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Abstract

Little is currently known about how varied source locations affect a listener’s emotional reaction to music. Here, using spectral

features extracted from electrophysiology (EEG) data, we tested through machine learning whether four music source positions

(front, back, left, and right) could be accurately distinguished according to the type of valence in a subject-wise manner. The

findings demonstrate that distinct EEG correlates can reliably classify the four source locations and that the effect is stronger

when music with a negative emotional valence is played outside of the listener’s visual field. This proof-of-concept study

may pave the way for advanced spatial audio analysis approaches in music information retrieval by considering the listener’s

emotional impact depending on the source direction of incidence.
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✦

1 INTRODUCTION

DARWIN once said that ”music mirrors or captures the
relationship between affective state and sound [...]” [1].

Music’s ability to modulate cognitive and emotional pro-
cesses has been widely documented over the years [2],
[3], [4], [5], [6], making it a relevant tool to investigate
the brain correlates of emotional processes [7]. However,
little is known about the impact of different sound-source
locations on the emotional response to music, as only a few
studies have addressed this issue [8], [9], [10], [11], [12].
In particular, the study conducted by Asutay et. al. [11],
provided evidence that the effects of spatial source location
on attentional processes are mediated by the emotional
information conveyed by the sound [11]. The authors also
demonstrated that a sound source behind the participant
led to a more robust affective response in the listeners [11].
In another work, Tajadura-Jiménez et. al. concluded that
sound sources outside the visual field produce emotional
states of increased arousal [9], though these effects were
more pronounced for natural sounds. Similarly, the work
of Ekman and Kajastila showed that sounds are judged
by the listener as scarier when they come from the back
as compared to the front [8], although context has been
found to be an important factor in eliciting the desired
effect [12]. In a more detailed study using everyday sound
events, Drossos et. al [10] showed that lateral positions do
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increase the listeners’ affective state significantly, although
this is dependent on the content of the audio sample used.

Moreover, there is a strong connection between space
and music, as music can, in turn, evoke sensations of space
and movement as a sense of intrinsic space, i.e. a metaphor-
ical space, created by musical features in melody, harmony
or rhythm, as opposed to the literal, physical space a sound
source may occupy [13]. The most common effect is that
of associating the perceived pitch with a sense of spatial
height [14], [15], although alternative spatial representations
for the same also exist latently [16]. Furthermore, a corre-
lation between the absolute pitch of a musical piece and
emotional affect has been shown [17]. In a study conducted
by Eitan et. al. [18], in which participants were asked to
associate music with imagined, spatial motions of a human
character, it was shown that most musical parameters sig-
nificantly affect the imaginary motion, indicating a strong
correlation between music and space perception.

Here1, we investigated whether four different music
source spatial locations (i.e., front, back, left, and right) are
reflected in a distinct pattern of electrophysiological activity
that can be captured by a machine-learning approach. More-
over, we explored the interaction between distinct music
source locations and the emotional salience of the musical
excerpts played. The dimensional model supports the idea
that emotions can be modeled as combinations of a few
fundamental and basic dimensions. Valence and arousal,
sometimes known as the ”circumplex model,” are two fun-
damental qualities that researchers unanimously concur are
necessary to understand emotions [19]. The valence level

1. A preliminary and earlier result of this work has been presented as
a Late-breaking/Demo (LBD) session to the Music-Information Retrieval
community at ISMIR 2022 conference to get feedback from fellow researchers
in the field of affective computing and music information retrieval. Link:
https://ismir2022.ismir.net/program/lbd/

https://orcid.org/0000-0001-5496-652X
https://orcid.org/0000-0002-8821-9052
https://orcid.org/0000-0003-4238-5183
https://orcid.org/0000-0003-2681-4005
https://orcid.org/0000-0002-1145-146X
https://ismir2022.ismir.net/program/lbd/
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varies from unpleasant (negative) to pleasant (positive),
while the arousal level, specifically, ranges from not aroused
(low arousal) to thrilled (high arousal). We used music
excerpts as an audio stimulus. While the more common
stimuli, such as noise or single frequencies can offer more
control, as they reduce the number of variables, they also
have several downsides to the purpose of this study, how-
ever. For example, improved auditory localization along the
median plane requires broadband signals [20], which means
that pure frequencies would make front-back confusions
much more prevalent. Moreover, as is the case with noise
signals, in particular, these types of acoustic stimuli are not
commonly perceived or referred to as music [21]. In order to
get the participants to listen to the audio stimulus musically,
meaning that the stimulus is generally recognized as music,
it was therefore decided to use musical examples as stimuli.

We recorded electrophysiological (EEG) data while par-
ticipants were listening to musical excerpts characterized by
either positive or negative valence, both with middle val-
ues of arousal, and occurring from different spatial source
locations. To take into account individual differences, we
performed subject-based classification between each pair of
spatial locations, according to the type of valence. We hy-
pothesized that when the music source was located outside
the listener’s visual field (i.e., back, right, left) it would lead
to a different electrophysiological pattern and impact on the
affective state as compared to frontal source localization.

2 MATERIALS AND METHODS

2.1 Stimuli
The music excerpts used in this study were taken from the
Database for Emotional Evaluation of Music (DEAM) [22].
DEAM provides over 1800 royalty-free, annotated samples
of music, of which 58 are full-length songs. However, for
this study, we were interested in the 1744 excerpts of 45s
in length. The styles of these excerpts range widely across
a variety of Western popular music genres, including rock,
pop, electronic, country, and jazz, but also some more ex-
perimental examples that appear to be borderline spoken
word or audio akin to field recordings. Since the experiment
was carried out in Spain with mainly Spanish-speaking
participants, we avoided music samples that appeared to
rely too heavily on language.

The emotional characterization of the music in DEAM
is done using two dimensions: valence (positive, neutral,
or negative) and arousal (low, medium, or high). The data
provided also came in two versions: a dynamic score on
a scale from −10 to 10, sampled at 2Hz and begins only
after the second 15, thus annotating only the last 30s of the
music samples respectively, as well as static annotation data,
which represents an overall score of the sample and was
collected using a nine-point Self-Assessment Mannequin
(SAM) scale [23].

In order to choose which samples to use for this study,
we categorized the musical excerpts into 3 groups of high,
mid, and low values along each emotional dimension (i.e.,
valence and arousal), based on the static evaluation metric.
To evaluate the effect of valence in this study, those samples
that fell into the mid-arousal category were first separated.
Of those, samples that were additionally in the positive

TABLE 1
Final selection of stimulus indices in each positive and negative

valence class. The numbers correspond to the sample index as given
by DEAM [22].

Positive
valence:

37, 42, 56, 65, 107, 131, 276, 317, 415, 431, 466, 486,
677, 693, 777, 814, 846, 976, 1071, 1079, 1122, 1156,
1204, 1298, 1340, 1346, 1523, 1538, 1544, 1614, 1647,

1742, 1749, 1853, 1865, 1954

Negative
valence:

74, 146, 167, 176, 178, 187, 194, 198, 205, 218, 219,
223, 238, 239, 299, 316, 359, 361, 478, 480, 482, 501,
506, 560, 608, 621, 656, 715, 736, 794, 854, 855, 865,

957, 1146, 1823

valence category (166 in total) or negative valence category
(72 in total) were chosen and placed into two separate
categories respectively. The samples had to be shortened to
30s in order to keep the overall length of the experiment
within reasonable bounds. Thus, an average of the dynamic
annotations was calculated for each sample selected. After
standardizing the average dynamic and static annotations,
the error between the two measures could be obtained. This
error served as an ordering mechanism, along which the
final samples could be selected, starting with the sample
with the least error between the static and average dynamic
annotation. Considering that each sample is now 30s long,
36 samples from each category were selected to achieve an
approximate length of 50min for the entire the experiment.
The final selection of samples by index number as corre-
sponding to DEAM [22] can be found in Table 1.

As mentioned above, the first 15s of each sample were
cut away to obtain only the last 30s, i.e. the region for
which the dynamic annotation was available. To avoid
clicking or startling the participant at the beginning of a
sample, a linear 1s fade-in was applied to all samples. An
objective perceptual loudness assessment was done over
all samples using the replay-gain method [24]. A Python
implementation was adapted from the original implemen-
tation in MATLAB2, using pink noise at −20dBFS as a
reference.3 The mean loudness deviation was −6.49dB, with
a standard deviation of 4.24dB. The maximum was 8dB
and the minimum −18.35dB. Thus, the perceived loudness
of the different samples ranged considerably. This was also
commented on by the participants during the preliminary
trials. However, equalizing the samples by their replay-gain
values to have a more similar perceptive loudness against
each other would make the data collected incomparable to
the original annotations in DEAM. Thus, it was decided to
not apply the replay-gain compensation values and keeping
each music excerpt at its original relative loudness level.

2.2 Experimental design
For this study, we opted for a block-design experiment, in
which the final sequence of audio samples was arranged
into blocks of 3 randomly selected musical excerpts without
repetition. Random selection was done anew for each par-
ticipant. First, from each category, i.e. positive or negative
valence, the samples were shuffled and grouped into blocks

2. See http://replaygain.hydrogenaudio.org/mfiles/, last accessed
using on September 13th, 2022.

3. This code can be accessed via https://github.com/
multimedia-eurecat/Neuromuse/tree/master/replaygain

http://replaygain.hydrogenaudio.org/mfiles/
https://github.com/multimedia-eurecat/Neuromuse/tree/master/replay gain
https://github.com/multimedia-eurecat/Neuromuse/tree/master/replay gain
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of three musical excerpts. Then, the blocks from each cate-
gory were combined in random order into a single sequence
of 36+36 = 72 samples. The whole experimental process is
illustrated in Fig. 1.

Music excerpts

High Low

GroupH1(3) GroupH2(3) GroupH3(3) ... GroupL1(3) GroupL2(3) GroupL3(3) ...

Shuffle

Shuffle Shuffle

Final Sequence

Fig. 1. Grouping and shuffling of the music samples.

Fig. 2 shows the final sequence of sections in the entire
experiment. The participant is first shown an introduction,
where the experiment and the SAM questionnaire are ex-
plained. Contained in this introduction is a short test if the
participant has understood what the SAM represents. Then,
a baseline rest period of 120s is recorded, where the par-
ticipant should remain entirely still, while in total silence.
After that, the main experiment begins. In each group, 3
music samples of the same category are played. Before each
sample, a rest period of 5s, represented by a cross in the
middle of the screen is first presented as a sort of mental
reset for the participant. At the end of each musical sample,
the participant has to fill out the SAM questionnaire rating
their emotional response to that particular musical stimulus.
At the end of each block, another additional questionnaire
was shown, where the participant answered how exhausted
and attentive they felt.

The experiment ended after all blocks and their respec-
tive musical samples had been played to the participant.
The total time necessary to play all 72 excerpts of music
was about 36 minutes. Together with the rest periods, the
minimum length of the experiment was around 44 minutes.
Depending on the speed that the participants were able
to read through the introduction and answer all question-
naires, the whole experimental session would last between
50 to 60 minutes.

2.3 Participants

We recruited a total of 20 healthy participants (10 males and
10 females) with a mean age of 28.66 years (SD = 5.53), no
history of psychiatric or neurological disorders, and with
normal hearing. Furthermore, subjects had no prior experi-
ence or formal music training. Nearly all participants were
right-handed, with only one participant being left-handed.
After preprocessing of the EEG signal, 3 participants were
removed from the analysis due to excessive artifacts. Only
17 participants were included in the analysis, comprising 9
females and 8 males with a median age of 28 (20-38).

2.4 Experimental procedure
Upon arrival, the participant was seated in the studio
control room and signed the consent form. After setting
up the EEG cap, we guided the participant into the stu-
dio environment. The EEG data was recorded using a 19-
electrode Neuroelectrics® Instrument Controller (NIC2)4 at
a sampling rate of 250 Hz. Next, subjects were informed
about the experimental protocol, its approximate duration
and the meaning of the SAM scales [23] used to rate
their emotional response to the music stimuli presented
throughout each block. During the whole experiment, the
participant was comfortably seated in the center of the room
(see Fig. 3). Prior to the musical stimuli presentation, we
started the experiment by recording baseline EEG activity by
showing participants a cross in the middle of the screen for
2 minutes (see Fig. 5). Lastly, we instructed the participants
not to move, particularly during playback of the stimulus, to
reduce muscular artifacts in the EEG data. The experiment
was conducted according to the Helsinki Declaration and all
subjects signed the consent form.

2.5 Experimental Setup
2.5.1 Acoustic Environment
All measurements were done in the 3D audio post-
production studio of Eurecat in Barcelona, as shown in
Fig. 3. The room has a size of 7.06m by 5.13m by 3.16m
and is acoustically isolated from the outside world. Inside,
it is acoustically treated, with acoustic diffusion panels on
the walls and absorption panels on the ceiling. The rever-
beration time is relatively short, with an RT60 of 0.398s at
125Hz to 0.253s at 8kHz. The average RT60 between 500Hz
and 1000Hz is around 0.293s.

2.5.2 Spatial Conditions
The audio stimuli were played from four positions: front,
back, left, and right (see Fig. 4). A loudspeaker was placed
in each position. No phantom sources were used, meaning
that audio was always played through only one loudspeaker
at any time. In order to keep the first reflections comparable
between each position, we opted to keep each loudspeaker
as close to the wall as possible. However, this also meant
that the front and back loudspeakers would be positioned
at a larger distance from the listener.

To correct for the differences in distance between the
loudspeakers, each loudspeaker was calibrated to 75dBSPL
using pink noise at −20dBFS at the center listening po-
sition. The calibration was carried out using an NTI AL1
Acoustilyzer in combination with an NTI MiniSPL measure-
ment microphone. It was determined during the pilot study
that this level was an acceptable loudness for all participants
and a good level to compromise between loud and quiet
stimuli (see 2.1).

2.5.3 Hardware
The loudspeakers used were of the type Genelec 8040, fed by
a Focusrite Scarlet 18i20 soundcard. The audio playback was
done with the sounddevice module for Python, running on a
windows laptop computer.5 The participants were seated in

4. https://www.neuroelectrics.com/
5. See https://github.com/multimedia-eurecat/Neuromuse/blob/

master/emotiondirectionexperiment/neuromuse server.py

https://www.neuroelectrics.com/
https://github.com/multimedia-eurecat/Neuromuse/blob/master/emotion direction experiment/neuromuse_server.py
https://github.com/multimedia-eurecat/Neuromuse/blob/master/emotion direction experiment/neuromuse_server.py
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Excerpt 1 ...Baseline (Rest120) Rest5Introduction SAM Excerpt 2Rest5 SAM Excerpt 3Rest5 SAM

Group 1

Questionaire

Group 2

...Questionaire

Fig. 2. Final sequence of music samples and full experiment.

Fig. 3. The studio environment as seen from the back speaker using a
wide-angle lens. Apart from the back speaker not seen in this picture,
the other speakers especially placed for the experiment were the ones
on the far left and right side of the participant and the one up ahead,
covered by the head of the participant. All four speakers are placed at
ear level. The touch screen is placed as flat as possible on the table
in front, making sure it does not obstruct the view from the participant
to the front speaker to avoid sound occlusion. All other speakers seen
in this picture did not partake in the experiment. However, they had to
remain for logistic purposes.

~3.29m

~2.33m

~2.33m

~3.29m

Fig. 4. Experiment layout showing the four playback positions and ap-
proximate distances of each loudspeaker to the listener in the center.

the center of the room, with a table in front of them. Laying
nearly flat, the participants had a Raven MTi2 touch screen
in front of them, on which they would have instructions
shown to them, as well as answer questions during the
experiment.

2.5.4 User Interface
The interface was designed in a web browser using HTML
and CSS, with the functional elements programmed in
Javascript using Jquery.6 All interactive elements were de-
signed with touch interaction in mind, meaning big buttons

6. See https://github.com/multimedia-eurecat/Neuromuse/blob/
master/emotiondirectionexperiment/emotion.html

or clickable areas with only multiple-choice questions and
no text input of any kind. Some examples of the interface
are shown in Fig. 5. Accidental double taps are accounted
for and filtered out. Buttons to continue are always hidden
and deactivated until all questions in a questionnaire are
answered to indicate the necessity of this task to the par-
ticipant and avoid accidental progression without answers
in the trial. Whenever a button to continue is shown, the
participant is also able to change their mind before sending
off the result to be recorded, meaning they can alter their
answer before pushing the ’continue’ button. Otherwise, the
web page would change the view and progress immediately
upon answering a question.

The Python script and the web front-end communicated
using a simple socket connection over localhost. All activity
on the touch screen was recorded in the form of signals sent
over this socket connection to know where the participant
clicked when and if their opinion on a certain question
has changed before confirming. A USB and video extension
was laid through the floor into the control room, where the
experimenters could monitor the participant, their activity
on the touchscreen, and all incoming sensor data.

2.6 EEG preprocessing
EEG data were analyzed in an offline manner using the
EEGLAB toolbox [25] on Matlab R2019b (The Mathworks,
Inc.). The preprocessing steps included downsampling of
the signal to 130 Hz and the application of a bandpass
Butterworth filter ranging from 0.01 up to 40 Hz. To correct
eye blinks and muscular artifacts, we used the Independent
Component Analysis (ICA) algorithm. For each subject,
we manually removed all components capturing artifacts.
Afterward, we epoched the EEG data and created eight dis-
tinct datasets for each subject according to the experimental
condition (i.e, spatial position and type of valence). Finally,
we applied a spatial filter to reduce the volume conduction
effect, using the surface Laplacian transform inspired by the
spherical spline method described by [26], [27], [28].

2.7 Feature extraction
2.7.1 Time-frequency analysis
To preserve information about the temporal dynamics, we
transformed the EEG data into the time-frequency domain
using Complex Morlet Wavelet convolution (CMW). This
method comprises a complex-valued sine wave tapered by
a Gaussian window and is stated as follows:

CMW = e−t2/2s2ei2πft (1)

Where e−t2/2s2 represents the real-valued Gaussian
and ei2πft is the result of Euler’s formula combined with a
sine wave [29].

We chose CMW instead of alternative approaches like
the Short-time Fourier Transform or the Hilbert Transform,

https://github.com/multimedia-eurecat/Neuromuse/blob/master/emotion direction experiment/emotion.html
https://github.com/multimedia-eurecat/Neuromuse/blob/master/emotion direction experiment/emotion.html
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Fig. 5. Three examples of the touch interface in the web browser. On the left, an example of the preliminary test to reinforce the SAM model
before beginning the experiment is shown. The text color indicating the correct answer only appears immediately after answering the question. The
center image shows the view when the participant is asked to remain calm and focus on the cross during the baseline data acquisition and rest
period before each stimulus. To avoid that the participant gets nervous during the 2 minute wait, the remaining time is also shown to indicate that
UI remains responsive. The third image shows the SAM multiple choice questionnaire that is presented after every music sample to evaluate the
arousal and valence state of the participant via self-reporting.

is because CMW is a Gaussian-shaped wavelet in the fre-
quency domain. It is important to precisely set the width of
the Gaussian, denoted here as s, while performing convo-
lution with a Complex Morlet Wavelet since it affects how
the time-frequency analysis trades off its ability to resolve
temporal and spatial issues (see [29]).

The parameter s is expressed as s = c /2πf , where c
denotes the number of cycles of the wavelet, which is
dependent on the frequency f of the same. A narrower
Gaussian with fewer cycles in the time domain leads to a
high temporal resolution but reduced spectral precision, and
vice-versa with a wider Gaussian. Because of this, we used
a variable number of cycles, ranging from 3 to 10, rising as
a function of frequency to achieve a fair trade-off between
temporal and spectral resolutions.

Since we were interested in all frequency bands, we
selected a range of frequencies going from 1 Hz up to 40 Hz.

Following the use of CMW convolution, we retrieved
the power from the coefficients and then used a decibel-
baseline normalization, utilizing all neutral trials as a base-
line. We used a sliding-window strategy to reduce the time-
frequency data for every trial in order to increase the sample
size. There were a total of 39 windows every trial, each
lasting 1 second and overlapping by half a second.

Then, we calculated the average change in power com-
pared to the neutral baseline for seven frequency bands
(delta 1−4 Hz, theta 4−8 Hz, low alpha 8−10 Hz, high
alpha 10−12 Hz, low beta 13−18 Hz, high beta 18−30 Hz,
and gamma 31−40 Hz). Within each window and for all
the 19 channels and the seven frequency bands, the features
extracted were the mean power, the standard deviation of
the mean, and the frontal alpha asymmetry (FAA). The FAA
coefficients were calculated for the channel pairs Fp1-Fp2
and F3-F4 in both low-alpha (8−10 Hz) and high-alpha
(10−12 Hz) bands. The resulting feature array consisted of
351 samples for each class with a total of 270 features.

2.8 Classification and feature selection

For data classification, we utilized MATLAB R2022ba Statis-
tics and the Machine Learning Toolbox. As a base classi-
fier, the linear Support Vector Machine (SVM) supervised
learning approach was chosen, which uses a hyperplane as

a decision boundary to optimize the margin of separation
between two classes. Herewith, SVMs give a metric that
permits scaling the certainty with which a window sample
is allocated to one of the two classes: the sample’s distance
from the separation hyperplane. To evaluate the classifier’s
performance robustly, we used 6-fold cross-validation to
train and test the classifier, allocating all windows in one
trial to the same fold. Having said that, we also ran the
6-fold cross-validation fifty times and averaged the results
across different classification runs.

It is well known that feature extraction and selection
strategies assist to reduce computing complexity and de-
velop models with greater generalization capabilities, in
addition to enhancing predictive power [30], [31]. That is,
we used the Bioinformatics toolbox of MATLAB R2022a to
do feature selection due to the large dimensionality of our
dataset. The goal was to improve the classifier’s learning
performance and find the most common discriminative
characteristics shared by all participants. We rated the char-
acteristics based on their importance between the classes,
using the t-test as an independent criterion for binary classi-
fication. For each feature, the built-in function in MATLAB
calculates the absolute value of the two-sample t-test with
pooled variance estimate. Essentially, the technique calcu-
lates how probable it is for a particular characteristic that the
difference in mean and variance across classes happened by
chance. Finally, we identified the top 20 characteristics for
each topic and combined them to determine which features
were shared by all participants.

2.8.1 Statistical comparisons

We used the Wilcoxon rank-sum method to investigate
whether the SVM performances were significantly above
chance, thus we statistically compared accuracy distribu-
tions of real-labeled data with surrogate data (i.e., randomly
shuffled labels). Furthermore, data from the self-assessment
SAM questionnaire were analyzed using a general linear
model, the multivariate analysis of variance (MANOVA),
on IBM SPSS Statistics [32].
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3 RESULTS

We investigated through machine learning whether the four
music position sources could be accurately differentiated
according to the type of valence in a subject-wise man-
ner using spectral features extracted from EEG data cut
into 1-second windows. The results of all cross-validation
runs for each participant are presented in Figure 6. The
corresponding accuracy averaged across subjects for each
binary classification run is summarized in Table 2. For both
positive and negative valence, we showed that the highest
average accuracy was reached when classifying the frontal
localization versus each of the three sources located outside
the visual field. In particular, this effect was stronger when
classifying pairs of source locations using events character-
ized by negative valence.

Fig. 6. Within-subject classification results of each binary classification
between music position sources according to the type of valence. We
performed 6-fold cross-validation 50 times, such that the boxplots depict
the results of 50 classification runs for each participant.

TABLE 2
Classification results averaged across participants for each pair of

binary classification runs presented according to the valence type. An
asterisk indicates that the average accuracy is significantly above the

chance level (p<0.05).

Type of
valence

Pair of music
source locations

Mean accuracy
across subjects

Positive
valence

Frontal - Back 70%*
Frontal - Left 80%*

Back - Left 69%*
Right - Left 76%*

Frontal - Right 77%*
Back - Right 61%*

Negative
valence

Frontal - Back 85%*
Frontal - Left 82%*

Back - Left 78%*
Right - Left 74%*

Frontal - Right 87%*
Back - Right 67%*

3.1 Highest-ranked features
To understand which channels and frequency bands were
the most discriminative between the four location sources
depending on the type of valence, we applied a feature
selection algorithm and merged together the top twenty
features for each subject. As represented in Figure 7, the
results showed that the electrophysiological correlates of the

difference between frontal location and the three sources
located outside the visual field (i.e., back, right, left) rely
on different activities of channels mainly located in frontal
and central areas, especially in the highest frequencies. In
particular, we found that when using musical excerpts with
negative valence, the difference between frontal location
and each of the three sources out of the field of view
is based on activity in beta (low and high) and gamma
bands in channels Fp1, F3, F4, Fz, Cz, and T8, and in
FAA measures for pairs of channels Fp1-Fp2 and F3-F4.
On the other side, when comparing the source locations
using positive valence, we showed that also brain activity
in the alpha band, together with beta and gamma was
important for differentiating frontal position from each of
the other three sources. Moreover, in the case of positive
valence, channels from posterior sites, especially Pz, P7, and
P8, as well as central, frontal sites and FAA, were relevant
for the classification of source locations, indicating a more
widespread involvement of different brain areas.

Fig. 7. Topoplots indicating brain activity for each of the main frequency
bands according to the source locations (i.e., front, back, left, and right)
and the type of valence (i.e., negative and positive). Colors in brain plots
indicate the power in that specific channel and frequency band, with red
showing the highest power and blue the lowest.

3.2 Self-assessment SAM questionnaire
We analyzed behavioral data using the multivariate analysis
of variance (MANOVA) to assess differences in the self-
reported ratings of valence and arousal of the SAM ques-
tionnaire according to source location and type of valence.
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TABLE 3
Average reported levels of arousal and valence by means of the SAM

questionnaire on a Likert scale from 1 to 5.

Type of
valence Source location Average SAM rating

for arousal
Average SAM rating

for valence

Positive
valence

Frontal 3,41 3,25
Back 3,57 3,21
Left 3,22 3,17

Right 3,45 3,36

Negative
valence

Frontal 2,63 2,03
Back 2,90 2,18
Left 2,88 2,28

Right 3,45 2,15

Averaged reported levels of perceived arousal and valence
are presented in Table 3 and shown in Figure 8 for each
participant.

Results showed that there was a significant difference
in arousal and valence ratings based on the type of event
(source location and type of valence of musical excerpts),
F (14, 12428) = 28.133, p = 0.000, Wilk′slambda = 0.740,
partial eta squared = 0.14. The source locations depending
on the type of valence had a significant effect both on
reported levels of perceived arousal, F (7, 1215) = 18.477,
p = 0.000, partial eta squared = 0.096, and valence,
F (7, 1215) = 47.886, p = 0.000, partial eta squared = 0.216.

Post-hoc analysis revealed that there were significant dif-
ferences between trials with positive valence and negative
valence within each source location (p = 0.000, Bonferroni
corrected). In particular, musical excerpts characterized by
positive valence elicited higher reported levels of arousal
(p = 0.000) and valence (p = 0.000) for each of the
four source locations. Differences between sources were not
significant (p > 0.05) when comparing the same type of
valence (i.e., either positive or negative), except the levels of
reported arousal between the back and right when music
with positive valence was played (p = 0.03, Bonferroni
corrected).

4 DISCUSSION

In this work, we analyzed the impact of different source
locations of music depending on the type of valence on the
listener’s affective brain processing by employing machine
learning tools.

We demonstrated that frontal location can be accurately
distinguished from each of the three sources (back, right,
and left) located outside the listener’s visual field. In par-
ticular, our results suggested that the emotional connota-
tion of music (i.e., positive and negative valence) mediated
the impact of the different source locations on the brain’s
electrophysiological signal, as reflected by music charac-
terized with negative valence yielding higher classification
performances in differentiating between the spatial sources
as compared to musical excerpts characterized by positive
valence.

Furthermore, by applying a feature selection procedure
we showed that playing music from different source loca-
tions led to different electrophysiological brain responses
in the highest frequencies (alpha, beta, and gamma) and in
channels belonging to the frontal, central, and also parietal
areas in the case of positive valence. The importance of beta
and gamma bands that we found here is consistent with

earlier research showing the significance of these bands for
differentiating between various emotional states [33], [34],
[35]. Moreover, a previous study has found that the alpha
band in parietal channels was associated with the processing
of auditory stimuli, while the gamma band activity was
related to music awareness [36]. Interestingly, we found the
FAA between pairs of channels Fp1-Fp2 and F3-F4 to be
an important measure for distinguishing between different
locations, both for positive and negative valence conditions.
Alpha activity in the frontal site has been largely used
as an index of emotional processing, reflecting motivation
and dominance of perceived emotion. Indeed, in the lit-
erature, positive emotional stimuli have been related to a
relative increase in left hemisphere activity, whereas nega-
tive emotional stimuli have been associated with a larger
right hemisphere activity [37], [38]. For example, a previous
study has found that musical excerpts characterized by
positive valence induced lower frontal alpha power in the
left hemisphere [39]. In addition to valence and arousal,
frontal asymmetry was also linked to other factors, such as
self-reported dominance [40].

Music has generally been used in research as a tool to
elicit emotional responses in participants and study emo-
tional processes in the brain [7], [41], [42]. Together with
this, recent applications of Brain-Computer Interfaces have
used music as a way to convey information and/or feedback
in a real-time manner to the subjects based on their own
brain activity [43], [44], [45], [46]. However, the difficulty of
participants in engaging and sustaining genuine emotional
states in an experimental context, particularly when trying
to elicit complex emotions, has generally been a significant
hurdle for neuroimaging and BCI studies based on affective
processes. In this regard, the results of this study may pave
the way for more effective use of music as a stimulus in
experimental settings, by playing it from a source located
outside the visual field, especially when trying to elicit
emotions falling within the negative valence.

On the other side, analysis of sounds and their spatial
orientation in relation to the listener is relevant in the con-
text of spatial music. Here, spatial music refers to musical
composition practices that specifically target spatial aspects
of sound as a compositional parameter, such as the sound
position or specific aspects of room acoustics [47], [48], [49].
Indeed, emotion elicited through spatial music listening
is not an aspect that is not often considered in the field.
The discussion around space in music tends to be often of
philosophical [47], or conceptual nature [49], [50] and often
centers around aspects in electronics or hardware [48], [50],
technology [51], [52], [53] or taxonomy [54]. The most com-
mon considerations in spatial composition techniques center
around the analytical location of a sound source, following
its trajectory or simulating, or alluding to acoustics that
differ from those present in the current concert hall [53]. In
a survey conducted in [55], composers are more often than
not concerned with those spatial aspects in music that can
be parameterized on a technical level and lesser with the
emotional space can have on the listener, e.g. the ”dramatic
role” of space [55].

The results in this study indicate that an analysis of
spatial music would need to take into account the corre-
lation between the extracted emotional impact of the more
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Fig. 8. Results of the SAM questionnaire for each position and valence class (positive or negative). For each participant, both the valence (blue)
and arousal (red) results are shown in each case.

traditional musical parameters, such as melody and rhythm,
with spatial features, when it comes to the emotional impact
music can have on the listener. This can either be done by
analyzing the score and correlating musical phrases with
the spatial position of the corresponding instruments at any
given time, or by analyzing the multichannel audio signal
in the case of electroacoustic works. For example, using
Ambisonic signals [56], the energy vector can be computed
to estimate the audio source location [57]. Otherwise, other
formats such as Parametric Object-Based Audio Coding in
MPEG [58] can provide this information as stored in its
metadata. This can then be combined with other emotional
factors in music to achieve a comprehensive prediction of
the listener’s emotional response.

Nevertheless, this study does present some limitations.
Most importantly, the relatively small sample size may limit
the generalization of our results. Also, despite having found
a different brain pattern of activity in the EEG signal related
to affective processing of music depending on the various
source locations, this effect was not reflected in the analysis
of subjective ratings of both arousal and valence. In fact, we
did not find any significant differences between positions
when analyzing trials with the same type of valence. This
may have been due to overthinking, or conscious evaluation
on behalf of the subjects, rather than an immediate and
intuitive reaction. When being asked how one would eval-
uate a piece of music, one would have to execute said task
by recollecting what was just heard. This evaluation will
thus be skewed by the importance a subject might place on
different aspects in the music. Therefore, if a subject has little
to no experience in associating spatial position with musical
significance, then the recollection of the heard excerpt will
most likely be focused on aspects like melody and rhythm,
filtering out the spatial direction from which the excerpt was
heard from. This means that mentally, i.e. in the inner ear,
the music may have been heard aspatially.

5 CONCLUSION

The present study has shown that machine learning meth-
ods are able to discern a listener’s affective brain processing
between different spatial positions of sound sources as a

function of positive or negative affect. Annotated musical
excerpts were classified into two groups of both median
arousal and low or high valence values respectively. These
samples were presented to the listener from the front, the
lateral left or right positions, or the back, in random or-
der. Our results showed that frontal location, compared to
each of the other three sources located outside the visual
field, is associated with different brain electrophysiological
patterns related to emotional processing. In fact, we found
a significant involvement of alpha, beta, and gamma fre-
quency bands in frontal and central sites, together with FAA
measures, in distinguishing between such source locations.
These findings were not reflected in the subjective rating
analysis, hinting that the subjects may have excluded the
spatial aspect of the music when consciously evaluating the
heard excerpts. While more analysis is necessary, these first
results prove promising. Further analysis is necessary to
understand how the source location is able to influence the
emotional impact of music, particularly focusing on arousal.
Lastly, future work will also have to include the median
plane to get a more comprehensive view of the effects of
spatial source locations on the listener’s affective state.
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