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Abstract

We introduce a neural network model for regression in which prediction uncertainty is quantified by Gaussian random fuzzy
numbers (GRFNs), a newly introduced family of random fuzzy subsets of the real line that generalizes both Gaussian random
variables and Gaussian possibility distributions. The output GRFN is constructed by combining GRFNs induced by prototypes
using a combination operator that generalizes Dempster’s rule of Evidence Theory. The three output units indicate the most
plausible value of the response variable, variability around this value, and epistemic uncertainty. The network is trained by
minimizing a loss function that generalizes the negative log-likelihood. Comparative experiments show that this method is
competitive, both in terms of prediction accuracy and calibration error, with state-of-the-art techniques such as random forests
or deep learning with Monte Carlo dropout. In addition, the model outputs a predictive belief function that can be shown to

be calibrated, in the sense that it allows us to compute conservative prediction intervals with specified belief degree.
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Abstract—We introduce a neural network model for regression
in which prediction uncertainty is quantified by Gaussian random
fuzzy numbers (GRFNs), a newly introduced family of random
fuzzy subsets of the real line that generalizes both Gaussian
random variables and Gaussian possibility distributions. The
output GRFN is constructed by combining GRFNs induced
by prototypes using a combination operator that generalizes
Dempster’s rule of Evidence Theory. The three output units
indicate the most plausible value of the response variable,
variability around this value, and epistemic uncertainty. The
network is trained by minimizing a loss function that generalizes
the negative log-likelihood. Comparative experiments show that
this method is competitive, both in terms of prediction accuracy
and calibration error, with state-of-the-art techniques such as
random forests or deep learning with Monte Carlo dropout. In
addition, the model outputs a predictive belief function that can
be shown to be calibrated, in the sense that it allows us to compute
conservative prediction intervals with specified belief degree.

Index Terms—Evidence theory, Dempster-Shafer theory, belief
functions, machine learning, neural networks.

I. INTRODUCTION

The Dempster-Shafer (DS) theory of belief functions, also
known as Evidence Theory, is a mathematical formalism for
reasoning with uncertainty [1], [2]. This formalism relies on
two main components: (1) the representation of elementary
pieces of evidence using belief functions, and (2) their combi-
nation by a conjunctive operator, referred to as Dempster’s
rule of combination. The greater flexibility of DS theory
makes it suitable to reason and make decisions based on weak
information, which would not be adequately represented by
probability measures. In particular, it is possible, using belief
functions, to distinguish between conflicting evidence equally
supporting different hypotheses on the one hand, and sheer
ignorance resulting from total lack of evidence on the other
hand [3].

In machine learning, DS theory provides a powerful frame-
work for expressing uncertainty about the output of a learning
algorithm. Most applications so far have concerned clustering
[4], [5] and classification [6]—[8]. In particular, in supervised
classification, several algorithms have been proposed to learn
evidential classifiers, defined as classifiers that represent class
prediction uncertainty by belief functions. One of the first
such classifier is the evidential K -nearest neighbor (EKNN)
rule [6], which constructs a predictive belief function by
combining the evidence of the K nearest neighbors of the
feature vector under consideration using Dempster’s rule. A
similar idea is implemented in the evidential neural network
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(ENN) model introduced in [9], in which the learning vectors
are summarized by prototypes, whose location in feature space
is optimized together with other network parameters. Recently,
this idea has been applied to deep networks [10] [11] by adding
a “DS layer” to a deep architecture.

The reason why applications of DS theory to machine
learning have been confined to clustering and classification
is that these learning tasks only require the definition of belief
functions over a finite set of clusters or classes, a simple
mathematical framework for which many tools and concepts
of DS theory have been developed [2]. A belief function on a
finite domain (or frame of discernment) can be conveniently
represented by a mass function assigning probability masses
to some subsets called focal sets. Such mass functions are
easily combined by Dempster’s rule. In contrast, applying DS
theory to regression is more challenging, as the domain of
the response variable is then the real line or a real interval.
Whereas some mathematical models for generating belief
functions on the real line, such as random intervals have been
well studied [12], [13], combining such belief functions by
Dempster’s rule is often computationally difficult and requires
Monte Carlo simulation [14].

A way to circumvent this difficulty is to discretize the
response variable. This is the strategy followed in [15], in
which a regression neural network directly extending the ENN
model is proposed. The output of this model is a mass function
focussed on disjoint intervals and the whole domain of the
response variable. However, discretizing a variable inevitably
results in a loss of accuracy. Another approach, introduced in
[16], [17], is to directly extend the EKNN rule by defining,
for each neighbor, a simple mass functions with two focal
sets: a singleton composed of a real number and the frame
of discernment. This simple method, called EVREG, was
shown in [17] to have good performances as compared to
nearest neighbor regression and other nonparametric methods,
and to allow efficient handling of uncertain response data
(such as provided by an unreliable sensor). However, as a
nonparametric method, the performance of EVREG decreases
with the input dimension, and it cannot compete with state-
of-the-art regression methods.

In this paper, we propose a new regression neural network
model that quantifies prediction uncertainty using belief fun-
tions'. This model, called ENNreg, is based on the formal-
ism of Gaussian random fuzzy numbers (GRFNs) recently
introduced in [19]. A GRFN is a random fuzzy subset of

I'This paper is an extended version of the short paper [18] presented at the
7th International Conference on Belief Functions, Paris, 26-28 October 2022.



Fig. 1: Definition of a random fuzzy set.

the real line, which can be described as a Gaussian possi-
bility distribution whose mode is a Gaussian random variable
or, equivalently, as a Gaussian random variable with fuzzy
mean but precise variance. GRFNs induce belief functions
on the real line and can be combined using a generalization
of Dempster’s rule. In ENNreg, a GRFN is associated to
each prototype based on the distance to the input vector,
and the GRFNs are combined using an operator generalizing
Dempster’s rule. The network output is a GRFN quantifying
both random and epistemic prediction uncertainty. The method
is shown to be competitive with state-of-the-art models in
a variety of regression tasks, while quantifying prediction
uncertainty using a GRFN and its associated belief function.
The output belief function is shown to be calibrated, in the
sense that it makes it possible to compute prediction intervals
with coverage probability at least at large as their nominal
level.

The rest of this paper is organized as follows. The necessary
background on random fuzzy sets and GRFNss is first recalled
in Section II. The desired properties of predictive belief
functions in regression tasks are then studied in Section III,
and the proposed ENNreg model is introduced in Section IV.
Experimental results are reported in Section V, and Section
VI concludes the paper.

II. RANDOM Fuzzy SETS

The theory of epistemic random fuzzy sets (RFSs) was
introduced in [20] and [19] as a general framework encom-
passing both DS theory and possibility theory. We first recall
some important definitions related to random fuzzy sets in
Section II-A. Gaussian random fuzzy numbers, a parametric
family of RFSs on the real line are then described in Section
II-B.

A. General definitions

The notion of random fuzzy set generalizes that of random
set [21] by mapping elements of a probability space to fuzzy
subsets of the domain © of the variable of interest. This
mathematical framework has been used to model a random
experiment whose outcomes are fuzzy sets [22]-[24]. Here,
as in [20] and [19], we use it as a model of unreliable and
fuzzy evidence, directly generalizing the DS framework.

Formally, let (€2, ¥q, P) be a probability space, (©,¥e¢) a
measurable space, and X a mapping from € to the set [0, 1]
of fuzzy subsets of © (see Figure 1). Under measurability
conditions [25], the tuple (Q,Xq, P,©,Xg, X) is said to be
a random fuzzy set.

Under the epistemic interpretation, we see {2 as a set of
interpretations of a piece of evidence about a variable 6

taking values in ©. If interpretation w € €2 holds, we know
that “0 is X (w)”, i.e., @ is constrained by the possibility
distribution defined by X (w). The resulting random fuzzy set
thus encodes a state of knowledge about variable 6. If all
images X (w) are crisp, then X defines an ordinary random
set. If X is a constant mapping, it is equivalent to specifying
a unique fuzzy subset of ©, which defines a possibility
distribution [26].

Belief and plausibility functions: In the following, we
assume random fuzzy set X to be normalized, i.e., to verifiy
the following conditions:

1) For any w € £, )?(w) is either the empty set, or a
normal fuzzy set, i.e., the height of X (w), defined as
hgt(X (w)) = supgeg X (w)(6), is either 0 or 1;

2) The set of elements w € € whose image is empty has
zero probability, i.e., P{w € Q: X(w) =0}) = 0.

Conditionally on w € £ being the true interpretation, we
can define possibility and necessity measures [26] on O,
respectively, as

0 otherwise,

lg0(B) = g2p X)) 0
and
Nz () (B) = {1 — 15,y (B9) if X(w) #0

for all B C ©. Let Belg and Pl denote the mappings from
Yo to [0, 1] that associate to each subset B € Yo, respectively,
its expected necessity and its expected possibility, i.e.,

Belg(B) = /Q Ng () (B)dP(w) )

and
Pls(B) = /Q Hf(w)(B)dP(w) =1—Belg(B°). 3

It can be shown that Bel P and Pl 5 are, respectively, belief
and plausibility functions [25].

Combination: Consider two epistemic random fuzzy sets
(Q,%;,P;,0,%0, X;); i = 1,2, encoding independent pieces
of evidence. If interpretations w; € 21 and wy € ) both
hold, we know that “6 is X;(w1)” and “8 is Xo(w2)”. It is
then natural to combine the fuzzy sets X (w;) and Xa(w2) by
an intersection operator. As discussed in [20], the normalized
product intersection operator ®, defined for any two fuzzy
subsets F' and G of © as

F(O)GO) . ~
-~ - ——~ if hgt(F -G 0
(FOG)(0)=q hgt(F-G) ifhot(F-G) > (4)
0 otherwise,

is suitable for combining fuzzy information from independent
sources and it is associative [27]. We thus consider the map-
ping X¢ from Q; x s to [0,1]€ defined by X (w1, w2) =
X1(w1) ® Xa(w2). To insure the normality condition, we need
to condition the product measure P; x P, on the set ©F, of
(partially) consistent interpretations, defined as

0%, = {(w1,w2) € Yy X Dy : Xop(wi,wo) # 0.



We then obtain the combined random fuzzy set
(1 x Q3,51 ® %, P12, 0, Y6, Xo),

where P, is the conditioned product measure. This operation
will be referred to as the generalized product-intersection
rule with hard normalization®. The corresponding operator,
denoted by H, is commutative and associative, and it is a
proper generalization of Dempster’s rule (it boils down to
Dempster’s rule when the combined random fuzzy sets are
crisp).

B. Gaussian Random Fuzzy Numbers

To define a practical model of random fuzzy subset of
the real line, we start with the definition of a Gaussian
Fuzzy Number (GFN). A GFN is a fuzzy subset of R with
membership function

p(x;m, h) = exp (—;(3«“ - m)2> :

where m € R is the mode and h € [0, +o0] is the precision.
Such a fuzzy number will be denoted by GFN(m,h). An
interesting property of this family of fuzzy numbers is that it
is closed with respect to the normalized product intersection:
given two fuzzy numbers GFN(mq, ki) and GFN(ma, ho),
their combination by the © operator (4) yields the fuzzy
number GFN(m12, h12) with
h1m1 + hgmg

hy + h

A Gaussian random fuzzy number (GRFN) can now be
defined as a GFN whose mode is a Gaussian random variable.
More formally, let (2, Xq, P) be a probability space and let
M : Q) — R be a Gaussian random variable (GRV) with mean
p and variance o2. The random fuzzy set X : Q — [0,1]%

defined as B
X(w) = GFN(M (w), h)

is called a GRFNNWith~mean 1, variance o2 and precision h,
which we write X ~ N(u,02,h). A GRFN is, thus, defined
by a location parameter 4, and two parameters h and o2
corresponding, respectively, to possibilistic and probabilistic
uncertainty.

A GRFN can be seen either as a generalized GRV with
fuzzy mean, or as a generalized GFN with random mode. In

mio = and h12 = hl -+ hg. (5)

particular, a GRFN X with infinite precision h = +oo is
equivalent to a GRV with mean p and variance o2, which
we can write: N(,u,a ,+00) = N(u,0?). If o2 _~O, M

is a constant random variable taking value p, and X is a
possibilistic variable with possibility distribution GFN(y, h).
énother case of interest is that where A = 0, in which case
X(w)(x) =1 for all w € Q and = € R; the belief function
induced by X is then vacuous.

As an illustration, Flgure 2 shows ten reahzatlons of two
QRFNlewN( (0.2)%,0.2) andXQNN( ,5). GREN
X1 (left) has high imprecision and low varlablllty, while X5
(right) is more precise but has higher variability.

2In [19], we proposed a different operation based on a “soft normalization”
process consisting in conditioning the product measure by a fuzzy subset
consistent interpretations. Here, hard normalization is preferred as it results
in much simpler calculations.
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Fig. 2: Ten realizations of GRFNs X1 ~ N(0,(0.2)2,0.2)
(left, in red) and Xy ~ N (5,1,5) (right, in blue). For each
GRFN X, the possibility distribution GFN(uy, hg) is also
plotted as a thick line.

As shown in [19], the contour function pl; of X defined
as plg(xz) = Plg({z}) for all x € R, has the following
expression:

h(z — p)? ) ©

1
l3(2) = ———— —
p X(x) /17+ h0'2 eXp < 2(1 + h0'2)
and the belief and plausibility of any real interval [z,y] are
given by the following formulas:

et (o)) = (1) <@ (220 -

plg(x) {‘I’ (%) N (a\/x%)] -

and
Plg(fo,y)) = @ (y;u) e <x;u> .
pl (2)® <U\/%) .\

y—u
Pl () {1 o (0 m)] . (b
where @ is the standard normal cumulative distribution func-
tion (cdf).

The usefulness of GRFNs as a model of uncertain in-
formation about a real quantity arises from the fact that
GRFNs can easily be combined by the generalized product-
intersection rule H introduced in II-A. Given two GRFNs
X1 ~ N(p1,0f,h1) and Xo ~ N(ug,03,hg), we have, as
a direction consequence of (5), X1 B Xy ~ N (12,03, hia),
with

hipy + hopo o _ hio? +h3o3
= = 8
H12 hl +h2 ) 012 (h1 +h ) ) ( a)
and h12 = hl + hg. (Sb)

III. PREDICTIVE RANDOM FUZZY SETS

In this section and in the rest of this paper, we con-
sider a regression problem, in which the task is to predict
a continuous random response variable Y from a random



vector X = (X1,...,X,) of p input variables. In Section
IV we will propose a neural network model that, given an
observed input vector X = x, computes a GRFN Y (z) with
associated belief function Belf,(w) that “approximates” Y in
some way. The network will be trained using a training set
T =A{(x1,y1),..., (®n,yn)} assumed to be an independent
and identically distributed (iid) sample from (X,Y). In this
section, we define desirable properties for a predictive RFS
Y (x). A loss function measuring predictive accuracy is first
defined in Section III-A. A notion of calibration is then
introduced in Section III-B.

A. Loss function

When predicting a random variable Y by a probability
measure P with density function f, we typically measure the
prediction error (or loss) by the negative log-likelihood

~

L(y, f) = —Inf(y), )

which can be interpreted as follows. The continuous variable Y
is always observed with finite precision, so we actually observe
an interval [y]c = [y — €,y + €] centered at y. Denoting by F’
the distribution function of P, the probability of that interval
is

P(lyle) = Fly +¢) — Fy — ¢) = 2f(y)e,

and its logarithm is equal to In f(y) plus a constant that does
not depend on f. Minimizing (9) thus amounts to maximizing
the probability of the observations.

_In the case where the prediction takes the form of a RFS
Y, we no longer have a single probability of the observation
[y]e. but two numbers: a degree of belief Bely([yl.) and a
degree of plausibility Pl ([y]). We could, thus, replace (9)
by either

Lc(y,Y) = —In Belg([yle)

or

ée(yay) = _lnPl?([y]e)a

where the precision € now appears explicitly in the expression
of the loss function. However, none of these two loss functions
adequately measures the quality of the imprecise predictions
as expressed by a RFS Y. To see this, let us assume that
Y ~ N(u,02 h) is a GREN with precision h. From (7a), it
is clear that Bely ([y]e) < ® (L) — @ (=), with an
equality when h = +oo. Consequently, whatever the values
of u and o2, a Gaussian random variable with mean 1 agd
variance o2 always achieves a loss smaller than that of Y,
which means that a higher imprecision of the RFS is never
rewarded by a decrease of the loss function. Now, when h :~O,
we have Plg([y]e) = 1 for any y, p and o2: the loss L, (y,Y)
is, thus, maximized by the vacuous, uninformative RFS.

From the above analysis, we propose to consider as the loss
function a weighted sum of L.(y,Y) and L (y,Y):

L)\,e(ya Y) = )‘Ze(ya Y) + (1 - )‘)ée(ya Y), (10)

where A € [0, 1] is a hyperparameter. Choosing a smaller value
of A amounts to favoring more cautious predictions. Figure 3
shows the variation of the loss £y (0,Y) with h for A €
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Fig. 3: Loss CA’E(O,?) for a GREN Y ~ N(u,1,h) as
a function of h, for p = 1 (a) and o = 5 (b) and
A €{0,0.2,0.5,0.8,1}.

{0,0.2,0.5,0.8,1}, ¢ = 0.01, and Y ~ N (1,1, h) with pu = 1
(Figure 3a) and p = 5 (Figure 3b). We can see that the loss is
minimized for A~ = 0 when A = 0, for h — +00 when A =1,
and for some intermediate value of A when 0 < A\ < 1. For
any given value of A, the optimum precision & is smaller when
= 5: a larger error is compensated by a smaller precision.

When u, 02 and h are free to vary, loss function (10) is
minimal for p € [y]., h = +o00 and o2 — 0. As in support
vector regression [28], € can be seen as a value under which
the error is not penalized. We can also rer~11ark tNhat, when € is
small, we have, for a probabilistic GRFN Y ~ N(u, o2, +00),
Lye(y,Y) =~ —Ing(*>F)~Ine, where ¢ denotes the standard
normal probability density function; loss function (10) then
approximates the negative log-likelihood, up to an additive
constant.

In section IV, we will describe a neural network model
for computing a GREN Y (xz;V¥) from an input vector x
and a parameter vector W. Given a training set 7 =
{(z1,91),. .., (®n,yn)}, the network will be trained by min-
imizing the empirical risk, or average loss

1< ~
Cre(¥) = Ezﬁx,e(yuy(wi;\l’)% 1n
i=1

a ﬁnite-samEle estimate of  the loss

Ex y[Lx (Y, Y(X;¥))].

expected

B. Calibration

In the case of probabilistic predictions of the response
variable Y, we usually expect the predictive probability dis-
tribution to be close to the true conditional distribution of
Y given X = x. More precisely, let Fy|, be a predictive
cumulative distribution function (cdf) for ¥ given X = x.
For any a € (0,1), we can construct a prediction interval at
level o as

o~ 11—« ~ 1+ «

1 1

Colx) = [FM_ ( . ) F ( ' ﬂ |
These intervals are said to be calibrated if

Va € (0, 1), PX,Y (Y € CQ(X)) ~ Q.

12)



This property can be checked by estimating the coverage
rates Px y (Y € C,(X)) for different values of o using a
validation set and plotting the estimates vs. the nominal values
a. The resulting graph is known as a calibration plot.

In the case considered here, where the response is predicted
for X = z by a GRFN Y (z), we also need a notion of
calibration that can easily be checked graphically. Different
notions of calibration for belief functions are reviewed in [29].
Recently, Cella and Martin [30] proposed two definitions for
“valid” preditions in the belief function framework. However,
the weaker definition is too weak to be practically useful, while
the stronger one appears to be verified only for consonant
belief functions. Here, we will adopt a simple definition based
on an immediate generalization of (12).

For any a € (0, 1], we define an a-level belief prediction
interval (BPI) as an interval B, (x) = p(x) + a(x) centered
at p(a), such that Belg (Ba(x)) = a. A BPI at level « is,
thus, an interval that is believed to a degree o to contain the
true value of the response variable Y. The predictions will be
said to be calibrated if, for all « € (0,1], a-level BPIs have
a coverage probability at least equal to «, i.e,

Va € (0,1], Px)y (YGBQ(X)) > Q. (13)

As in the probabilistic case, the calibration of evidential
predictions can be checked graphically using a calibration plot
(see Figure 6 in Section V-A). The predictions are calibrated
if the curve lies above the first diagonal, and the predictions
are all the more precise that the curve is close to the first
diagonal.

IV. NEURAL NETWORK MODEL

In this section, we propose a neural network model, called
ENNreg, which for an observed input vector X = x computes
a GRFN Y (x), with associated belief function Belg 2 that
“approximates” Y in some way. As the ENN model introduced
in [9] for classification, ENNreg is based on prototypes. The
distances to the prototypes are treated as independent pieces
of evidence about the response and are combined by the
generalized product-intersection rule H recalled in Section
II-A.

The network architecture and propagation equations will
first be described in Section IV-A. Learning will then be
discussed in Section I'V-B.

A. Neural network architecture

Let wq,...,wg denote K vectors in the p-dimensional
feature space, called prototypes. The similarity between input
vector « and prototype wy, is measured by

sk(x) = exp(—¢llz — wyil?), (14)

where <, is a positive scale parameter. The evidence of
prototype wy, is represented by a GRFN

Yi(@) ~ N(ur(), 0F, s (@)hx)

where oj and hy, are variance and precision parameters for
prototype k; the mean uy () is defined as

p(x) = Bl + Bro, (15)

Fig. 4: Neural network architecture.

where 3, is a p-dimensional vector of coefficients, and Sy
is a scalar parameter. The quantity k() can be seen as an
estimate of the conditional expectation of the response Y given
that x is close to wy, a,% is an estimate of the conditional vari-
ance, while the precision term sy (x)hj represents epistemic
uncertainty. Obviously, when the distance ||z — wy|| tends to
infinity, the precision si(x)hy tends to 0 and Yj(x) becomes
vacuous. The vector 1, of parameters associated to prototype
k is, thus, 1y = (wr, Yk, By, Bro, o7, hi)-

The output Y (z) for input x is computed by combin-
ing the GRFNs Yi(x), k¥ = 1,...,K induced by the K
prototypes using the H operator. From (8), it is a GRFN
Y(z) ~ N(u(z),o%(x), h(x)), with

- Yoiy sk (@) b ()
25:1 sp(x)hy

K
0’2(58) — Zk:l si(az)h%ai

(S se@m)

and h(x) = Zszl sk(x)hy.

These operations can be seen as being performed by a neural
network with an input layer, two hidden layers of 2K units
and an output layer of three units, as shown in Figure 4.
The first hidden layer is composed of K pairs of units totally
connected to the input units: a radial basis function (RBF) unit
with weight vector wy, that computes si(a) and a linear unit
with weight vector 3, and bias Sy that computes py(x). The
second layer is also composed of K pairs of units: in each pair
k, a “squaring” unit connected to RBF unit k£ of the previous
layer computes s2 (), and a “product” unit connected to RBF
unit £ and linear unit k£ of the previous layer computes the
product sy (x)uk(x). Finally, the output layer is composed
of (1) a linear unit with shortcut connections from the RBF
units in the first hidden layer and weights (hy) that computes
h(z); (2) a unit connected to the squaring units of the previous
layer with weights (his%(x)) that outputs o(z), and (3) a
unit connected to the product units of the previous layer with
weights (hy) that computes ().

Although the structure of this network is more complex than
that of RBF networks [31] [32], the complexity of one input

p(x)

b




propagation is the same, i.e., O(pK ). We can also remark that
this neural network model generalizes both RBF networks and
the linear model:

o If B, = 0 for all k, then pp(x) = Pro, and p(x) is
identical to the output of an RBF neural network [33]
with K hidden units, hidden-to-output weights hy 8o and
normalized outputs;

o If 4 = 0 for all k, the output () becomes linear in x
and the variance component o%(x) is constant. We then
have a linear model with constant variance.

B. Learning

Let U = (¢1,..., 1K) denote the vector of all parameters in
the model. Given a training set 7 = {(z1,v1), ..., (Zn,¥n)}
the accuracy of the predictions can be measured by the
empirical risk (11) introduced in Section III-A. To train the
ENNreg model described in Section IV-A, we will use the
regularized average loss

K

R P
O 1) = Crot) + &3 et 2332
k=1 k=1

where £ and p are regularization coefficients. The first regular-
ization term has the effect of reducing the influence of some
prototypes (setting h; = 0 actually amounts to discarding
prototype k), while the second one shrinks the solution towards
a linear model. Loss function (16) can be minimized using any
batch or online gradient-based optimization procedure. The
constraints h; > 0 are imposed by introducing intermediate
variables 7, such that hy, = n7. The gradient can be computed
by error back-propagation, with complexity O(Kp).

As in RBF networks, the prototypes in the ENNreg
model can easily be initialized using a clustering pro-
cedure such as the K-means algorithm. As before, let
{(x1,y1),- .., (®n,yn)} be the training set. Let Z;, denote the
set of indices of input vectors in cluster k, and ny = |Zx|. The
prototypes are initialized as the cluster centers,

g T,
nk

€Ly,

(16)

and vy is initialized proportionally to the inverse square root
of the mean squared distances within cluster &:

1 1
=75 (Z .
1€Ty,

Parameters [ and a,%, are set, respectively, to the mean and
variance of the response variable within cluster k:

5k0— Zyza Uk:*Z — Bro)?
ZEIk zEIk
Finally, we set 3, =0 and hy = 1.

Overall, the model has five hyperparameters: the number K
of prototypes, coefficients € and A in the definition of the loss
(10), and regularization coefficients £ and p in (16). In practice,
K can be set to a large value, and the effective number of
prototypes can be controlled by £. We found the network
performance to be quite robust to the choice of ¢ and A. In

the experiments reported in Section V, these hyperparameters
were fixed to € = 0.010y, where oy is the sample standard
deviation of Y, and A = 0.9. Only £ and p thus have to be
tuned using either cross-validation or the hold-out method.

V. EXPERIMENTAL RESULTS

We first give an illustrative example in Section V-A. Results
from a comparative experiment are then reported in Section
V-B.

A. Illustrative example

As an illustrative example, we consider independent and
identically distributed (iid) data simulated from the following

distribution: the one-dimensional input X has a uniform
distribution in the interval [—2, 2], and
X +2

Y = X + (sin3X)? + —=U,
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where U ~ N(0,1) is a standard normal variable. The con-
ditional standard deviation of Y given X = x thus increases
linearly from O for 2 = —2 to 1/+/2 for z = 2.

We generated a learning set of size n = 300 and a validation
set of the same size. Figure 5a shows the learning data with
the expected values p(z), as well as the intervals u(x) 420 (z)
as functions of z for a network initialized with K = 30
prototypes, before training. We can see that the initial solution
is already a good approximation to the true regression function.

The values of hyperparameters & and p minimizing the
mean squared error on the validation set were & = 1074
and p = 0.01. Figure 5b shows the outputs u(z) of a
network trained with these values, together with BPIs at levels
a € {0.5,0.9,0.99}.

A calibration plot is shown in Figure 6, representing the
proportion of a-level BPIs containing the observed value of
the response in the validation set, for « € {0.1,0.2,...,0.9}.
In Figure 6, we also show the calibration graph for the prob-
abilistic prediction intervals defined as pu(z) & u(14qa)/20(2).
In this particular case, both prediction intervals are calibrated,
the BPIs being more conservative than the probabilistic ones.
We can remark that we can make the BPIs less conservative
by multiplying the output precisions h(z) by some constant
¢ > 1. The probabilistic intervals are recovered when ¢ —
+00. Conversely, we can make the BPIs more conservative
by multiplying the output precision by a constant ¢ < 1. This
technique will be illustrated in Section V-B.

From Figure 6, we can see that the calibration curve of
BPIs is close to that of probabilistic prediction intervals, which
indicates that, for this dataset, the output precision h(x) is
quite high. This is confirmed by Figure 7a showing h(x)
vs. x. Precision first increases, and then decreases with = as
the errors |y; — p(x;)| increase, which can be explained by
Figure 3: larger errors result in more imprecise predictions.
Figure 7b shows the output standard deviation o(z) as a
function of z: it slightly overestimates the true standard
deviation, but the increasing trend is well captured.



(a)

(b)

Fig. 5: (a) Learning data, true regression function (blue broken
line) and expected values p(xz) with a neural network of
K = 30 prototypes after initialization (red solid line) with
a two-standard-deviation intervals (grey area); (b) Predictions
after training: expected values p(z) (red solid line) and belief
prediction intervals at levels « € {0.5,0.9,0.99} (grey areas).
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1 1

coverage rate

0.2
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Fig. 6: Calibration plots for probabilistic prediction intervals
(blue circles) and belief prediction intervals (red squares),
showing the validation coverage rates vs. the belief or con-
fidence levels « € {0.1,...,0.9}.

(2)

(b)

Fig. 7: Output precision h(z) (a) and standard deviation o (x)
(b) for the simulated data. The broken line indicates the true
standard deviation.

TABLE I: Characteristics of the datasets.

n p response
Boston 506 13 medv

Energy 768 8 Y2

Concrete 1030 8 strength

Yacht 308 6 Y

Wine 1599 11 quality

kin8nm 8192 8 V9

Crime 1994 100 ViolentCrimesPerPop
Residential 372 103 V10

Airfoil 1503 5 Y

Bike 731 9 cnt

B. Comparative experiments

We compared the performance of ENNreg in terms or
root mean squared (RMS) error to those of eight alternative
regression methods on ten datasets. Eight of the datasets
(Energy efficiency, Concrete Compressive Strength, Yacht
Hydrodynamics, Wine quality — red, Communities and Crime,
Residential building, Airfoil Self-Noise, Bike sharing) are
available from the UCI Machine Learning Repository®. The
Boston dataset is included in the R package MASS [34], and the
kin8nm dataset was downloaded from the OpenML web site*.
The characteristics of these datasets are summarized in Table
I. We also give in Table I the name of the response variable, as
some datasets have several possible response variables. For the
“Communities and Crime” dataset, variables with two missing
values or more were discarded. For the “Bike sharing dataset”,
the nine predictors were season, year, month, holiday,
weekday, weathersit, atemp, hum and windspeed.

The eight methods are:

o Four nonlinear regression algorithms using RBF kernel
functions: RBF networks, Relevance Vector Machines
(RVM), Support Vector Machines (SVM), and Gaussian
Processes (GP);

o Two state-of-the-art methods for nonlinear regression:
Random Forests (RF) and Multilayer Perceptrons (MLP)
with one hidden layer of sigmoidal units;

3https://archive.ics.uci.edu/ml/.
“https://www.openml.org.



TABLE II: Average RMS and standard errors for ENNreg and eight alternative algorithms on ten datasets.

ENNreg RBF RVM SVM GP RF MLP ridge lasso
Boston  2.87 £ 0.14 331 £0.19 342+0.17 3.17+£0.15 370+022 311+ 0.14 314 +0.14 505+ 023 5.02 £ 0.21
Energy 1.06 £ 0.05 2.06 £0.08 1.79 £0.05 139 +0.06 258 +£0.07 1.75£0.06 095=+0.16 3.56 =+ 0.10 3.26 £ 0.09
Concr. 510 £0.12 6304+0.19 638 +0.16 562+0.13 693 +£0.13 4.64+ 012 482+ 0.16 10.71 +0.17 10.63 £+ 0.18
Yacht 0.44 £ 0.04 2004020 188 +£020 193+0.11 6.12+£031 096=+0.08 050+ 0.05 848 £ 0.24 8.35 £ 0.23
Wine 0.63 £0.01 0.63 +£0.01 0.80+002 0.61+001 061+£001 056=+001 077+ 0.01 0.65 £ 0.01 0.65 + 0.01
kin8nm  0.08 = 0.00  0.11 4 0.00 - 0.09 £ 0.00 0.08 & 0.00 0.14 = 0.00 0.07 £ 0.00  0.20 & 0.00 0.20 4 0.00
Crime 0.14 £ 0.00 0.14 = 0.00 0.14 £ 0.00 0.14 = 0.00 0.14 £ 0.00 0.14 = 0.00 0.14 £ 0.00  0.14 £ 0.00 0.14 £ 0.00
Resid. 0.11 + 001 0.16 £001 0.17 £0.01 0.15£0.01 0224+0.01 0.16+0.01 0.14 £ 0.01 0.18 £ 0.01 0.17 £ 0.01
Airfoil 146 £ 0.03 1.70 £0.04 258 £0.04 237 +0.04 249+ 004 144 £0.04 153 £ 0.04 3.84 + 0.04 3.83 + 0.04
Bike 659 £0.19 649 =015 6.64 £0.14 7.11 +0.16 7.55+£0.14 686+ 0.17 9.68 £ 020 7.82+0.16 7.76 £ 0.17
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Fig. 8: Calibration plots for ENNreg and six datasets: prob-
abilistic predictions (blue circles), raw evidential predictions
(red squares) and adjusted evidential predictions (green trian-

gles).

TABLE III: Average CPU time and standard errors for ENNreg
and RBF networks on five datasets.

Dataset ENNreg RBF

Boston 2.63 £ 0.09 2.88 £ 0.08
Concrete 245 + 0.08 8.16 £ 0.19
Wine 1.92 £+ 0.03 497 + 0.24
Resid. 11.38 + 0.47  23.43 £+ 0.55
Airfoil 20.50 £ 1.30  28.90 £ 0.39

o Two regularized linear regression methods: Ridge and
Lasso.

For all methods, except RBF networks, we used the imple-
mentation in the R package caret [35]. For training ENNreg,
we used batch learning using the algorithm described in [36]
for all datasets, except kin8nm for which we used mini-batch
stochastic gradient descent. Each dataset was split randomly
into training and test sets containing, respectively, 90% and
10% of the observations. The random splits were repeated
20 times. All input variables were scaled to have zero mean
and unit standard deviation. For each method, hyperparameters
were tuned by 5-fold cross-validation. For ENNreg, we set
A= 0.9 and € = 0.01¢0, (where o, is the standard deviation
of the response variable) for all the simulations. The number of
prototypes was fixed to K = 30 for all datasets except kin8nm
and Airfoil, for which it was set to X' = 100. Hyperparameters
& and p was tuned by cross-validation.

The results’ are reported in Table II. We can see that
ENNreg stands among the best methods for seven out of
the ten datasets. It is only outperformed by RF and MLP on
the Concrete dataset, RF on the Wine dataset, and MLP on
the kin8nm dataset. In most cases, it performs strictly better
than other RBF-based methods (except for the Crime dataset,
on which all methods have equivalent performances, and for
the Bike dataset, on which it performs as well as RBF and
RVM). Overall, it appears that ENNreg is a very competitive
regression method in terms of prediction accuracy.

Comparing computing time across all methods is difficult
because it highly depends on implementation. We have seen in
Section IV that both forward and back propagation in ENNreg
can be performed in linear time with respect to both the
number of inputs and the number of prototypes; consequently,

SResults with the RVM algorithm are not reported for the kin8nm dataset,
because of the excessive computing time on our machine (a 2019 16”
MacBook Pro with a 2.4 GHz 8-core Intel i9 processor).



TABLE IV: Average RMS and standard errors for ENNreg,
probabilistic backpropagation (PBP), Monte Carlo dropout and
deep ensembles for six datasets.

ENNreg PRP MC-dropout Deep ens.
Boston  2.87 + 0.14 3.01 £ 0.18 297 + 0.19 3.28 £ 1.00
Energy  1.06 £ 0.05 1.80 £ 0.05 1.66 & 0.04 2.09 £ 0.29
Concr. 510 £ 012 5.67 £0.09 523 +£0.12 6.03 £ 058
Yacht 044 + 004 1.024+0.05 1.11 £0.09 1.58 £ 048
Wine 0.63 + 0.01 0.64 = 0.01 0.62 £ 0.01 0.64 £+ 0.04
kin8nm  0.08 £+ 0.00 0.10 £ 0.00 0.10 & 0.00  0.09 £ 0.00

TABLE V: Average NLL and standard errors for ENNreg,
probabilistic backpropagation (PBP), Monte Carlo dropout and
deep ensembles for six datasets.

ENNreg PBP MC-dropout Deep ens.
Boston 253 £0.07 257 +£0.09 246 £ 0.06 241 + 0.25
Energy 1.14 + 0.07  2.04 £ 0.02 1.99 + 0.02 1.38 + 0.22
Concr. 3.38 £ 0.13 316 £ 0.02  3.04 + 0.02  3.06 = 0.18
Yacht 0.13 £ 0.12 1.63 £ 0.02 1.55 + 0.03 1.18 + 0.21
Wine 0.94 + 0.01 0.97 £ 0.01 093 + 0.01  0.94 £ 0.12
kinnhm  -1.19 = 0.00 -0.90 £ 0.01 -0.95 + 0.01  -1.20 £ 0.02

the algorithmic efficiency of ENNreg is similar to those of
other neural network methods. We have done a comparison
with the RBF network model because it was implemented
in a similar way as ENNreg and with the same optimization
algorithm. Average computing times for both methods on five
datasets are shown in Table III. We can see that ENNreg is
actually faster than RBF networks with the same number of
prototypes, which can be explained by faster convergence due
to greater flexibility.

We also compared our results to published results obtained
with three recent neural network methods: probabilistic back-
propagation (PBP) [37], Monte Carlo dropout [38], and deep
ensembles [39], on six of the ten datasets for which published
results with these methods are available. The RMS values
are shown in Table IV. We can see that ENNreg performs
strictly better than, or as well as these three methods on the
six considered datasets in terms of RMS.

The PBP, Monte Carlo dropout and deep ensemble methods
were actually introduced for uncertainty quantification in deep
networks. Probabilistic calibration is usually measured by the
negative loglikelihood (NLL), assuming Gaussian errors. For
ENNreg, NNL can be computed using the mean u(x) and
variance o?(x) output, ignoring the precision h(x). ENNreg
is then seen as a probabilistic method. The NLL values for
ENNreg and the three neural network methods on the six
datasets (as reported in [37], [38] and [39]) are shown in Table
V. We can see that ENNreg stands among the best methods for
five out of the six datasets in terms of probabilistic calibration
as measured by NLL.

As mentioned in Section V-A, the ENNreg model provides
not only conditional mean and variance estimates as proba-
bilistic models, but a precision output h(x) that can be used
to compute calibrated BPIs as defined by (13). Figure 8 shows
calibration plots for the same six datasets as above. Each plot
shows the calibration curves of (1) probabilistic prediction
intervals (using only p(z) and o2(x)), (2) raw BPIs and (3)

adjusted BPIs obtained by multiplying the output h(x) by
a constant ¢ > 0 in such a way that the calibration curve
lies above the diagonal, but as close as possible to it. We
can distinguish several cases. For the Boston, Energy and
Yacht datasets (Figures 8a, 8b and 8d), the BPIs are calibrated
but too conservative. Applying a correction factor ¢ = 2
increased the precision of the predictions. In the case of the
Concrete dataset (Figure 8c), the BPIs before adjustment are
not calibrated. In this case, we need to apply a correction
factor ¢ < 1 to make the predictions more imprecise. Here,
we used ¢ = 0.1. Finally, for the Wine and kin8nm datasets
(Figures 8e and 8f), the calibration curves corresponding to
probabilistic predictions are already above the diagonal, which
means that the probabilistic prediction intervals are already
calibrated BPIs. In such a case, we can consider that the
probabilistic predictions provide an adequate description of
prediction uncertainty and neglect the precision output h(x)
or, equivalently, multiply it by ¢ = oo.

VI. CONCLUSIONS

We have introduced an evidential neural network model
for regression, called ENNreg. In this model, distances to
K prototypes are considered as pieces of evidence about the
response variable and are described by GRFNs. The total
evidence is then pooled by the generalized product-intersection
rule, an extension of Dempster’s rule in the epistemic random
fuzzy set setting. The network architecture is composed of
a first hidden layer of K RBF units and K linear units, a
second hidden layer of 2K units, and an output layer of three
units with cross-cut connections from the two hidden units.
The network output is a GRFN described by three numbers: a
point prediction j(x), a conditional variance estimate o2(x),
and a precision parameter h(x) whose value depends on
the distances between the input vector and the prototypes,
and which can be seen as describing the reliability of the
probabilistic predictions. This additional degree of freedom
makes it possible to quantify not only random uncertainty, but
also epistemic uncertainty.

The network output can also be expressed as a predictive
belief function on the real line induced by the output GRFN.
We have defined a loss function for such outputs, extending
the negative log-likelihood to evidential regression. We have
also discussed the calibration of predictive belief functions
for regression tasks and introduced a definition based on
the coverage rates of belief prediction intervals (prediction
intervals with specified belief degree), which are required to
be conservative. Calibrated belief prediction intervals at degree
« thus contain, on average, at least 100a% of future obser-
vations. This calibration property can be assessed visually by
drawing calibration plots.

Comparative experiments have shown that ENNreg per-
forms better in terms of RMS error than other RBF-based
regression methods such as RBF networks, SVM, RVM and
Gaussian processes, and to be competitive with state-of-the art
methods for regression such as random forests and multilayer
perceptrons. Furthermore, a comparison with results reported
in the literature for probabilistic back-propagation, Monte



Carlo dropout and deep ensemble shows that ENNreg is also
competitive with these deep learning approaches in terms of
both prediction accuracy and probabilistic calibration, while
offering the advantage of a richer quantification of uncertainty
thanks to the random fuzzy set formalism.

This research can be extended in several directions. For
structured inputs such as time series or images, additional
feature-extraction layers could be inserted before the prototype
layer, as done in [10] for image classification. For regression
with multiple outputs, the ENNreg model could be extended
to compute outputs in the form of Gaussian random fuzzy
vectors as introduced in [19]. Finally, other families of random
fuzzy numbers could be used to accomodate outputs with, e.g.,
skewed distribution or bounded support.

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

A. P. Dempster, “Upper and lower probabilities induced by a multivalued
mapping,” Annals of Mathematical Statistics, vol. 38, pp. 325-339, 1967.
G. Shafer, A mathematical theory of evidence. Princeton, N.J.: Princeton
University Press, 1976.

T. Denceux, D. Dubois, and H. Prade, “Representations of uncertainty in
artificial intelligence: Beyond probability and possibility,” in A Guided
Tour of Artificial Intelligence Research, P. Marquis, O. Papini, and
H. Prade, Eds. Springer Verlag, 2020, vol. 1, ch. 4, pp. 119-150.

T. Denoeux, S. Li, and S. Sriboonchitta, “Evaluating and comparing
soft partitions: an approach based on Dempster-Shafer theory,” IEEE
Transactions on Fuzzy Systems, vol. 26, no. 3, pp. 1231-1244, 2018.
Z. Su and T. Denceux, “BPEC: Belief-peaks evidential clustering,” IEEE
Transactions on Fuzzy Systems, vol. 27, no. 1, pp. 111-123, 2019.

T. Denceux, “A k-nearest neighbor classification rule based on
Dempster-Shafer theory,” IEEE Trans. on Systems, Man and Cybernet-
ics, vol. 25, no. 05, pp. 804-813, 1995.

Z.-G. Liu, Y. Liu, J. Dezert, and F. Cuzzolin, “Evidence combination
based on credal belief redistribution for pattern classification,” IEEE
Transactions on Fuzzy Systems, vol. 28, no. 4, pp. 618-631, 2020.

Z. Liu, X. Zhang, J. Niu, and J. Dezert, “Combination of classifiers
with different frames of discernment based on belief functions,” IEEE
Transactions on Fuzzy Systems, vol. 29, no. 7, pp. 1764-1774, 2021.
T. Denceux, “A neural network classifier based on Dempster-Shafer
theory,” IEEE Trans. on Systems, Man and Cybernetics A, vol. 30, no. 2,
pp. 131-150, 2000.

Z. Tong, P. Xu, and T. Denceux, “An evidential classifier based on
Dempster-Shafer theory and deep learning,” Neurocomputing, vol. 450,
pp. 275-293, 2021.

L. Huang, S. Ruan, P. Decazes, and T. Denceux, “Lymphoma seg-
mentation from 3D PET-CT images using a deep evidential network,”
International Journal of Approximate Reasoning, vol. 149, pp. 39-60,
2022.

A. P. Dempster, “Upper and lower probabilities generated by a random
closed interval,” Annals of Mathematical Statistics, vol. 39, no. 3, pp.
957-966, 1968.

P. Smets, “Belief functions on real numbers,” International Journal of
Approximate Reasoning, vol. 40, no. 3, pp. 181-223, 2005.

O. Kanjanatarakul, S. Sriboonchitta, and T. Denceux, “Prediction of
future observations using belief functions: A likelihood-based approach,”
International Journal of Approximate Reasoning, vol. 72, pp. 71-94,
2016.

T. Denceux, “Function approximation in the framework of evidence the-
ory: A connectionist approach,” in Proceedings of the 1997 International
Conference on Neural Networks (ICNN’97), vol. 1. Houston: IEEE,
June 1997, pp. 199-203.

S. Petit-Renaud and T. Denceux, “Handling different forms of uncer-
tainty in regression analysis: a fuzzy belief structure approach,” in
Symbolic and quantitative approaches to reasoning and uncertainty
(ECSQARU’99), A. Hunter and S. Pearsons, Eds. London: Springer
Verlag, June 1999, pp. 340-351.

——, “Nonparametric regression analysis of uncertain and imprecise
data using belief functions,” International Journal of Approximate
Reasoning, vol. 35, no. 1, pp. 1-28, 2004.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

T. Denceux, “An evidential neural network model for regression based on
random fuzzy numbers,” in Belief Functions: Theory and Applications,
S. Le Hégarat-Mascle, 1. Bloch, and E. Aldea, Eds. Cham: Springer
International Publishing, 2022, pp. 57-66.

T. Denceux, “Reasoning with fuzzy and uncertain evidence using epis-
temic random fuzzy sets: General framework and practical models,”
Fuzzy Sets and Systems, 2022, https://doi.org/10.1016/j.£s5.2022.06.004.
T. Denceux, “Belief functions induced by random fuzzy sets: A general
framework for representing uncertain and fuzzy evidence,” Fuzzy Sets
and Systems, vol. 424, pp. 63-91, 2021.

H. T. Nguyen, “On random sets and belief functions,” Journal of
Mathematical Analysis and Applications, vol. 65, pp. 531-542, 1978.
M. L. Puri and D. A. Ralescu, “Fuzzy random variables,” Journal of
Mathematical Analysis and Applications, vol. 114, no. 2, pp. 409-422,
1986.

S. de la Rosa de Sda, M. A. Lubiano, B. Sinova, M. A. Gil, and
P. Filzmoser, “Location-free robust scale estimates for fuzzy data,” IEEE
Transactions on Fuzzy Systems, vol. 29, no. 6, pp. 1682—-1694, 2021.
J. C. Figueroa-Garca, C. A. Varn-Gaviria, and J. L. Barbosa-Fontecha,
“Fuzzy random variable generation using oa-cuts,” IEEE Transactions
on Fuzzy Systems, vol. 29, no. 3, pp. 539-548, 2021.

I. Couso and L. Sanchez, “Upper and lower probabilities induced by a
fuzzy random variable,” Fuzzy Sets and Systems, vol. 165, no. 1, pp.
1-23, 2011.

L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy
Sets and Systems, vol. 1, pp. 3-28, 1978.

D. Dubois, H. Prade, and R. Yager, “Merging fuzzy information,” in
Fuzzy sets in approximate reasoning and information systems, J. C.
Bezdek, D. Dubois, and H. Prade, Eds. Boston: Kluwer Academic
Publishers, 1999, pp. 335-401.

H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik,
“Support vector regression machines,” in Advances in Neural Informa-
tion Processing Systems, M. Mozer, M. Jordan, and T. Petsche, Eds.,
vol. 9. MIT Press, 1996, pp. 155-161.

T. Denceux and S. Li, “Frequency-calibrated belief functions: Review
and new insights,” International Journal of Approximate Reasoning,
vol. 92, pp. 232-254, 2018.

L. Cella and R. Martin, “Valid inferential models for prediction in
supervised learning problems,” International Journal of Approximate
Reasoning, vol. 150, pp. 1-18, 2022.

J. Moody and C. J. Darken, “Fast learning in networks of locally-tuned
processing units,” Neural Computation, vol. 1, no. 2, pp. 281-294, 1989.
M. Musavi, W. Ahmed, K. Chan, K. Faris, and D. Hummels, “On the
training of radial basis function classifiers,” Neural Networks, vol. 5,
no. 4, pp. 595-603, 1992.

D. S. Broomhead and D. Lowe, “Multivariable functional interpolation
and adaptive networks,” Complex Systems, vol. 2, no. 3, pp. 321-355,
1988.

W. N. Venables and B. D. Ripley, Modern Applied Statistics with S,
4th ed. New York: Springer, 2002.

M. Kuhn, caret: Classification and Regression Training, 2021,
r package version 6.0-90, https://CRAN.R-project.org/package=caret.
[Online]. Available: https://CRAN.R-project.org/package=caret

F. M. Silva and L. B. Almeida, “Speeding up backpropagation,” in
Advanced neural computers, R. Eckmiller, Ed. New-York: Elsevier-
North-Holland, 1990, pp. 151-158.

J. M. Hernandez-Lobato and R. Adams, “Probabilistic backpropagation
for scalable learning of Bayesian neural networks,” in Proceedings of the
32nd International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille,
France: PMLR, 07-09 Jul 2015, pp. 1861-1869.

Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in Proceedings of The
33rd International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, M. F. Balcan and K. Q. Weinberger,
Eds., vol. 48. New York, New York, USA: PMLR, 20-22 Jun 2016,
pp. 1050-1059.

B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Advances
in Neural Information Processing Systems, 1. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.



Thierry Denceux Thierry Denceux is a Full Pro-
fessor (Exceptional Class) with the Department of
Information Processing Engineering at the Univer-
sity of Compiegne, France, and a senior member
of the French Academic Institute (Institut Univer-
sitaire de France). His research interests concern
reasoning and decision-making under uncertainty
and, more generally, the management of uncertainty
in intelligent systems. His main contributions are
in the theory of belief functions with applications
to statistical inference, pattern recognition, machine
learning and information fusion. He has published more than 300 papers in
this area. He is the Editor-in-Chief of the International Journal of Approximate
Reasoning, and an Associate Editor of several journals including Fuzzy
Sets and Systems and International Journal on Uncertainty, Fuzziness and
Knowledge-Based Systems.

11



