
P
os
te
d
on

24
D
ec

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
17
70
45
6.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

GHAZI: An Open-Source ASIC Implementation of RISC-V based

SoC

Zain Rizwan Khan 1, Wajeh ul Hasan 2, Zeeshan Rafique 2, Ali Ahmed Ansari 2, and Syed
Roomi Naqvi 2

1UIT University
2Affiliation not available

October 30, 2023

Abstract

This paper presents a methodology of adapting complete open-source digital tooling, ISA, IPs and manufacture-able PDKs to

tapeout a minimalist RISC-V based SoC.

1

1

GHAZI: An Open-Source ASIC Implementation of
RISC-V based SoC

Zain Rizwan Khan, Wajeh ul Hasan, Zeeshan Rafique, Ali Ahmed Ansari, Syed Roomi Naqvi

Abstract—Due to the closed source, expensive nature of digital
design tools and licensing cost of System on Chip (SoC) IPs
for ASIC, the hardware industry lacks innovation and design
reuse. In the last few years, the hardware industry is seeing
open-source adaptions, just like the software ecosystem. This
paper presents a methodology of adapting complete open-source
digital tooling, ISA, IPs and manufacture-able PDKs to tapeout a
minimalist RISC-V based SoC named GHAZI. The methodology
uses an RV32IMC core and an SoC reference design from
OpenTitan (Ibex core and peripherals respectively) at base,
adding instruction and data memories, converting the design
into verilog for the RTL to GDSII flow with opensource tools,
alongside an FPGA implementation for Xilinx Arty-7 FPGA,
finally generating the GDSII layout using OpenLane on Skywater
130nm PDK. Verification was done on all stages, i.e. RTL,
gate level simulations and LVS, before integrating GHAZI-SoC
with Caravel, the template SoC design for the Open multi-
process wafer (Open-MPW) shuttle. The GHAZI-SoC design
works on 1.8V DC power signal and a switching frequency of
12.5MHz. With over 90,000 physical cells and a die area of
6.9mm2, it utilized a place and route flow for the physical design
and implemented it using a high density library of PDK. The
fabrication was fully sponsored by Google with the Open-MPW
shuttle from Efabless and was done at Skywater Foundries. To the
best of our knowledge, this is the first effort of utilizing Open-
source technologies to tape-out a design containing OpenTitan
IPs (including the Ibex core). The generated GDSII, netlist and
RTL files of the SoC, along with the relevant documentation, are
present in a GitHub repository for public access.

Index Terms—RISC-V, OpenTitan, FPGA, SoC Design, ASIC,
Opensource

I. INTRODUCTION

THE open-source movement and commercial entities have
co-existed since more than thirty years ago. Nowadays,

the whole software development ecosystem is based on this
movement, which was huge, because, from the very start, way
all those years back, the public started seeing projects such
as Linux, the core element ‘kernel’ of a truly open-source
operating system[15], followed by the development of Apache.
Most of the success of the open-source comes from rapid
adoption as well as the ability to build on top of the existing
stack, which has resulted in a wide range of robust, stable
and flexible products. Commercially providing complementary
services and products that are not supplied efficiently by the
open-source community further becomes a source of learning
for the community itself and the ecosystem therefore keeps
evolving.

Now the question arises if a similar development ecosystem
for open-source hardware works in the same way as its suc-
cessor does for open-source software[4]. This would counter
the current high design time for hardware development but

may also take a great toll on the quality of designs, especially
on the quality of those designs that would turn up on a
high volume System on Chip. Also the vendors of different
EDA tools as well as FPGA and ASIC vendors and the
silicon foundries must equally participate in the development
of the open-source hardware[27]. There is a need for not only
the continuous improvement of digital designs, but also to
ensure that the software built on top of the evolving hardware
can be backwards compatible or that it should at least not
require much change with every release of a digital design
or hardware specification. This does lead to a transparent
verification flow though, where hardware developers using an
open-source intellectual property (IP) can reproduce results at
their end too.

An important enabler of the path leading to open-source
hardware ecosystems is, perhaps, the RISC-V instruction set
architecture[35], which is a standardized open-source ISA and
gives freedom to a hardware designer to not only use it but to
implement it however they want. The implementation can be in
the Verilog hardware description format, which is a subset of
SystemVerilog[12], and is itself an open-source industry stan-
dard format. The semiconductor industry is headed towards
an era where it will not be driven by a single product in the
next generation of computers. Instead, a wide range of new
applications are being developed that are fueled by the advent
of foundations such as the free and open-source foundations
(FOSSi)[34] and the open-source ISA itself, which demanded
a fundamental change in custom silicon design. Such changes
often come as tidal waves[21] that periodically increase the
growth of semiconductor industry. For example, RISC-V ar-
chitecture based flash controllers are being developed and used
by Western Digital, out of which, the SweRV family of RISC-
V cores[18] have also been released for anyone to adopt it in
their design as well. Then there is Ibex, a small and efficient,
32-bit, in-order RISC-V core with a two stage pipeline that
implements the RV32IMC instruction set[35]. It is written
in SystemVerilog (same as the SweRV cores) and is a low-
performance, area-optimized core[29] specifically designed for
Internet-Of-Things platforms. It started out as the zero-riscy
implementation[9] by the PULP platform and is now managed
by lowRISC[17].

The core needs some sort of peripherals, to communicate
with devices outside the chip area, which are connected with
the core via a system interconnect bus. These components,
along with memories, an optional debug module, PLL and
pads control logic complete the design of a System-on-Chip
(SoC). To implement such an SoC on an application-specific
integrated circuit (ASIC) the register-transfer level design of

2

the SoC has to be converted to a graphic design system
(GDSII) stream format, which is then fabricated into the ASIC
chip. This is called taping out a design. However, If anyone
from the open-source community wants to tape out their
design, not only would they need an open-source electronic
design automation (EDA) tool[13], but would also require the
availability of a free and production capable process design kit
(PDK) from the same foundry that would fabricate the final
chip. This is because until now, every EDA tool used to require
access to proprietary information in a PDK[6].

For years, this was a bottleneck; the RTL could be writ-
ten/reused and open-source EDA tools were also available.
Nevertheless, the community never saw an open-source PDK.
Last year was a huge breakthrough[19] when Google, in
collaboration with Efabless, announced an open-source 130nm
PDK from SkyWater. The open-source sky130A PDK includes
the following features:

• Support for internal 1.8V with 5V I/Os [operable at 2.5V]
• 6 layers [1 level of interconnect, 5 levels of metal]
• Is inductor-capable
• Supports 10V regulated supply
• Includes SONOS shrunken cell
• Optional MiM capacitors

The sky130A is, in fact, a derived open-source release of the
original sky130 process node and PDK which is believed to be
usable for doing test chips and initial design verification[31].
To take a design all the way to GDSII using such a PDK for
working with various open source tools EDA tools, it is neces-
sary to make sure that the provided files and directories adhere
to the known open standard formats[5]. These are library
exchange format (LEF) files, SPICE and behavioral (Verilog)
models, liberty files, etc. Netgen, for example performs the

layout versus schematic (LVS) check which is a comparison
of either a SPICE model[20] extracted from a layout, and a
verilog gate-level netlist based on the behavioral model of all
the cells.

A. Using OpenLane

Though one can have a doubt on the reliability of open-
source tools and how good they are in meeting the dif-
ferent physical requirements for taping out an ASIC chip,
efabless themselves taped out their striVe family of SoCs
using OpenLane[24], an RTL to GDS flow based upon the
OpenROAD project[25][30]. The tool can now be used to
assist any design, for any process technology, in the end-to-
end silicon compilation[2]. The flow performs all the steps
for an ASIC implementation. The primary input to the flow is
the RTL design written in Verilog/SystemVerilog. The flow is
the explicit combination of EDA tools to achieve the design
of an integrated circuit[1]. The steps can be as simple as
the conversion of an abstract specification of desired circuit
behavior into a design implementation in terms of logic gates
(synthesis), assigning exact locations of those logic gates
within the chip’s core area (floor-plan and placement) and
adding wires needed to properly connect all those logic gates
(routing) while obeying all design rules for the IC. These
rules are often referred to as constraints and analysis flows
are performed amidst to ensure design closure, that is, with
every step, the expanding enumeration of design constraints
and objectives are met. The aim of this aggregation was to
make an automated RTL to GDS flow, as shown in figure
1, where the tool would automatically pass the output of the
previous stage to the succeeding step.

Fig. 1: Automatic place and route flow

3

Apart from the usual automatic place and route (APR) flow,
we use the popular Magic VLSI Layout tool[5][26] within
OpenLane for the sub-processes in table I:

Dummy fill insertion Density checks and fill patterns

GDSII stream out Mask-level GDS data file,
LEF views as hardened macro cells

Design rule checking (DRC) Physical verification
SPICE netlist export For LVS checks

Antenna violation handling To place (and replace) both dummy and
real antenna diode cells

TABLE I: Magic tool usage

For GHAZI SoC, we decided to go with OpenTitan[23],
using part of its reference design, and the Ibex RISC-V core
sub-project. OpenTitan is the first open-source initiative to
create a transparent, high-quality reference design for silicon
root of trust (RoT) chips, as well as integration guidelines.
For the open-source community, this means that they can have
improved, pre-verified intellectual properties (IPs) and tapeout
readiness[28]. Yosys is a framework for RTL synthesis tools
that is free/libre and open-source[37]. It presently supports
Verilog-2005 extensively and includes a basic set of synthesis
techniques for a variety of applications. Every step in the IC
design (such as static timing analysis, placement, routing) is
already complex and, time and again, establishes its own field
of study. The concept phase started out with simulations on the
reference design to verify its functionality, performing plenty
of regression testing. We even ported the design to an FPGA,
in a repetitive manner, upon addition of each feature from the
basic design specification in an agile approach.

Our contributions to the basic reference design were to use
D flip-flop based memories and 6T cell based memories com-
piled using OpenRAM[10] in two separate implementations.
We modified the clock gating according to the cells available
from the PDK that we’re using and added a state machine
that would wait for a host computer to load a program into
the memory over a serial UART channel (separate from the
peripheral UART). Also, we integrated it into Caravel[3], a
template SoC with on-chip resources and control over the pad-
management for GHAZI SoC as well as a chip logic analyzer
(LA). We generate the GDS from the netlist using Skywater’s
free and open-source 130nm production PDK. As per the
catalogue, this was the only chip taped out in 130nm PDK
using lowRISC IP and was among the 45 designs[8] aboard
the open multi-process wafer (Open-MPW) shuttle, also by
Google and Efabless[22], that were sent to the Skywater
foundry for fabrication.

II. TOOLS USED

A. SystemVerilog

All of the RTL was written in SystemVerilog. This logic
design language (or Hardware Definition Language) has mod-
els for RTL that are drastically different from one another
and, if care isn’t taken, this can lead to code conflicts and
code review latency. Since SystemVerilog is also used for
verification, both synthesizable and test-bench code can be
written which should have a clear distinct line in between

and can not be mixed. Since most of the IP we used came
from lowRISC, it was their coding style guide[16] that was
kept in mind when writing logic for the top level wrapper
and memory interfaces. This includes using the begin and
end statement, proper indentation and spaces, following the
naming conventions for port names of a module, etc. For
example, listing 1 shows the definition of the ICCM controller
(the state machine that loads the program into the instruction
memory over UART), which will be discussed further in the
methodology section of this paper.

// input and output signals should have '_i'
// and '_o' appended after signal name,
// respectively for input and output and
// '_ni' and '_no' for inverted (active low)
module iccm_controller (

// Clock and reset
input clk_i,
input rst_ni,

// Input from UART Rx
input rx_dv_i,
input [7:0] rx_byte_i,

// Memory interface
output logic we_o,
output logic [13:0] addr_o,
output logic [31:0] wdata_o,

// Reset for system
output logic reset_o

);
// ...
endmodule

Listing 1: Example port declaration style

B. sv2v: SystemVerilog to Verilog Conversion Tool

GHAZI SoC is a project written in SystemVerilog, but
currently Yosys only supports a small subset of SystemVerilog
and Icarus Verilog[11] supports verilog only. The sv2v tool[32]
is built over a preprocessor and uses abstract syntax tree (AST)
representation to make conversion methods more standardised
and straightforward. To run our design on OpenLane, and also
to be able to verify it inside Caravel, we had to make sure
our design was supported by both Yosys and Icarus Verilog
for synthesis and simulation purposes respectively. We had
to convert our design from SystemVerilog to Verilog using
the sv2v tool. In the implementation section, there are details
though, on the changes we had to make in the converted
RTL afterwards, to make it finally work on Yosys. Running
simulations on Icarus Verilog consequently proved that the
changes we made along with the whole conversation were
functionally verifiable.

C. Icarus Verilog Simulator

As with openlane being open-source, the simulator that we
used to validate and test our RTL on was Icarus Verilog, which
is another open-source tool. When simulating through Icarus

4

Fig. 2: Top level view of system

Verilog, an internal netlist is generated hence it can double as
a synthesis tool. We have only used it to compile the converted
Verilog source code via its intermediate form called the “vvp
assembly”. In this form, the include and define directives have
been implemented.

The design netlist along with this intermediate form is a
result of an elaboration where the references and instantiations
are resolved and expanded respectively[36][11]. The code is
combinationally reduced and, is optimized for net-effect zero
circuitry and constant propagation. This intermediate form can
be executed, successfully testing the functional correctness of
the RTL with any desired inputs as injected from the test-
bench.

D. Caravel Test Harness

The Caravel chip by Efabless, as mentioned before, is an
ASIC implementation, that is based off on the famous full
chip PicoSoC reference design[7] of the PicoRV32 RISC-V
core. It uses a version of the CPU with the Wishbone Master
interface[33], the other versions being a standalone one and
one with an AXI4-Lite interface. It comes with the RV32IMC
2-cycle core itself as well as the firmware/software, using
GCC in a 32-bit RISC-V cross-compiler to hex file target.
The implementation consists of three areas. The first one is a
management area that has a flash memory controller over an
SPI interface, a Wishbone bus, peripherals and two interfaces
over to the user area. The user area is the largest with 10mm2
of die area and access to I/O pads shared with the management
area. The last one is a storage area, which has a 1-kilobyte
scratchpad SRAM memory and is accessible to the PicoRV32
only.

The two interfaces that come with the management area are
the on chip LA for reading and controlling signals internal to
the design in the user area, and the Wishbone slave interfaces
that let’s the design in the user area act a peripheral to the
PiocRV32 core. The Wishbone interface has clock and reset
signals which the user area can use regardless of the design
within needing the rest of the interface. The clock is controlled
by the PLL contained within a module that acts as an SPI slave
interface accessible from a remote host. Its purpose is to give
control over certain system values and ”housekeeping” tasks,
including adjusting the clock speed of the CPU, and can work
even when the CPU is in full reset.

E. RISC-V GNU C Compiler Toolchain

A tool chain that contains a compiler, an assembler, a linker
and a disassembler, that allows the developer to compile RISC-
V assembly according to the implemented hardware. To use
the GCC compiler suite, we first write a linker script that
is compatible with our SoC’s memory map. The C program
that we use to test our SoC with, contains a startup code (the
instructions that are executed first). Our C program is then
compiled and linked with the above mentioned linker script,
to generate the binary. and eventually the hex file that gets
loaded in the emulated memory in our RTL.

III. METHODOLOGY

Starting with a bottom up approach, the most basic elements
of our design were a 32-bit in-order RISC-V core with a
2-stage pipeline that implemented the RV32IMC instruction
set architecture, an interconnect bus and separate memories
for instructions and data storage. Extending the design meant
adding peripherals to the interconnect such as a timer, an

5

interrupt controller, 32 GPIO and a 2 pin full duplex UART.
The design of the whole SoC is shown in figure 2.

The design specification for GHAZI SoC also included
a top level module that included logic for multiplexing the
input/output (I/O) to the SoC and mapping them to the 38
management controlled pads as shown in figure 3.

Fig. 3: GHAZI SoC inside Caravel

The output enables of the I/O were also sent to the pad
controller as well as, being internal signals to the design,
mapped to some of the logic analyzer bits. For clocking
the whole design, we had two options, one of which was a
user clock signal and the other one being the clock signal in
the Wishbone interface. The reset signal that came with the
Wishbone interface was common with the reset to the whole
chip, and was used to initially reset the system (including the
PicoRV32). Then, with our design being integrated in such a
way, the PicoRV32 can act as a reset manager for our design
using the chip LA once it has initialized the pads.

One thing that can be observed in our design is that neither
memories that we used returns a valid signal when it fetches
data out of its cell array to be read by the CPU. A valid signal
is used by the core to know that the data on the write bus is
correct and it can be saved in the register. For that, we had to
write our own logic, shown in Listing 2, for valid that assumes
that the data on the bus is correct, and can assert and de-assert
the valid signal with each cycle of request from the CPU.

A. Core Microarchitecture - BrqRV-EB0

The BrqRV-EB0 core here is in a very basic sense, Ibex
with its pipe-lining configured to be an experimental 3-stage,
as shown in figure 4, instead of originally having just a fetch
stage and a decode and execute stage. It also has instruction

and data memory interfaces modified for the interconnect bus
which support bus width transaction sizes as well as masked
write operations (byte and 2B).

The fetch stage has a pre-fetch buffer, which includes
a FIFO using a feed-through path, to make an instruction
available on the output, as soon as it is stored in the FIFO,
when empty. Ibex had another experimental feature which
was the branch prediction but we decided to keep that off
for this version of GHAZI. Also we tried between three
different implementations of the multiply-divide unit (although
its the multiply operations that varies across them and all three
implementations uses the long division algorithm). The single
cycle multiplier straight away led to placement overlapping
in the APR stages discussed later on in the implementation
section. The fast multi-cycle multiplier took three to four
cycles whereas the slow multiplier may have took up to 33
cycles but with it’s compute additions being done in the
arithmetic logic unit (ALU). So we went for the fast multiplier
which synthesized and went through place and route along
with the design without any issues.

always @(posedge wb_clk_i) begin
if (!rst_ni) begin

ram_main_instr_rvalid <= 1'b0;
end else if (ram_main_instr_we

|| ram_prog_instr_we) begin
ram_main_instr_rvalid <= 1'b0;

end else begin
ram_main_instr_rvalid

<= ram_main_instr_req;
end

end

Listing 2: Logic for valid data signal in memory operations

B. Interconnect Bus

This interconnect bus uses the TileLink Uncached Lite (TL-
UL) protocol and hence will be referred to as the TL-UL
interconnect throughout the rest of this paper. The official
TileLink is a 5-channel bus with features such as point-to-point
split transactions, support for multiple hosts and devices, etc.
When integrating multiple IPs having different functionalities
on a single chip, the design process of the SoC becomes very

Fig. 4: CPU Core Microarchitecture

6

complex and controlling the area becomes a key. Hence we
used the Uncached Lite version of TileLink, which follows on
these features with a 2-channel bus and the added advantage
of having a low pin-count overhead.

The design referenced in this paper has a total of 3 hosts,
and 7 devices which are arranged in the following manner:

1) The instruction memory interface of the core having
access to the instruction memory and the debug memory

2) The data memory interface having access to the data
memory, the debug memory and peripherals (Timer,
PLIC, GPIO, UART)

3) The system bus access for debug which can connect
to the instruction and data memories and all the other
peripherals

C. Memories: D Flip-Flop Based

Our initial goal was to use the 6T cell based SRAM
model compiled using the OpenRAM memory compiler. This
compiler uses a configuration file written in Python to generate
files related to the APR (GDSII, verilog behavioral model,
SPICE, Liberty, LEF, etc.). We had to place OpenRAM as a
macro in our design but in the initial APR of our design,
the tool was having trouble with that which resulted in a
lot of routing violations. Hence we decided to use flip-flop
based memory cells that we synthesized along with our design.
Though these memories did end up taking more space on the
chip than the OpenRAM generated ones, as we can see in
figure 5, the difference between the size of a cell from each
memory.

D. ICCM Controller

Finally, for loading the program onto the ICCM, we have
another UART receiver and a controller that consecutively
takes 4 bytes from the receiver and writes to the ICCM.
The controller implements a 4-state finite state machine. The
UART that received the instructions uses the same receiver pin
as the peripheral UART. The baud rate for the UART is set
using the CLKS PER BIT value which can be calculated by
dividing the frequency of the clock with the desired baud rate.

This CLKS PER BIT is also interfaced at the chip LA and
can be set at the very start of the execution flow right after
the PicoRV32 has initialized the I/O pads while the design in
the user area is in reset. And as we know, on one of the I/O
pads is the UART receiver itself hence the instructions can be
loaded as soon as this reset is de-asserted. The last instruction,
0x00000FFF, is used for signalling the end of the program and
does not need to be loaded into the instruction memory. This
is shown in figure 6.

Fig. 6: FSM for loading program

E. Platform Level Interrupt Controller

Three peripherals (Timer, GPIO, UART) in our SoC can
be configured to generate interrupt events under certain con-
ditions. The interrupts can be edge triggered, level triggered,
etc. To manage these interrupt events, the module that we used
implements the RISC-V platform level interrupt controller. All
the interrupts are gathered in a single interrupt vector and fed
to the PLIC. Based on priorities, our core receives one interrupt
line from PLIC which is then queried for the ID of the bit in
the interrupt vector indicating which peripheral triggered the
event. The communication between the PLIC and CPU core
is also done using the system bus.

(a) Standard 6T cell 6.8um x 9.2um

(b) D Flip Flop Based RAM cell

Fig. 5: Comparison of memory cells

7

F. RISC-V Debug
Back to the top-level view of the system, we included a

debug module in the design that can put a request to reset the
system (for program debugging and setting up breakpoints)
and also has access to the system bus. It has a 5-pin joint
test action group (JTAG) interface that can be used for testing
and system debug. The pin names are 1) Test Data In (TDI)
2) Test Data Out (TDO) 3) Test Clock (TCK) 4) Test Mode
Select (TMS) 5) Test Reset (TRST) and are mapped to the first
five pads of the shared GPIO as shown in 3. For debugging
the program in actual though, an external translator hardware
is also required which would take the remote bit bang sent
from OpenOCD, decode it and send it over JTAG. OpenOCD
is used for implementing the remote GNU debugger (GDB)
protocol.

Also shown in figure 3, are two signals, an input reset to the
debug module (which is separate from the system reset) and an
output request to reset the system, similar to the debug request
that is sent to the core. Both these signals are mapped to an
output pin and to an input pin of the chip LA respectively.
This reset management was much needed as we not only had
the external hard reset, but an internal reset request pin from
the debug module that could be read (also using the chip LA)
and interpreted to assert the reset to the design.

IV. DESIGN ANALYSIS

To prove our SoC being ready to enter the tapeout stage,
we had to make sure that it was a verifiable IP and that it had
been synthesized and implemented first to run on a silicon
testbench, that is, converted to a bitstream and uploaded on
a field-programmable gate array (FPGA). Initial verification
of GHAZI SoC SystemVerilog RTL converted to Verilog, was
done by simulating it on Icarus Verilog. All the test benches
were self-checking in nature but also generated waveforms in
a value change dump (VCD) format. The VCD traces can then
be viewed to further debug the design after the simulation has
completed.

A. Gate-level Simulations
We had to simulate the design of GHAZI SoC furthermore

upon being converted to a representation containing wires and
gates. The netlist, that is generated multiple times in an APR
flow, which will be discussed in the implementation section,
may skip some logic for functionality or even whole modules
when running it through various optimizations. We verified
the functionality as a whole, keeping in mind the following
things:

1) Debugging a flattened netlist: The generated netlist in
OpenLane is a version of the design where all the modules
in the RTL are synthesized along with their respective parent
modules and we ended up getting a single file without any
hierarchy that was previously there in a design.

2) X-propogations: Non-resettable flip-flops in the design
could not been detected in RTL simulations due to X-
optimism, a concept where an input don’t care (X) value is tied
to a known value, by traditional simulators. These X values
do propagate in gate level netlist though as it includes the
functional Verilog models of the standard cells.

B. Running on an FPGA

The SystemVerilog RTL of the design was mapped on a
Xillinx Artix-7 FPGA. The part that came along with the
Arty-A7 evaluation board for it contained more than thirty
thousand logic cells. FPGA emulation of our design gave us
some insight on how our design would would work in actual
Silicon as well as on meeting the timing requirements and area
constraints. Table II shows the resource utilization of GHAZI
SoC for the Artix-7 chip.

Used %
LUT 9609 46
Flip-flops 4434 11
BRAM 1 2
iO 40 16
MMCM 1 20

TABLE II: GHAZI SoC’s resource utilization on Artix-7

Our design didn’t use any DSP slice as we went for the
3-cycle fast multiplier and not the single-cycle one. DSPs
are considered expensive resource as the equivalent hardware
for ASIC implementations takes up a lot of chip area. Also
not mentioned with the resource utilization is the amount of
global clock tree (BUFG) lines used which was 9% of the
total available. This is specific to the clock frequency that
was generated by an MMCM primitives as these lines drive
the clock and also balance the timing delays throughout the
whole design. The timing values for GHAZI SoC are shown
in table III. The design was able to run at 40MHz without any
total negative slack and failing endpoints.

Setup
Worst negative
slack (WNS) 94.393 ns

Number of fail-
ing endpoints 0

Total number
of endpoints 11964

(a) Setup time

Hold Pulse Width

Worst hold
slack (WHS) 0.025 ns

Worst pulse
width slack

(WPWS)
3.000 ns

Number of fail-
ing endpoints 0 Number of fail-

ing endpoints 0

Total number
of endpoints 11964 Total number

of endpoints 4541

(b) Hold time and pulse width

TABLE III: GHAZI SoC timing summary

When emulating GHAZI SoC on the FPGA, we used the
components available on the evaluation board to map our
design I/O to, as well as clock primitive ”BUFGC” to replace
the clock gating. The JTAG port was mapped to the board
headers and the UART was mapped to the onboard FTDI serial
to USB interface. The reset was provided with the one of the
push button and the rest of the I/O were mapped to switches
and other board headers.

8

V. IMPLEMENTATION

We used SV2V’s pre-built binaries to parse all of our
SystemVerilog and generate the compatible verilog for the
functionality of all the OpenTitan IPs that we were using.
When we used SV2V, there was no option for generating code
corresponding to the declarative statements in SystemVerilog.
Also, the source code/RTL did not contain any include state-
ments which made the tool unable to find declarations and
definitions, causing some errors. For this, we created a file
just for the purpose of including all the other files containing
the source code as shown in listing 3.

// Including packages first
`include "src/rv_dm/dm_pkg.sv"
`include "src/prim/prim_pkg.sv"
`include "src/tlul/tlul_pkg.sv"
// ...

// Including rest of the modules
`include "src/xbar.sv"
`include "src/ghazi_top.sv"
`include "src/buraq_core_top.sv"
`include "src/tlul/tlul_adapter_sram.sv"
`include "src/prim/prim_clock_gating.sv"
// ...

Listing 3: Caption

Thankfully, sv2v has a macro “SYNTHESIS” which is used
for conditional compilation of the RTL to remove any non-
synthesizable code. To use the generated verilog, some code
still needed to be redone in order to make it work with Yosys.
For example, the assert statement is non-synthesizable and as
mentioned above, no code would be generated for it. But some

module prim_generic_clock_gating (
clk_i,
en_i,
test_en_i,
clk_o

);
input clk_i;
input en_i;
input test_en_i;
output wire clk_o;
//reg en_latch;
//always @(clk_i or en_i or test_en_i) begin
// if (!clk_i)
// en_latch = en_i | test_en_i;
// else
// en_latch = 1;
// assign clk_o = en_latch & clk_i;
//end
sky130_fd_sc_hd__dlclkp_1 CG(

.CLK (clk_i),

.GCLK (clk_o),

.GATE (en_i | test_en_i)
);
endmodule

Listing 4: Clock gating module

assertions are based on conditions for which sv2v will generate
empty ‘if’ statements which Yosys does not accept.

There was one additional change that we had to make for
our RTL to be ready to be transformed into GDSII format
using Skywater 130nm technology. Our design included a
generic clock gating primitive module that could disable the
clock signal when the circuit is not in use. The resulting
RTL was in the form of a latched circuit that was not library
specific. To make it adhere to the guidelines for the Skywater
130nm PDK, we had to replace the logic for the latch, manu-
ally, by creating an instance of ‘sky130 fd sc hd dlclkp 1’
in the clock gating module. This is shown in listing 4.

For the backend design, the flow consists of the following
major steps. In this paper, the parameters and results of each
step are discussed briefly.

A. Synthesis

It is the very first step of the design where the RTL is
mapped to the gate level netlist. The process node sky130
offers different variations of the process like high speed (hs),
high density (hd), high density low leakage (hdll), etc.
For our GHAZI SoC we have used the high density library
[sky130 fd sc hd]. OpenLane has four design exploration
strategies (DELAY 0, DELAY 1, AREA 0, AREA 1) but due
to the size of GHAZI SoC, after the RTL for GHAZI SoC
was translated, the synthesis strategy was kept area driven
with a fan-out of 4 being used. The DELAY 0 and DELAY 1
strategies along with setting the clock period is targeted more
towards meeting the timing for a design, i.e. the total and worst
negative slack (TNS and WNS) should be zero which is made
sure using static timing analysis (STA) and the tool that was
used for this was OpenSTA. The timing strategy for GHAZI
SoC, was easily met by setting the clock period to be 80ns
with input and output delays being 16ns [20% of the clock].
This is shown in table IV. The resulting netlist was mapped
on 124,508 standard cells.

Variable Value
SYNTH READ BLACKBOX LIB 1
SYNTH DRIVING CELL ”sky130 fd sc hd inv 8”
SYNTH MAX FANOUT ”4”
SYNTH STRATEGY ”0”
CLOCK PERIOD ”80”
CLOCK PORT ”wb clk i”

LIB SYNTH COMPLETE
$PDK ROOT/sky130A/
libs.ref/sky130 fd sc hd/
lib/
sky130 fd sc hd
tt 025C 1v80.lib

TABLE IV: Synthesis configuration

In the 6T cell based SRAM implementation of the SoC,
the SRAM was not synthesized but was placed as a hardened
macro, being a black-box to the synthesis tool. The GDSII
file and LEF file for that SRAM, provided by OpenRAM
instructed the tool according to the appropriate synthesis
strategy, to just map the wire connections to the ports of
the SRAM. For D Flip-Flop based RAM, we had the option
of using it’s hardened macro (this one being provided by
Efabless) or synthesizing it with the design. Again, as the issue

9

of having routing violations pertained when using the macro,
we went for synthesis, but only because we had the option
of running it with the design. This also led to an increased
area; 0.391mm2 for the hardened macro versus 1.113mm2
(DFFRAM only) when we synthesized it ourselves.

B. Floorplan

The floorplan is the second step of the physical design where
the tool defines the area. For the GHAZI SoC the die area
was 6.9mm2, and the core area was the user space that is
provided in Caravel for MPW shuttles, which is 10mm2. This
step required the gate level netlist along with the pin order
configuration file for placing the input/output (IO pads) around
all the sides of the core area and outputs a design exchange
format (DEF) file to be passed onto the placement stage.
The step also involves the planning of the power distribution
network (PDN) as shown in figure 7a. In GHAZI SoC, we also
performed the step of inserting welltap cell to prevent latch-up
issue between power and ground rails and decap cells, which
act like decoupling capacitors to regulate a constant supply of
voltage.

(a) Horizontal straps and vertical rails

(b) Core ring

Fig. 7: Power Distribution Network

1) Power grid: In the PDN, only vertical straps of metal
4 are used and metal 1 is used for the power rails. We did
configure our design to purposely have a core ring due to
its power requirements. This is shown in figure 7b and was
achieved by setting the FP PDN CORE RING environment
variable in the config file, despite being hardened as a macro
to be used inside the project wrapper for the user space in
Caravel.

2) Maximum routing layer: We also prohibited the router
from using metal 5 by setting the maximum routing
layer to met4 (layer 5). This is done by setting the
GLB RT MAXLAYER environment variable. We want to
save the use of metal 5 afterwards when we would have
hardened the macro and would want to place it inside the
user project wrapper, to be used exclusively for the core and
top level power connections.

3) Macro placement: It is also in this step that the macros
are placed, but since the D Flip-flop based implementation of
the SoC does not utilize any hardened macros, this is skipped.
For the 6T cell based SRAM, the macros are placed after
calculation which we took absolute to the core area.

C. Placement

The placement places the standard cells on the core area of
the design. The result of GHAZI SoC for the placement stage
is shown in figure 8. The cell pad of 8 microns is used during
the placement. Cell pad is the hollow space reserved for the
future use like insertion of decaps. It took four distinct steps
for OpenLane to lay down the standard cells on the pre-defined
site rows from the floorplan stage. All tools were invoked
within OpenLane itself.

Fig. 8: GHAZI SoC after placement stage

The first one was coarse global placement, done by RePlace,
in which the standard cells were placed without any specific
order and were allowed to overlap. Resize tool then took
up timing information from STA and the gate-level netlist

10

(timing library used, synthesis strategy, etc.), and resized
the cells to meet the timing, power and area targets. Then
comes OpenPhySyn to perform optimization and improve the
quality of placement. This eventually aligned the cells. Finally
OpenDP completed the placement process with the legalized
and optimized design.

D. CTS

The fourth step is where the clock is routed throughout the
SoC. Due to timing, power and signal integrity implications,
different topologies are used to minimize the overheads. Low-
latency clock distribution is performed and for the GHAZI
SoC H-Tree topology is used. This has low power consumption
with lower skew. We had to make sure that the RC delay was
balanced which led us to three challenges:

1) Exceeding power usage
2) Large RC value for each net
3) Signal integrity at risk
Though a single tool, called TritonCTS was up to this task, it

did follow the detailed placement and used OpenDP internally
afterwards to legalize clock buffers inserted during CTS.

E. Routing

Routing connects all the standard cells with each other.
We have different layers of metal in the PDK. The Sky130
nm PDK has 6 layers [1 local interconnect and 5 metal
layers]. GHAZI SoC utilizes up to metal 4. The parameters
that we looked for in global routing were to analyze routing
congestion, identify available paths and minimize detouring.
Fast route takes LEF and placed-DEF files and defines global
routing cells.

For GHAZI SoC, we had to keep an eye out for minimizing
the congestion and overflow within the cells that could have
occurred anywhere between the process. The tool generated
the route guides necessary for detailed routing which is done
by TritonRoute[14]. The routed design for GHAZI SoC can
be seen in figure 9. Similar to placement, the routing is
done in two steps, global and detailed. All the violations
were completely resolved in the fifty-seventh iteration for
optimizing the legalized routes as shown in listing 5.

We observed from the utilization that metal 2 and metal 3
were used most for routing. Table V shows this.

Routing Layer Name Utilization [%]
routing layer1 0
routing layer2 26.2
routing layer3 28.25
routing layer4 2.69
routing layer5 1.17

TABLE V: Routing layer utilization

F. GDSII Stream Out

This step outputs the GDS file and runs different checks
on it. Figure 10 shows the GDSII layout of GHAZI SoC.
The design is checked for a number of things like design
rule checks, antenna violations, layout vs schematic checks,

Fig. 9: GHAZI SoC after routing stage

total negative slack, and routing violations. Out of these, TNS
is checked throughout all the physical design stages though.
The GDS layout of GHAZI SoC was passed on to Magic
for extracting the SPICE layout and was found to have zero
dissimilarities in the LVS check. The process avoided insertion
of blind antenna diodes and used dummy antenna cells to
preserve the core utilization of GHAZI SoC. This resulted in
about 644 antenna violations and forced us to insert back the
real antenna diodes in place of some of the dummy ones.

. . .
s t a r t 57 t h o p t i m i z a t i o n i t e r a t i o n . . .

c o m p l e t i n g 10% wi th 0 v i o l a t i o n s
e l a p s e d t ime = 0 0 : 0 0 : 1 2 ,
memory = 2983 .94 (MB)
c o m p l e t i n g 20% wi th 0 v i o l a t i o n s
e l a p s e d t ime = 0 0 : 0 0 : 2 5 ,
memory = 2983 .94 (MB)
c o m p l e t i n g 30% wi th 0 v i o l a t i o n s
e l a p s e d t ime = 0 0 : 0 0 : 5 8 ,
memory = 2983 .94 (MB)
c o m p l e t i n g 40% wi th 0 v i o l a t i o n s
e l a p s e d t ime = 0 0 : 0 1 : 5 0 ,
. . .
c o m p l e t i n g 100% wi th 0 v i o l a t i o n s
e l a p s e d t ime = 0 0 : 0 2 : 0 6 ,
memory = 2983 .94 (MB)

number o f v i o l a t i o n s = 0
cpu t ime = 0 0 : 0 8 : 2 3 , e l a p s e d
t ime = 0 0 : 0 2 : 0 6 , memory =
2983 .94 (MB) , peak = 4331 .74 (MB)
t o t a l w i r e l e n g t h = 9212890 um
t o t a l w i r e l e n g t h on LAYER
. . .

11

. . .
l i 1 = 2191 um
t o t a l w i r e l e n g t h on LAYER
met1 = 3793617 um
t o t a l w i r e l e n g t h on LAYER
met2 = 4887007 um
t o t a l w i r e l e n g t h on LAYER
met3 = 281119 um
t o t a l w i r e l e n g t h on LAYER
met4 = 248954 um
t o t a l w i r e l e n g t h on LAYER
met5 = 0 um
t o t a l number o f v i a s = 954356
up− v i a summary (t o t a l 9 5 4 3 5 6) :

Listing 5: Log output of TritonRoute

Fig. 10: GDSII layout of GHAZI SoC

For the MPW part, the now hardened GHAZI SoC was
placed inside the user project wrapper and routed with the rest
of the components (the pre-hardened ones) inside the Caravel
design. GHAZI SoC, placed inside caravel is shown in figure
11.

This step generated the final GDS to be sent to the SkyWater
foundry, with some preporcessing done by the collaborating
team such as inserting filler cells and generating the mask
layout of the design.

VI. CONCLUSION

We have successfully taped out a System on Chip design
using all open-source tools all the way from the design
stage, where we performed conversions on the RTL and ran
simulations on it, to the auto-place and route stage and to the
physical verification, the part where we checked the design

Fig. 11: GHAZI SoC inside Caravel

for DRC violations according to the Sky130A cells, performed
LVS on the design and from earlier on where we performed
the parasitic extraction. For future possibilities, the scope of
this paper suggest that we could do a comparision between
OpenLane and commercial EDA tools and how effective it is
as commercial EDA tools have timing awareness whereas the
synthesis step in OpenLane is not timing driven.

REFERENCES

[1] Tutu Ajayi and David Blaauw. “OpenROAD: Toward a
self-driving, open-source digital layout implementation
tool chain”. In: Proceedings of Government Microcir-
cuit Applications and Critical Technology Conference.
2019.

[2] Tutu Ajayi et al. “Toward an open-source digital flow:
First learnings from the openroad project”. In: Proceed-
ings of the 56th Annual Design Automation Conference
2019. 2019, pp. 1–4.

[3] Caravel Harness. https://github.com/efabless/caravel.
[4] Nitin Dahad. Can Open Source Hardware Emulate

Linux? https : / /www.eetimes . com/can- open- source -
hardware-emulate-linux/. 2021.

[5] R. Timothy Edwards. open pdks, magic and netgen.
http://opencircuitdesign.com/.

[6] Tim Edwards. a03 Google/SkyWater and the Promise of
the Open PDK. https://youtu.be/nY6FVsAvrUo/. 2020.

[7] Tim Edwards. PicoSoC: How We Created A RISC
V Based ASIC Processor Using A Full Open Source
Foundry Targeted RTL-to-GDS flow. https://youtu.be/
EsEcLZc0RO8/. 2017.

12

[8] FOSSi Foundation. 45 Chips in 30 Days: Open Source
ASIC at its best! https : / /www. fossi - foundation .org /
2021/03/07/45-chips-in-30-days. 2020.

[9] Michael Gautschi et al. “Near-threshold RISC-V core
with DSP extensions for scalable IoT endpoint devices”.
In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 25.10 (2017), pp. 2700–2713.

[10] Matthew R Guthaus et al. “OpenRAM: An open-
source memory compiler”. In: 2016 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD).
IEEE. 2016, pp. 1–6.

[11] Icarus Verilog. iverilog.icarus.com.
[12] “IEEE Standard for SystemVerilog–Unified Hardware

Design, Specification, and Verification Language - Red-
line”. In: IEEE Std 1800-2009 (Revision of IEEE
Std1800-2005) - Redline (2009), pp. 1–1346.

[13] Andrew B Kahng. “Open-Source EDA: If We Build
It, Who Will Come?” In: 2020 IFIP/IEEE 28th Inter-
national Conference on Very Large Scale Integration
(VLSI-SOC). IEEE. 2020, pp. 1–6.

[14] Andrew B Kahng, Lutong Wang, and Bangqi Xu. “Tri-
tonRoute: The Open-Source Detailed Router”. In: IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems 40.3 (2020), pp. 547–559.

[15] Josh Lerner and Jean Tirole. “Some simple economics
of open source”. In: The journal of industrial economics
50.2 (2002), pp. 197–234.

[16] lowRISC Verilog Coding Style Guide. https : / /
github . com / lowRISC / style - guides / blob / master /
VerilogCodingStyle.md. 2020.

[17] lowRISC: Collaborative open silicon engineering. https:
//lowrisc.org/.

[18] Ted Marena. “RISC-V: high performance embedded
SweRV™ core microarchitecture, performance and
CHIPS Alliance”. In: Western Digital Corporation
(2019).

[19] Ross Miller. “OPEN SOURCE ASICS TAKE A GI-
ANT LEAP FORWARD WITH THE FIRST EVER
OPEN FOUNDRY PDK”. In: GSA Global Forum
(2020).

[20] Laurence W Nagel. “SPICE2: A computer program to
simulate semiconductor circuits”. In: Ph. D. disserta-
tion, University of California at Berkeley (1975).

[21] Borivoje Nikolic, Elad Alon, and Krste Asanovic. “Gen-
erating the next wave of custom silicon”. In: ESSCIRC
2018-IEEE 44th European Solid State Circuits Confer-
ence (ESSCIRC). IEEE. 2018, pp. 6–11.

[22] Open Source Shuttle MPW-ONE. https://efabless.com/
open shuttle program.

[23] Open source silicon root of trust (RoT) — OpenTitan.
https://github.com/lowRISC/opentitan.

[24] OpenLANE. https : / / github . com / The - OpenROAD -
Project/OpenLane.

[25] OpenROAD - Foundations and Realization of Open,
Accessible Design. https://theopenroadproject.org/.

[26] John K Ousterhout et al. “The magic VLSI layout
system”. In: IEEE Design & Test of Computers 2.1
(1985), pp. 19–30.

[27] Anne-Françoise Pelé. Building an ecosystem for open-
source hardware. https://www.eetimes.com/building-
an-ecosystem-for-open-source-hardware/. 2007.

[28] Dominic Rizzo. “OpenTitan at One Year: the Open
Source Journey to Secure Silicon”. In: Google Security
Blog (2020).

[29] Pasquale Davide Schiavone et al. “Slow and steady wins
the race? A comparison of ultra-low-power RISC-V
cores for Internet-of-Things applications”. In: 2017 27th
International Symposium on Power and Timing Mod-
eling, Optimization and Simulation (PATMOS). IEEE.
2017, pp. 1–8.

[30] Mohamed Shalan and Tim Edwards. “Building Open-
LANE: a 130nm openroad-based tapeout-proven flow”.
In: Proceedings of the 39th International Conference on
Computer-Aided Design. 2020, pp. 1–6.

[31] SkyWater Open Source PDK. https://github.com/google/
skywater-pdk.

[32] Zachary Snow. sv2v: SystemVerilog to Verilog. https :
//github.com/zachjs/sv2v.

[33] Jennifer E Sowash. Design of a RISC-V Processor with
OpenRAM Memories. University of California, Santa
Cruz, 2019.

[34] The Free and Open Source Silicon Foundation. https:
//www.fossi-foundation.org/.

[35] Andrew Waterman et al. “The RISC-V Instruction Set
Manual, Volume I: User-Level ISA, Version 2.1”. In:
(2016).

[36] Stephen Williams. How Icarus Verilog Works. https://
github.com/steveicarus/iverilog.

[37] Claire Wolf. Yosys Open SYnthesis Suite. http://www.
clifford.at/yosys/.

