The right
plot shows distribution of species’ elevation. The red lines indicate sample
means.

III. METHODOLOGY

For classification we use the model from [23], an 8 layer
fully-convolutional CNN. The model architecture is shown in
Fig. 2.

We combine the Fricker CNN with the DeepCTRL frame-
work. DeepCTRL is a model agnostic NS framework that is
easy to use. The framework is composed of a task encoder,
a rule encoder, and a decision block (see Fig. 3). The loss
function is a linear combination of task loss and rule loss,
where task loss is the loss contributed by the model’s failure
to predict a label and the rule loss is contributed from the
model’s failure to follow a rule.
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Fig. 2. CNN architecture.

Following the protocol from [23] we create train, validation,
and test sets. Using stratified sampling, the dataset is composed
of 15 x 15 pixel patches sampled from the set of tree crowns.
Again following the protocol in [23], we use 10 fold cross
validation and report the mean of the macro-F1 score for each
fold and the mean F1 score for the class on which each rule
is based.

For our study we focus on RGB images. While it is possible
to apply our approach to HS images, RGB imagery is much
more widely available and the model we used made few
mistakes that are correctable with domain knowledge when
trained on HS images.

Fig. 3. DeepCTRL architecture.

We use DeepCTRL as described in [29] with some modifi-
cations. Because DeepCTRL is model agnostic it can be made
to work with any type of input. In our case, the input is a 15
x 15 patch of an RGB image created from the aforementioned
NEON geotiffs. We concatenate the image with auxiliary data,
a 15 x 15 patch of a co-registered CHM or DEM raster. In
the case of the DEM, the raster is scaled by one-tenth so its
values are of the same order as the values of the RGB geotiff.

After removing the final output stage, we use the CNN from
the Fricker model as both the task and rule encoder. zd and zr
are the output of convolution layer 5 (shown in Fig. 2) from
the task and rule encoder respectively. The decision block is
composed of a convolutional layer with an input dimension of
256 and an output dimension of 8. Finally, the output of the
decision block is passed through a softmax layer.

In the original design, during training, zd and zr are scaled
by the constants α and 1 − α. α is sampled from a β-
distribution. This allows the model to learn varying degrees
of rule enforcement during training. At inference, the user can
vary the value of α depending on the strength of their belief
in how much the rule is followed in the test set. We obtained
better results by fixing α at 0.4 for both training and inference.
By fixing α, the model loses its ability to alter how strongly
the rule is adhered to post training, but gains in performance.
A pseudocode description of the algorithm is given in [29].

We use the following notation. Dataset D consists of tuples
of inputs from set X and labels from set Y where X is the
set of pixel patches and Y is the set of their species labels:
D = {(x1,y1), (x2,y2), ..., (xn,yn)}. Each label yi is a an
8-way 1-hot encoding. Each model prediction, ŷ, is an 8-way
probability simplex.

The loss function is composed of the linear combination of
two simpler loss functions, Lrule and Ltask. Ltask is the cross
entropy loss between y and ŷ as shown in (1).

LCE(y, ŷ) (1)

We define Lrule as the cross-entropy loss between a func-
tion, ϕ, and ŷ where x is a training instance and

ϕ : x → u ∈ (0, 1). (2)

Lrule then becomes

LCE(ϕ(x), ŷk) · 1(ŷk = +) (3)

where 1(·) is an indicator function, ŷk is k-th element of ŷ,
and the + indicates the k-th class is predicted.

We define ϕ as the composition of two functions. An inner
function, f where

f : x → t ∈ R (4)

Function f quantizes how much x is in compliance with its
respective rule. σ is a differentiable function that maps f(x)
to a value ∈ [0, 1]. We use the sigmoid function:

σ(t) =
1

1 + exp(−t)
. (5)

For each rule, there is a threshold that we represent as a
translation of the sigmoid along the x-axis. Depending on the
domain knowledge, the presence or absence of the species of
interest may only occur above or below the threshold. The
function used for f varies with each rule. ϕ then becomes the
composition of σ and f ,

ϕ = σ ◦ f. (6)

For rules 1-3 the internal function, f , takes the maximum
value of the auxiliary data layer. For rule 4, which uses no
auxiliary data, f calculates the GLI of x as

gli(x) =
2 ·G−R−B

2 ·G+R+B
(7)

where R, G, B are the pixel values in each RGB channel.
The equations for each rule are given in the next section.

Rules 1 - 3 come from examining presence - absence
cut-offs in the CHM and DEM distributions. Rule 4 comes
from examining errors in the validation set confusion matrix
referenced against GLI.
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IV. EXPERIMENTS

A. Experiment Setup

Following the protocol from [23], stratified sampling was
used to create 10 folds of 15 x 15 pixel patches from the
RGB, CHM, and DEM rasters. We created 4 rules. In natural
language, rule 1 states that if the height of a tree crown is
over 46 m it is unlikely to be a black oak. We write this
mathematically as

ϕ1(x) =
1

1 + exp(−(1× 103(−maxCHM (x) + 46.0)))
.

(8)
Rule 2 states that trees taller than 53.2 m are unlikely to be

lodgepole pine. We write rule 2 mathematically as

ϕ2(x) =
1

1 + exp(−(1× 103(−maxCHM (x) + 53.2)))
.

(9)
Rule 3 states that trees growing at an elevation less than

2072 m are unlikely to be red fir. Rule 3 is written mathemat-
ically as

ϕ3(x) =
1

1 + exp(−(−(1× 103(−maxDEM (x) + 2072))))
.

(10)
Rule 4 states that trees with a GLI less than 0.1 are unlikely

to be incense cedar. Rule 4 is written mathematically as

ϕ4(x) =
1

1 + exp(−(−(1× 103(−gli(x) + 0.1))))
. (11)

For rules 1 and 2 the RGB raster is augmented with the
CHM by adding the CHM as a 4th channel. Similarly, for
rule 3 the DEM is added as the 4th channel. These channels
are also available to the baseline neural model when making
comparisons. We use the patch classifier from [23] trained
on the RGB image with auxiliary data as a baseline. Both
baseline and experiment models are trained for 5 epochs using
the Adam optimizer with L2 regularization and a learning rate
of 1×10−4. Finally, we perform an ablation study to determine
how much each rule contributes to the change in model
performance. For each rule we set a random threshold value for
the CHM, DEM, or GLI between the minimum and maximum
values present in the training dataset. The randomized values
are selected from a uniform distribution. We repeat the ablation
study 30 times for each rule and average the results as the
difference between the experimental model with the threshold
used in its respective rule and the experimental model with
the randomized threshold.

B. Results and Analysis

Compared to the baseline, the rules had a mostly positive
effect on performance. Fig. 4 shows that rules 1 and 2
improved both the overall F1 and the rule’s class F1, while
rule 3 caused a reduction in the overall F1 but still improved
its class F1. Differences are quantified as F1-points, where a
0.01 change in F1 is a change of 1 F1-point. Rule 1 improved

overall F1 by 0.63 F1-points. The rule’s class F1 was improved
by 8.3 F1-points. For rule 2 overall F1 and class F1 improved
by 0.43 and 1.84 F1-points respectively. Rule 3 worsened the
class F1 by 0.97 F1-points but still increased class F1 by 0.6
F1-points. Rule 4 improved F1 by 0.59 F1-points and class F1
by 1.1 F1-points.

Fig. 4. The change in macro-F1 and the class specific F1 for each rule. Rule
1 had the biggest impact on performance.

Fig. 5 shows the changes in the confusion matrices between
the baseline model and the experiment models for each rule.
The recall columns are normalized by row and the precision
columns are normalized by column. For rule 1 both precision
and recall are improved. For class 5, black oaks, the precision
is improved by 3 points and the recall by 12 points. The rule
has the largest negative impact on the precision of class 1,
which is reduced by 5 points.

Rule 2, which was designed to affect class 6, improves both
precision and recall. Class precision improves by 2 points and
class recall by 5 points. Rule 2 has the largest negative impact
on the precision of class 1, reducing it by 4 points. Rule 2
also has a positive effect on class 5, improving its recall by
11 points.

Rule 3, which was written around class 1, improves class
1’s precision and recall by 1 and 3 points respectively. It has
a negative impact on the precision and recall of class 5. This
is contrary to rules 1 and 2 which both improve class 5.

Fig. 5. The change in the confusion matrices for baseline and experiment
models normalized by column for precision and row for recall.
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The results of the ablation study are shown in Fig. 6. The
results suggest that the influence of domain knowledge is
strongest for rule 1, which is likely due to the rarity of black
oak in the dataset. Nevertheless, each species for which a
rule was created was impacted by the inclusion of domain
knowledge. As in [29] the study suggests that there is a slight
boost in performance when the model is placed in a NS
framework and that this boost is independent of additional
domain knowledge.

Fig. 6. The average difference between F1 and F1 class when using correct
thresholds versus randomized thresholds. Error bars show 95% confidence
intervals (µ± CI; n=30).

V. CONCLUSION

In this work we show that domain knowledge can be
encoded through a simple function and then injected into a
species classification neural network. This simple method is
more accessible than other NS frameworks that use formalisms
such as FOL, knowledge bases, or text embeddings. Our
results show that model performance on rare species can
be significantly improved through the inclusion of domain
knowledge using our method, which simply applies a slight
modification to the original model architecture and adds an
additional term to the loss function.
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