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Abstract

Modern speech recognition systems exhibits rapid performance degradation under domain shift. This issue is especially prevalent
in data-scarce settings, such as low-resource languages, where diversity of training data is limited.

In this work we propose M2DS2, a simple and sample-efficient finetuning strategy for large pretrained speech models, based

on mixed source and target domain self-supervision. We find that including source domain self-supervision stabilizes training

and avoids mode collapse of the latent representations. For evaluation, we collect HParl, a 120 hour speech corpus for Greek,

consisting of plenary sessions in the Greek Parliament. We merge HParl with two popular Greek corpora to create GREC-MD, a

test-bed for multi-domain evaluation of Greek ASR systems. In our experiments we find that, while other Unsupervised Domain

Adaptation baselines fail in this resource-constrained environment, M2DS2 yields significant improvements for cross-domain

adaptation, even when a only a few hours of in-domain audio are available. When we relax the problem in a weakly supervised

setting, we find that independent adaptation for audio using M2DS2 and language using simple LM augmentation techniques

is particularly effective, yielding word error rates comparable to the fully supervised baselines.

1



1

Sample-Efficient Unsupervised Domain Adaptation
of Speech Recognition Systems:
A case study for Modern Greek

Georgios Paraskevopoulos Student Member, IEEE, Theodoros Kouzelis, Georgios Rouvalis, Athanasios
Katsamanis Member, IEEE, Vassilis Katsouros Member, IEEE, Alexandros Potamianos Fellow, IEEE

Abstract—Modern speech recognition systems exhibits rapid
performance degradation under domain shift. This issue is
especially prevalent in data-scarce settings, such as low-resource
languages, where diversity of training data is limited. In this work
we propose M2DS2, a simple and sample-efficient finetuning
strategy for large pretrained speech models, based on mixed
source and target domain self-supervision. We find that including
source domain self-supervision stabilizes training and avoids
mode collapse of the latent representations. For evaluation, we
collect HParl, a 120 hour speech corpus for Greek, consisting
of plenary sessions in the Greek Parliament. We merge HParl
with two popular Greek corpora to create GREC-MD, a test-
bed for multi-domain evaluation of Greek ASR systems. In our
experiments we find that, while other Unsupervised Domain
Adaptation baselines fail in this resource-constrained environ-
ment, M2DS2 yields significant improvements for cross-domain
adaptation, even when a only a few hours of in-domain audio
are available. When we relax the problem in a weakly supervised
setting, we find that independent adaptation for audio using
M2DS2 and language using simple LM augmentation techniques
is particularly effective, yielding word error rates comparable to
the fully supervised baselines.

Index Terms—Unsupervised Domain Adaptation, Automatic
Speech Recognition, Multi-Domain Evaluation, Greek Speech

I. INTRODUCTION

Automatic Speech recognition (ASR) models have matured
to the point where they can enable commercial, real-world
applications, e.g., voice assistants, dictation systems, etc., thus
being one of machine learning’s success stories. However,
the performance of ASR systems rapidly deteriorates when
the test data domain differs significantly from the training
data. Domain mismatches can be caused by differences in
the recording conditions, such as environmental noise, room
reverberation, speaker and accent variability, or shifts in the
target vocabulary. These issues are extenuated in the case of
low-resource languages, where diversity in the training data
is limited due to poor availability of high-quality transcribed
audio. Therefore, specialized domain adaptation approaches
need to be employed when operating under domain-shift.

Unsupervised Domain Adaptation (UDA) methods are of
special interest, as they do not rely on expensive annotation
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of domain-specific data for supervised in-domain training.
In contrast to supervised approaches, where the existence of
labeled data would allow to train domain-specific models,
UDA methods aim to leverage data in the absense of labels
to improve system performance in the domain of interest [1],
[2]. In the context of speech recognition the importance of
UDA is extenuated, as the transcription and alignment pro-
cess is especially expensive and time-consuming. Adaptation
methods have been explored since the early days of ASR,
at different levels of the system and different deployment
settings [3]. UDA has been used to improve the robustness
of ASR on a variety of recording conditions including far-
field speech, environmental noise and reverberation [4], [5],
[6]. Furthermore, UDA has been used for speaker adaptation,
and to improve performance under speaker, gender and accent
variability [7], [8]. UDA has also been employed for multilin-
gual and cross-lingual ASR, in order to improve ASR models
for low-resource languages [9], adapt to different dialects [10],
and even train speech recognition systems for endangered
languages [11].

Classical speech adaptation techniques involve feature-
based techniques, e.g., speaker normalization [12], feature-
based approaches [13]–[15], or multi-condition training [16].
Generally, traditional approaches require some knowledge
about the target domain, and the domain mismatch, e.g.,
regarding the noise and reverberation variability [17], and
require specific engineering for each adaptation scenario.

Modern ASR pipelines, increasingly rely on end-to-end
neural networks, e.g., [18], [19], or large pretrained models
with self-supervised objectives [20], [21]. The key approaches
employed for UDA of end-to-end ASR models can be grouped
in three categories, namely, teacher-student learning [10],
domain adversarial training [22], and target domain self-
supervision [23]. The benefit of these techniques is that they
do not require any special knowledge about the source or
the target domain. This makes end-to-end UDA approaches
versatile and able to be utilized in a larger array of adaptation
scenarios. In particular, adaptation through self-supervision
has been shown to be a robust, simple and efficient technique
for adaptation of state-of-the-art speech models [24].

Here, we leverage in-domain self-supervision to propose
the Mixed Multi-Domain Self-Supervision (M2DS2) finetun-
ing strategy, enabling sample-efficient domain adaptation of
wav2vec2 [20] based speech recognition models, even when
available in-domain data are scarce. Our key contributions are
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TABLE I
SUMMARY OF RELATED WORKS ON UNSUPERVISED DOMAIN ADAPTATION FOR ASR.

Work Method Model Adaptation Setting Language

[23], [25], [26] Teacher-Student
Hard and soft labels

Conformer RNN-T [27]
Transformer CTC

RNN-T [19]

News speech, Voice search, Far-field,
Telephony, YouTube English

[4], [5] Teacher-Student
Soft labels TDNN-LSTM [28] Noise, Far-field English

[29] Teacher-Student
Hard and soft labels NiN-CNN [30] Dialects

Children speech Japanese

[31] Teacher-Student
Soft labels Streaming RNN-T [32] Multilingual

English,
Brazilian Portuguese,

Russian,
, Turkish,

Nordic/Germanic

[6], [33], [34] Domain Adversarial Training
TDNN Kaldi [35], [36]

DNN-HMM
DNN-HMM

Noise, Channel English

[37] Domain Adversarial Training RNN-CTC [38] Far-field English

[8], [39] Domain Adversarial Training TDNN Kaldi
RNN-T Accent Mandarin

[7], [40] Domain Adversarial Training DNN-HMM
CNN-DNN

Speaker, Gender,
Accent English

[9] Domain Adversarial Training DSN [41] Multilingual Hindi, Sanskri

[24], [42] Continual Pre-Training wav2vec2 [20]
Audiobooks, Accents,
Ted Talks, Telephony,

Crowd-sourced, Parlamentary speech
English

[43] Continual Pre-Training wav2vec2 Cross-lingual Korean

[11], [44] Continual Pre-Training XLSR-53 [21]
wav2vec2 Low resource languages

Ainu
Georgian, Somali,

Tagalog, Farsi

organized as follows:
1) Inspired by recent advances on UDA for Natural Lan-

guage Processing systems [45], we propose a finetuning
strategy for speech models, where the self-supervised
objective is based on a contrastive loss in Section III.
Contrary to prior works, who leverage only in-domain
self-supervision, we find that in this contrastive setting
this leads to mode-collapse of the latent representations,
and mixed source and target domain self-supervision
is essential. We demonstrate this empirically in Sec-
tion VII-B.

2) We collect and curate HParl, the largest publicly avail-
able1 speech corpus for Greek, collected from plenary
sessions in the Greek Parliament between 2018 and
2022. We establish a data collection, pre-processing
and alignment pipeline that can be used for continuous
data integration, as the parliamentary proceedings get
regularly uploaded. We provide a detailed description of
our data collection process and the dataset statistics in
Section IV-A. HParl is merged in Section IV with two
popular Greek corpora (Logotypografia and Common-
Voice) to create GREC-MD, a testbed for multi-domain
evaluation of ASR systems in Greek.

3) We demonstrate that, while other baselines fail at UDA
in our resource-constrained setting, M2DS2 can improve
model performance in the target domain in multiple
adaptation scenarios in Section VII. Specifical emphasis
is given in the sample efficiency of our approach in Sec-

1We plan to release this version of HParl under the CC BY-NC 4.0 license
upon publication. The other corpora used in this work are available through
their respective distributors.

tion VII-A, where we demonstrate successful adaptation
even when we reduce the available in-domain data.

4) When we relax the problem to a weakly supervised
adaptation setting, where some in-domain text is avail-
able but the pairing between audio and text is unknown,
we find that M2DS2 can be effectively combined with
simple N-gram adaptation techniques to get compara-
ble performance with the fully supervised baseline in
Section VIII. Furthermore we find that a simple text
augmentation approach, based on perplexity filtering of a
large corpus can produce strong adaptation results, even
for small amounts of in-domain text.

Additionally, we provide a formulation of the UDA problem
for ASR in Section II-A and link prior works to this formu-
lation in Sections II-B, II-C and II-D. We provide detailed
experimental settings for reproducibility in Section V, and
an upper-bound estimation for UDA performance with fully
supervised finetuning in Section VI.

II. BACKGROUND

We start by formally defining the Unsupervised Domain
Adaptation (UDA) problem. Initially, we formulate the prob-
lem in a classification setting and then we extend it for
speech recognition. We then provide an overview of different
adaptation approaches in the literature, and link each approach
to the UDA problem formulation. Table I presents a summary
of the key adaptation settings and applications that are ex-
plored in the literature. We see, that a relatively small amount
of methods, and their variants, is used to address multiple
real-world ASR problems, for example, cross-lingual, accent,
speaker and noise adaptation. Furthermore, while the majority
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of the works focus on the English language, there is an effort
to explore other popular languages, e.g., Mandarin, and under-
resourced languages, e.g., Ainu, Somali etc.

A. Problem Definition

Formally, the problem of UDA can be defined as follows.
Let X ⊆ Rn be a real-valued space that consists of n-
dimentional feature vectors x ∈ X , and Y a finite set of
labels y ∈ Y , i.e., Y = {1, 2, . . . , L}. Furthermore, assume
two different distributions, i.e., the source domain distribution
S(x, y) and the target domain distribution T (x, y), defined on
the cartesian product X × Y .

The goal is to train a model that learns a mapping between
feature vectors xT to their respective labels yT for samples
drawn from the target distribution (xT , yT ) ∼ T .

At training time we have access to samples from the source
distribution S(x, y) and the marginalized target distribution
T (x), i.e., no target labels are provided. We define the training
dataset D as the concatenation of the source and target training
sets, D = (DS , DT ). DS and DT are defined as sequences of
tuples, i.e.,

DS = {(xi, yi) | (xi, yi) ∼ S(x, y), 1 ≤ i ≤ N}
DT = {(xi, ∅) |xi ∼ T (x), 1 ≤ i ≤ M},

(1)

where we draw N samples from S(x, y) and M samples
from T (x). Finally, we augment tuples in D with a domain
indicator function:

D = {(xi, y
′
i,1i) | 1 ≤ i ≤ N +M}

1i =

{
0 if xi ∼ S(x),
1 if xi ∼ T (x).

y′i =

{
yi if xi ∼ S(x),
∅ if xi ∼ T (x).

(2)

1) Unsupervised (Acoustic) Adaptation for ASR: The above
definition can be directly extended in the case of speech
recognition, with some modifications. In detail, we modify
the feature space X , to be the set of (finite) sequences of
real-valued feature vectors (xk)k∈N\{∞} ∈ X ⊆ (Rn)∗.
Furthermore, the label space Y is modified to be the set
of sequences (ym)m∈N\{∞}, where Y = ({1, 2, . . . , L})∗
contains finite-length sequences over a finite lexicon. For
CTC training we make the assumption that k > m for any
sample (xk, ym), i.e., feature sequences are longer than their
respective label sequences [46]. The rest of the definitions need
no modifications.

2) Unsupervised (Language) Adaptation for ASR: Adapta-
tion for ASR systems can also be performed at the language
level, i.e., the label space. In this setting, we assume that
the target domain samples are drawn from the marginalized
target distribution T (y). The target dataset DT now consists of
tuples in the form (∅, yi), where yi is the label word sequence
(ym)m∈N\{∞} for the i-th sample.

3) Weakly supervised Adaptation for ASR: The last setting
we explore is the case were both audio and language in-
domain samples are available, but the mapping between them
is unknown. This situation can be encountered in real-world
settings, e.g., in the case in-domain audio and text are collected
independently. For example consider the case where audio
clips from news casts are collected, along with contemporary
newspaper articles. Another example is the case where long
audio clips alongside with transcriptions are available, but no
fine-grained time alignments2. In this case the target domain
samples are drawn independently from the marginalized dis-
tributions T (x) and T (y), and the target dataset DT consists
of tuples in the form (xi, ∅) and (∅, yi).

B. Teacher-Student Models

Teacher-Student learning or self-training, is one of the
earliest methods in semi-supervised learning [47]–[49]. The
key idea is to reduce the problem of unsupervised learning
of the task at hand in the target domain to a supervised one.
The general methodology is to train a teacher model gS using
the labeled data in the source domain DS , and then use this
for inference on the target domain to produce pseudolabels
ŷi = gS(xi), xi ∼ T (x). The target domain dataset DT is
augmented with these silver labels, to contain tuples (xi, ŷi).
Finally, a student model gT is trained in a supervised fashion,
using the augmented DT or a combination of DS and DT .
This process is usually repeated, with the student model
serving as the teacher model for the next iteration, until no
further improvement is observed. More recently, soft target
Teacher-Student learning has been explored for ASR [26],
[31], [50], where the KL divergence between the teacher and
student output label distributions is used as the loss function.

Being trained only on the source domain data the teacher
model is susceptible to error propagation. Filtering is a com-
monly used technique to achieve the right balance between
the size of the target domain used for training the student
model and the noise in the pseudolabels. Confidence scoring
based on the likelihood is usually applied, discarding those
utterances for which the hypothesized labels are untrustworthy
[51]. In [25] dropout is used to measure the model uncertainty.
The agreement between model predictions with and without
dropout are used for confidence scoring. In [23] a multi-task
training objective with a confidence loss is applied to minimise
the binary cross entropy between the estimated confidence and
the binary target sequence. In order to learn more robust and
generalizable features from the teacher model, Noisy Student
Training (NST) has been proposed in [52]. The teacher models
generates pseudolabels for DT while the student models are
trained on a heavily augmented version of DT [52]. In [52],
[53] the augmentation of the input target data is performed
with SpecAugment [54], while in [29] a spectrum frequency
augmentation is performed.

In [4] Teacher-Student learning with soft labels is introduced
for ASR to tackle noisy, far-field, and children speech. In

2While a fully supervised in-domain dataset can be constructed in this
case using long / forced alignment methods, this is not a focal point for the
experimental part of this work.
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[5], this approach is extended for LF-MMI based models and
used for noisy, far-field and bandwidth adaptation. In [29] a
weighted sum of hard and soft target cross entropy losses
is used for Japanese dialects and children speech adaptation.
Ramabhadran et al. [31] propose a self-adaptive distillation,
and a method for distilling from multiple teachers that is
applied across several multilingual ASR systems for different
language groups. A comparison between soft and hard targets
for RNN-T models [19] showed that soft targets perform better
when both the teacher and student models have the same
architecture. Otherwise, hard targets are superior [50].

C. Domain Adversarial Training

Domain Adversarial Training (DAT) was initially introduced
for image classification [55]. The key idea is to train a
model that learns deep features that solve the task at hand
in the source domain, while being invariant with respect
to the domain shift. Concretely, the model is trained end-
to-end using a combination of the supervised task loss Lt,
learned on DS , and the domain discrimination loss La, i.e.,
L = Lt − αLa. The loss La is binary cross-entropy, trained
for domain discrimination using the tuples (xi,1i). Notice
the − sign in the loss indicates adversarial learning, i.e., the
model should learn features that cannot discriminate between
domains, while solving the task.

In [6] DAT is employed for noise adaptation on a noise
corrupted version of WSJ [56] as the target dataset. Using the
Aurora-4 [57] dataset which has labels associated to the noise
type, Serdyuk et al. [33] train an adversarial noise classifier. In
[8] and [39] DAT is utilized for accent adaptation for Mandarin
and English respectively. Anoop C.S. et al. [9] propose DAT,
to address the scarcity of data in low-resource languages which
share a common acoustic space with a high-resource language,
namely Sanskrit and Hindi. They empirically demonstrate the
effectiveness of adversarial training, presenting experiments
with and without the reversal of the domain classification loss.

D. Leveraging In-domain Self-supervision

These lines of work have roots in Natural Language Pro-
cessing tasks [45], [58], and explore domain adaptation by
leveraging the in-domain data DT for self-supervised learning.
The core focus is domain adaptation of large pre-trained
models, e.g., [59], and self-supervision is achieved by use
of the pre-training self-supervised loss Ls. This process can
either take part in stages, via continual pre-training [58], or by
constructing a multitask objective L = Lt + αLs, as in [45].

Continual Pre-Training (CPT) has been explored for adap-
tation of ASR models. Robust wav2vec2 [24] explores the
effectiveness of CPT for domain adaptation, indicating the
importance of utilizing unlabeled in-domain data. In CASTLE
[42], CPT is combined with an online pseudolabeling strategy
for domain adaptation of wav2vec2. Cross-dataset evaluation
for popular English speech corpora indicates that CPT helps
to reduce the error rate in the target domain. In [43] and [11]
CPT is utilized for cross-lingual adaptation of wav2vec2 for
Korean and Ainu respectively. Notably for Ainu, which is an
endagered language, CPT has resulted in significant system

Fig. 1. Target-domain adaptation through self-supervision. In the left we see
the general pre-training stage of XLSR-53 using the self-supervised loss Ls.
General pre-training is performed on 56, 000 hours of audio in 53 languages.
In the right, we see the proposed domain-adaptive finetuning stage, where the
speech recognition task is learned using transcribed source domain data, while
adaptation to the target domain is performed by including the self-supervised
loss over (audio-only) source and target domain data

improvement. DeHaven and Jayadev [44] compare CPT and
pseudolabeling for adapting XLSR-53 to four under-resourced
languages, i.e., Georgian, Somali, Tagalog and Farsi. They find
that both approaches yield similar improvements, with CPT
being the more computationally efficient approach.

While CPT yields significant improvements in a variety of
tasks, one common theme in these works is the assumption
of hundreds or thousands of hours of available in-domain
data, mostly from online resources, e.g., YouTube. This can be
infeasible when we consider more niche adaptation settings,
or possible privacy concerns, e.g., how would one collect
1000 hours of psychotherapy sessions in Greek? In this work,
we explore domain adaptation methods in a more resource-
constrained environment.

III. DOMAIN ADAPTATION THROUGH MULTI-DOMAIN
SELF-SUPERVISION

The proposed approach is based on end-to-end adaptation of
a large pre-trained speech model during the finetuning phase,
by including in-domain self-supervision. We extend UDALM
[45], that has shown promise for NLP tasks, for adaptation of
wav2vec2 based acoustic models, and specifically XLSR. We
focus on the problem of UDA in the context of a low-resource
language, i.e., Greek. The key finding of our exploration is
that straight-forward extension of UDALM, i.e., by using only
target domain self-supervision, underperforms in this setting,
and use of both source and target domain data is essential for
successful adaptation. In this section, first, we will present
a quick overview of the XLSR-53 training procedure, and
then we are going to outline the proposed domain adaptation
approach, which is shown in Fig. 1.

A. XLSR-53

XLSR-53 [21] is a massively pre-trained speech model,
trained on 56, 000 hours of multilingual speech, covering 53
languages. The model is based on wav2vec2 [20], which is
composed of a multi-layer convolutional feature encoder, that
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TABLE II
THE GREC-MD CORPUS. WE CAN SEE THE DURATION OF EACH SPLIT IN HOURS:MINUTES:SECONDS FORMAT, AS WELL AS THE NUMBER OF

SPEAKERS FOR EACH OF THE SUB-CORPORA.

Dataset Domain Speakers Train Dev Test Total Duration
HParl Public (political) speech 387 99:31:41 9:03:33 11:12:28 119:47:42
CV Crowd-sourced speech 325 12:16:17 1:57:44 1:59:19 16:13:20

Logotypografia News casts 125 51:58:45 9:08:35 8:59:22 70:06:42
Total - 713 163:46:43 20:09:52 22:11:44 206:08:19

extracts audio features zt from the raw audio, and a trans-
former context encoder that maps the latent audio features to
the output hidden states ct. Each latent feature zt corresponds
to 25 ms of audio with stride 20 ms. A contrastive objective Lc

is used for pre-training. For this, product quantization [60] is
applied to the features zt, and then a discrete approximation of
zt is obtained by sampling from a Gumbel-softmax distribution
[61], to obtain discrete code vectors qt, organized into G = 2
codebooks with V = 320 vocabulary entries each. The
contrastive loss aims to identify the correct code vector for
a given time step, among a set of distractors Qt, obtained
through negative sampling from other timesteps. To avoid
mode collapse, a diversity loss Ld is included by maximizing
the entropy over the averaged softmax distribution over the
code vector entries p̄g . The total loss is:

Ls = −log es(zt,qt)∑
q̃∼Qt

es(zt,q̃)︸ ︷︷ ︸
Contrastive Loss

Diversity Loss︷ ︸︸ ︷
− 1

GV

G∑
g=1

V∑
v=1

p̄g,vlog(p̄g,v) (3)

B. Domain Adaptive finetuning for Contrastive Learning of
Speech Representations

Fig. 1 shows the proposed finetuning process. The key
intuition is that we want the model to synergistically learn
the task at hand (in our case ASR), while being adapted to
the target domain by in-domain self-supervision. In the left
we see the general pre-training stage of XLSR-53, which is
pre-trained on 56K hours of multilingual audio corpora using
the contrastive pre-training objective. In the right we see the
proposed finetuning stage, which is inspired by [45].

During finetuning we form a mixed objective function:

L = LCTC(xs, ys) + αLs(xs) + βLs(xt), (4)

where (xs, ys) ∼ S(x, y), xt ∼ T (x), LCTC is the CTC
objective function, optimized using transcribed source domain
data, and Ls is the contrastive loss from Eq. (3). We scale the
contribution of each term using hyper-parameters α and β.

Note that contrary to [45], who use only in-domain self-
supervision, we leverage both source and target domain sam-
ples for the mixed self-supervision. We find that this is essen-
tial in our case to avoid mode collapse, i.e., the model using
only a few of the available discrete code vectors. Simultaneous
self-supervision on both the source and target data alleviates
mode collapse by anchoring the target code vector space to
have a similar structure as the source code vectors.

Hence we refer to this approach as Mixed Multi-Domain
Self-Supervision (M2DS2).

IV. THE GREC-MD CORPUS

For our experiments we compose a speech corpus for the
Greek language, that is suitable for multi- and cross-domain
evaluation. The GREC-MD corpus contains 206 hours of
Greek speech. Audio is segmented into individual utterances
and each utterance is paired with its corresponding tran-
scription. Table II summarizes the included sub-corpora, as
well as the train, development and test splits. The dataset is
constructed with three core principles in mind:

1) Data Volume: We collect the largest publicly available
speech recognition corpus for the Greek language, able
to scale to hundreds of hours of transcribed audio.

2) Temporal Relevance: Language changes over time. We
aim at an up-to-date corpus that encompasses the latest
terms and topics that appear in daily speech.

3) Multi-Domain Evaluation: Single domain evaluation
can lead to misleading estimations of the expected
performance for ASR models. For example, state-of-
the-art ASR models [27] achieve under 5% Word Error
Rate (WER) on Librispeech [62] test sets, but this is
an over-estimation of system performance in the field.
This is extenuated when considering different acoustic
conditions or terminology. We consider multi-domain
evaluation essential when developing and deploying
real-world ASR models.

To satisfy the first two points, we collect data from a public,
continuously updated resource, i.e., the Hellenic Parliament
Proceedings, where recordings of the parliamentary sessions
are regularly uploaded. The benefit of using this resource is the
straight-forward collection of a continuously growing, multi-
speaker corpus of transcribed audio that is always up-to-date,
as the parliamentary discussions revolve around current affairs.
We refer to this corpus as HParl. For the multi-domain evalua-
tion, we merge HParl with two publicly available corpora, that
have different acoustic and language characteristics. We refer
to the merged, multi-domain corpus as GREC-MD. In this
Section, we will describe the collection and curation process
of HParl, and present the relevant statistics for the experiments.

TABLE III
PLENARY SESSIONS INCLUDED IN HPARL. THE HOURS COLUMN REFERS

TO THE RAW (UNSEGMENTED) HOURS OF COLLECTED AUDIO.

Start date End date #Sessions Hours

15-02-2022 01-03-2022 10 55
18-01-2019 01-02-2019 10 52
28-03-2019 10-05-2019 20 108
10-12-2018 21-12-2018 10 88
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Fig. 2. Overview of the Hellenic Parliament Chamber. The chamber has an
amphitheatrical shape and can accomodate approximately 400− 450 people.
The positions of the key speakers, i.e., current speaker and the parliament
president are annotated in the image.

A. Collection and Curation of HParl

Modern technological advances allow for more direct gov-
ernment transparency, through the commodification of storage
and internet speeds. In this spirit, the records of plenary ses-
sions of the Hellenic Parliament are made publicly available,
for direct access through a webpage3. The available video
recordings date back to 2015. For each plenary session, a
video recording is uploaded, along with a full transcription
that is recorded verbatim, and in real time by the parlia-
ment secretaries. For the creation of HParl, we build a web-
crawler that can traverse and download the video recordings,
along with the transcriptions from the official website. The
collection process is parallelized over multiple threads, and
parameterized by a range of dates and, optionally, a target
corpus size in GB or in hours. For this version of HParl, we
collect the plenary sessions in four date ranges, as described in
Table III. The majority of the collected sessions are from 2019,
but we also include sessions from 2018 and 2022 to include
coverage of different topics. The individual components of the
HParl curation pipeline are: Audio Pre-processing, Text Pre-
processing, Alignment, Post-processing, and dataset Splitting.

1) Audio Pre-processing: Fig. 2 shows the layout of the
Hellenic Parliament Chamber. Plenary sessions mainly take
place in this room, or in the secondary House Chamber that
has similar setup but is smaller in size. Because of the room
and microphone characteristics, the captured audio in the
video streams contains reverberation, due to sound reflections.
We employ a light preprocessing pipeline, by passing the
input video streams through FFmpeg, and converting them to
monophonic, lossless audio format at 16000 Hz sampling rate.
The resulting audio is not passed through any de-reverberation
or speech enhancement software. The resulting audio files have
a minimum, average and maximum duration of 6 minutes, 6
hours and 16 hours respectively.

2) Text Pre-processing: The text files contain full, word-
by-word transcription of the speeches and questions asked by
members of the audience, as well as extra annotations made
by the parliament secretaries. Some annotations are relevant,

3https://www.hellenicparliament.gr/en/

i.e., the speaker name, while others are plain text descriptions
of events happening during the session and need to be filtered
out (e.g., “The session is interrupted for a 15 minute break”).
We use a rule-based system, based on regular expressions,
that filters the unnecessary information, keeping only the
transcriptions and the speaker names. The speaker labels are
created by transliterating their names and roles from Greek
to Greeklish using the “All Greek to Me!” tool [63]. Text is
lower-cased and normalized to remove multiple whitespaces.
The result is a text file containing the raw transcriptions, and
a mapping from speaker labels to their respective text parts.

3) Aligment and Segmentation: The primary challenge of
exploiting the plenary sessions for ASR purposes is the length
of the plenary recordings, as their durations vary from 6
minutes to 16 hours in length. However, data samples used to
train ASR are generally less than 30 seconds long. Computa-
tional challenges have limited the length of training utterances
for HMM-GMM models [64], and continue to do so in the
contemporary neural network models. Therefore, we need to
segment the sessions into smaller pieces more suitable for ASR
training. A second challenge is posed by mismatches between
audio and transcripts. Parliamentary proceedings do not fully
capture everything that is said during the parliamentary ses-
sions, and do not account for speech disfluencies.

In order to obtain smaller, clean segments, that are suit-
able for ASR training we follow the segmentation procedure
proposed by [65]. Initially the raw recordings are segmented
into 30 second segments and the transcriptions are split
into smaller segments of approximately 1000 words called
documents. Each segment is decoded using a seed acoustic
model trained on the Logotypografia corpus [66] and a 4-
gram biased LM trained on the corresponding transcription
of each recording. The best path transcript of each segment
is obtained and paired with the best matching document via
TF-IDF similarity. Finally each hypothesis is aligned with the
transcription using Smith-Waterman alignment [67] to select
the best matching sub-sequence of words. The above method
yields a list of text utterances, with their corresponding start
and end times in the source audio files. The procedure yields
120 hours of useable segmented utterances out of the original
303 hours of raw audio, or a ratio of 39.6%.

4) Post-processing: After the segments are extracted, we
filter out extremely short segments (less than 2 words).
Moreover, the iterative alignment algorithm may replace some
intermediate words with a <spoken-noise> tag. When this
tag is inserted, we match the surrounding text with the raw
transcriptions and re-insert the missing words. Furthermore,
we match each segment to its corresponding speaker label.
Segments without a speaker label are discarded. Lastly, speak-
ers are associated to their gender based on name suffixes, using
a simple, Greek language-specific, rule: Speaker names which
end in a(α), h(η), w(ω) or is(ις) are classified as female, while
the rest as male. We format the segments, speaker and gender
mappings in the standard folder structure used by the Kaldi
speech recognition toolkit [36].

5) Data Splitting: We provide an official train - devel-
opment - test split. The development set contains 3 plenary
sessions, one from 2018, one from 2019 and one from 2022,

https://www.hellenicparliament.gr/en/
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resulting to 9 hours of segmented speech. Similarly, the test
set contains one session from each year, resulting to 11 hours
of segmented speech. The rest 99 hours of segmented speech
are assigned to the training set.

B. Including corpora from different domains

We merge HParl with two publicly available corpora to
create GREC-MD for multi-domain evaluation.

1) Common Voice: Common Voice (CV) [68] is a crowd-
sourced, multi-lingual corpus of dictated speech, created by
Mozilla. The data collection is performed by use of a web
app or an iPhone app. Contributors are presented with a
prompt and are asked to read it. The prompts are taken from
public domain sources, i.e., books, wikipedia, user submitted
prompts and other public corpora. The maximum prompt
length is 15 words. A rating system is built into the plat-
form, where contributors can upvote or downvote submitted
<audio,transcript> pairs. A pair is considered valid, if
it receives two upvotes. Speaker independent train, develop-
ment and test splits are provided. The dataset is open to the
research community, released under a permisFsive Creative
Commons license (CC0). In this work, we use version 9.0
of CV, accessed on April 27, 2022. We keep only the valid
utterances, i.e., 16 hours of speech from 325 contributors
(19− 49 years old, 67% male / 23% female).

2) Logotypografia: Logotypografia [66] is one of the first
corpora for Large Vocabulary Continuous Speech Recognition
in Greek. The dataset contains 33, 136 newscast utterances, or
72 hours of speech. The utterances were collected from 125
speakers (55 male, 70 female), who were staff of the popular
“Eleftherotypia” newspaper in Greece, under varied acoustic
conditions. Approximately one third of the utterances were
collected in a sound proof room, one third in a quiet room and
the last third in an office room. The average utterance duration
is 7.8 seconds. The transcriptions contain several speech and
non-speech events (e.g., <cough>), lower-cased Greek words
and stress marks. Numbers are expanded to full words. We
use the whole dataset, and perform light preprocessing in
the transcriptions, by discarding the annotated events and
punctuation.

We hence refer to each dataset by the abbreviations: HParl:
HP, CommonVoice: CV, Logotypografia: LG.

V. EXPERIMENTAL SETTINGS

For our experiments we use the following hyper-parameter
settings, unless explicitly stated otherwise. For model training,
we use AdamW optimizer [69] with learning rate 0.0003. We
apply warmup for the first 10% of the maximum training
steps, and a linear learning rate decay after that. Models
are finetuned for a maximum of 10000 steps. For speech
recognition training, we make use of the Connectionist Tem-
poral Classification (CTC) loss [70], optimized using the
available transcribed data in each scenario. Validation runs
every 500 steps on the development set, and early stopping
is employed on the development CTC loss with patience 5.
Batch size is set to 8 during finetuning for all scenarios,
except for M2DS2. In the case of M2DS2 we create mixed

batches of size 12, containing 4 transcribed source domain
samples and 8 unlabeled target domain samples and train
for 10, 000 CTC updates. For memory reasons we split the
mixed batches in mini-batches of 4 and interleave them during
model training. Gradients are accumulated over 3 interleaved
batches. For the self-supervised objective, we create masks
of maximum timestep length 10, with masking probability
0.4. We weigh the contributions of the source and target
domain contrastive objectives, and bring them to the same
order of magnitude as the CTC loss, by setting α = 0.01 and
β = 0.02. The convolutional feature encoder is kept frozen
for all experiments. Our code is based on the huggingface 4

implementation of XLSR. For all experiments we resample
the audio files to 16 kHz and downsample to single channel
audio. We exclude utterances in the training set that are longer
than 12 seconds. All experiments are run on a single NVIDIA
RTX 3090 GPU, with mixed precision training.

For the Language model training, we create a large corpus
for the Greek language using a subset of the Greek part of CC-
Net [71] (approximately 11 billion tokens) and combine it with
1.5 billion tokens from the Greek version of Wikipedia and the
Hellenic National Corpus (HNC) [72]. During preprocessing,
we remove all punctuation and accents, deduplicate lines and
convert all letters to lowercase. We will refer to this corpus as
the Generic Greek Corpus (GGC). We train a 4-gram language
model on GGC using KenLM [73] and prune bigrams, trigrams
and four-grams with counts less than 3, 5 and 7 respectively.
We incorporate the n-gram LMs at inference time using the
pyctcdecode framework5. We use language model rescoring
over a beam search decoder with 13 beams.

The evaluation metric is the Word Error Rate (WER) over
the target test set. For assessing the adaptation effectiveness we
also report the relative WER improvement over the unadapted
baseline in appropriate scenarios, which is defined in Eq. (5).
We refer to this metric as Relative Adaptation Improvement
(RAI) for the rest of this paper:

RAI = −WERadapted −WERunadapted

WERunadapted
× 100% (5)

The minus sign is included, so that RAI takes negative
values when the adaptation fails, i.e., when WERunadapted <
WERadapted.

TABLE IV
ASR PERFORMANCE OF XLSR-53 OVER THE THREE CORPORA FOR FULLY

SUPERVISED IN-DOMAIN FINETUING (WER)

Dataset
LM No LM 4g GGC

HP 26.21 15.64
CV 29.33 9.52
LG 31.94 26.45

VI. SUPERVISED IN-DOMAIN TRAINING

In the first set of experiments, we explore the performance
of supervised finetuning of XLSR-53 for each domain. This

4https://huggingface.co/docs/transformers/
5https://github.com/kensho-technologies/pyctcdecode

https://huggingface.co/docs/transformers/
https://github.com/kensho-technologies/pyctcdecode
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TABLE V
M2DS2 PERFORMANCE USING GREEDY DECODING FOR UDA BETWEEN HP, CV, AND LG. A → B INDICATES THAT A IS THE SOURCE DOMAIN AND B IS

THE TARGET DOMAIN. (G) INDICATES GREEDY DECODING. (LM) INDICATES BEAM SEARCH WITH LM RESCORING. WE REPORT THE WER ON THE
TARGET TEST SET, AS WELL AS THE RAI (%) OVER THE SO (UNADAPTED) BASELINE. WER: LOWER IS BETTER. RAI: HIGHER IS BETTER.

Method SO (G) CPT (G) PSL (G) M2DS2 (G) SO (LM) CPT (LM) PSL (LM) M2DS2 (LM)
Setting WER WER RAI WER RAI WER RAI WER WER RAI WER RAI WER RAI

HP → CV 55.9 59.68 −6.8 55.3 1.2 52.95 5.3 25.26 26.44 −4.7 24.24 4.0 18.35 27.4
HP → LG 48.65 52.63 −8.2 57.68 −18.6 58.99 −21.3 30.34 32.27 −6.4 39.32 −29.6 32.58 −7.4
LG → CV 59.57 66.43 −13.4 81.90 −39.8 51.31 12.4 25.96 31.51 −21.4 52.05 −100.5 17.30 33.4
LG → HP 62.13 67.51 −8.7 71.46 −15.0 60.09 3.3 31.48 31.58 −0.3 45.36 −44.1 31.36 0.4
CV → LG 69.55 71.12 −2.3 71.34 −2.6 63.40 8.8 50.80 52.40 −3.2 48.68 4.2 36.93 27.3
CV → HP 70.72 73.83 −4.4 78.05 −10.4 68.70 2.9 52.09 52.18 −0.2 54.82 −5.2 41.88 19.6

will give an upper bound estimation for UDA performance.
We finetune XLSR-53 on CV, HP and LG (separately) and
perform in-domain evaluation on the respective test sets.
Results are summarized in Table IV. The first row indicates the
performance of greedy decoding, while in the second row we
report the performance of the beam search decoder, rescored
using the scores of the 4-gram GGC language model. We
observe that the greedy decoding performance is under 30
WER for both HP and CV, while for LG we achieve ∼ 32
WER. This makes sense, as LG is the most diverse dataset,
with respect to the included acoustic conditions. Furthermore,
we observe that the incorporation of a language model results
in an impressive WER reduction on CV, followed by HP and
then LG. While CV includes relatively simple phrases with
common vocabulary, HP and LG contain more specialized
terminology.

VII. UNSUPERVISED DOMAIN ADAPTATION USING
IN-DOMAIN AUDIO

Here, we evaluate the effectiveness of M2DS2 for UDA.
We compare with three baselines:

1) Source Only Training (SO): We perform supervised
finetuning of XLSR-53 (CTC) using only the source-
domain data, and run decoding on the target domain
test set. No in-domain data are used for adaptation.

2) Continual Pre-Training (CPT): We perform a pre-
training phase using the loss in Eq. (3) on the target
domain train set, to create adapted versions of XLSR.
Pre-training is run for 20000 steps with batch size
4. Only the audio is used, without transcriptions. The
adapted checkpoints are then finetuned by use of CTC
loss on the source domain transcribed data. Evaluation
is performed on the target test set.

3) Pseudolabeling (PSL): We finetune XLSR-53 using the
source domain data with CTC loss. Then we run infer-
ence on the source model, to extract silver transcriptions
for the target domain training set. We use the silver
transcriptions for supervised finetuning on the target
domain.

In Table V we compare M2DS2 with the SO, CPT and
PSL baselines for six adaptation scenarios, i.e., cross dataset
evaluation between the three datasets in GREC-MD. The left
half corresponds to greedy decoding, while for the right half
we use the 4-gram LM trained on GGC. First, we observe
the SO model performance. The SO models are the finetuned

Fig. 3. Performance of M2DS2 (blue line) for the LG → CV setting, when
reducing the amount of available target samples to 50%, 25%, and 10% of
the original dataset (horizontal axis). SO performance is indicated with the
orange line. Vertical axis: WER, Horizontal Axis: target audio percentage
(100% → 0%)

models from Table IV, evaluated in out-of-domain settings.
We see that out-of-domain evaluation results in a large perfor-
mance hit, e.g., while in the CV9 → CV9 in-domain setting
we achieve 29.33 WER, in the CV9 → HP out-of-domain
setting we get 69.55 WER. This confirms that for real-world
ASR tasks, multi-domain evaluation is of essence. Second, we
observe that in most adaptation scenarios both CPT and PSL
fail to surpass the SO (unadapted) baseline. In the case of CPT,
we hypothesize that is due to the relatively data constrained
version of our setting. In the best-case scenario, we have 99
hours of available target domain audio, which is not enough
to perform a discrete CPT stage. Note that most of works in
the literature use ∼ 1000 hours of target audio for CPT. In
the case of PSL, the poor performance is due to the quality
of the silver labels created by the seed model. While the
performance would improve with more elaborate approaches
(e.g., confidence filtering), in challenging adaptation scenarios
PSL approaches are limited by the SO model’s performance.
Lastly, we observe that M2DS2 is the only approach among
our baselines that manages to achieve a positive RAI in most
adaptation scenarios, by consistently outperforming the SO
baseline by significant margins. This is exaggerated when
we include a LM during inference. One exception in this
pattern is the HP → LG scenario, where the SO baseline
achieves the best performance. We attribute this to the fact that
we performed minimal hyper-parameter tuning during model
development.
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A. The sample efficiency of M2DS2

One key observation in the literature, and in our experiments
is that CPT requires a large amount of un-transcribed target
domain audio. This raises the question, can we leverage self-
supervision for domain adaptation in data constrained settings?

In Fig. 3 we evaluate the performance of M2DS2, when
we reduce the amount of target domain audio. Specifically
we focus on the scenario of LG → CV. The full training
corpus of CV contains 12 hours of audio. We train M2DS2
with 50%, 25% and 10% of the available samples, or 6, 3
and 1.2 hours of audio respectively, and plot the resulting
WER on the target (CV) test set. In all cases, the full source
(LG) training corpus is used. We observe that M2DS2 achieves
lower WER than the SO baseline, even with only 3 hours of
target domain audio. While CPT can suffer from catastrophic
forgetting, as most multi-stage training approaches, M2DS2
avoids this issue, being a single-stage approach with a mixed
task-specific and self-supervised objective. This provides a
promising avenue for adaptation, when collection of in-domain
recordings is expensive, or infeasible.

(a) Only target domain self-supervision

(b) Target and source domain self-supervision

Fig. 4. T-SNE scatter plots of code vectors extracted from M2DS2 without
source domain self-supervision (top) and with source domain self-supervision
(bottom) for LG (red) and CV (teal)

B. The importance of Multi-Domain Self-Supervision

In Section III-B we argue that it is essential to include both
source and target domain data for the self-supervised objective
of M2DS2. To illustrate the effect of this approach, we train
two versions of M2DS2 for the LG → CV scenario. For the

TABLE VI
LANGUAGE ADAPTATION OF THE M2DS2 LG → CV MODEL, USING

BIASED AND AUGMENTED LMS. WE USE THE VARIANT OF THE MODEL
TRAINED WITH 3 HOURS OF IN-DOMAIN AUDIO. WE VARY THE AMOUNT

OF IN-DOMAIN TEXT DATA FROM 752K TOKENS TO 38K TOKENS.

Biased LM Augmented LM

100% 11.22 12.84
50% 15.13 15.05
25% 20.84 16.64
10% 27.75 18.47
5% 33.04 19.31

Baseline (M2DS2 + Generic LM) 20.7

Fig. 5. Language-only adaptation for LG → HP using the SO model finetuned
on LG. In-domain text data range from 11M tokens (left) to 110K tokens
(right). Blue/dashed: Baseline with generic LM. Purple/circles: Biased LM.
Orange/diamonds: Augmented LM.

first version we set α = 0.01, while for the second we set
α = 0, removing the second term of Eq. (4). We extract the
code vectors for the first 100 samples of both LG and CV, and
flatten them across the time steps , resulting to 60000 × 768
code vectors corresponding to individual timesteps. We plot
these code vectors using T-SNE [74] in Fig. 4 for both models.
We see that when we do not include the source domain self-
supervision, the code vector space collapses in a few tight
clusters, and most audio segments correspond to just a few
code vectors. This is a visual clue that indicates the mode
collapse problem. When we include the source domain term,
we see that the that the code vector space has more structure,
and coverage of the space is more complete, both for CV
(target domain) and LG (source domain). Experimentally we
train M2DS2 with α = 0 for all source / target domain pairs
and we find that the mode collapse is destructive for target
domain performance. During our experiments we got WER in
the range 80−99, indicating failure to converge to acceptable
solutions across all scenarios. The simple inclusion of both
source and target domain self supervision stabilizes training,
avoids mode collapse and leads to successful unsupervised
adaptation between domains.

VIII. UNSUPERVISED AND WEAKLY SUPERVISED
LANGUAGE ADAPTATION

When small amounts of in-domain textual data are avail-
able, simple N-gram LM adaptation techniques can be very
effective. In this brief set of experiments, we first explore
the unsupervised language adaptation setting, where no in-
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TABLE VII
CLOSING THE GAP BETWEEN SO TRAINING AND FULLY SUPERVISED

TRAINING FOR THE LG → CV ADAPTATION SCENARIO USING M2DS2,
WITH VARYING AMOUNTS OF AVAILABLE UNPAIRED IN-DOMAIN AUDIO

AND TEXT. (U): UNSUPERVISED ACOUSTIC OR LANGUAGE ADAPTATION.
(W): WEAKLY SUPERVISED ADAPTATION.

Method #Audio (h) #Tokens LM WER

SO (U) - - N/A 59.57
M2DS2 (U) 3 - N/A 57.31
M2DS2 (U) 12 - N/A 51.31

SO (U) - - Generic 25.96
SO (U) - 38, 632 Augmented 24.67
SO (U) - 751, 953 Augmented 20.46

M2DS2 (U) 3 - Generic 20.7
M2DS2 (U) 12 - Generic 17.3

M2DS2 (W) 3 38, 632 Augmented 19.31
M2DS2 (W) 12 38, 632 Augmented 16.29
M2DS2 (W) 3 751, 953 Augmented 12.84
M2DS2 (W) 12 751, 953 Augmented 10.61

Supervised 12 751, 953 Generic 9.52
Supervised 12 751, 953 Augmented 7.94

domain audio is used, and then we relax the problem to
the weakly supervised setting, where M2DS2 is combined
with the adapted N-Gram LMs. These settings are described
in Sections II-A2 and II-A3 respectively. We explore two
approaches for LM adaptation: biased LMs, and in-domain
data augmentation. To create biased LMs, we train a 4-gram
LM on the available in-domain data. Then we replace the
generic LM trained on GGC. For LM data augmentation we
follow a perplexity filtering approach similar to [71]. We first
train a biased LM using available target domain text, and
then use it to calculate the perplexity of each line in the
GGC corpus. We keep the 10% of the lines with the lowest
perplexity. Then we train a 4-gram LM on the augmented “in-
domain” corpus and use it for inference.

Fig. 5 shows the performance of the SO LG → HP model
with biased and augmented LMs, as we reduce the amount
of available in-domain text data from 100% to 1% of the
in-domain transcriptions (11B tokens to 110K tokens respec-
tively). As a baseline we include the LG → HP SO model in
combination with the generic LM trained on GGC. We observe
that the use of biased LMs can lead to successful adaptation,
when an adequate amount of in-domain text data is available.
On the other hand the LM augmentation approach results to
successful augmentation, even with very small amounts of in-
domain text.

In Table VI we see the results of LM adaptation, combined
with the M2DS2 LG → CV model. To demonstrate the sample
efficiency of the approach, we use the variant that was trained
using only 25% of the target domain audio (3 hours). We
compare with M2DS2 combined with the 4-gram GGC LM for
inference. We draw similar conclusions, i.e., use of biased LMs
performs well for sufficient text data. When we use augmented
LMs we can leverage very small amounts of in-domain text.

IX. DISCUSSION & CONCLUSIONS

In this work, we have explored Unsupervised and Weakly
Supervised Domain Adaptation of ASR systems in the con-

text of an under-resourced language, i.e., Greek. We focus
on domain adaptation through in-domain self-supervision for
XLSR-53, a state-of-the-art multilingual ASR model. Specif-
ically, we adopt a mixed task and self-supervised objective,
inspired from NLP, and show that using only in-domain self-
supervision can lead to mode collapse of the representa-
tions created by the contrastive loss of XLSR-53. Therefore,
we propose the use of mixed task and multi-domain self-
supervision, M2DS2, where the contrastive loss leverages both
the source and target domain audio data. For evaluation we
create and release HParl, the largest to-date public corpus
of transcribed Greek speech (120 hours), collected from the
Greek Parliamentary Proceedings. HParl is combined with two
other popular Greek speech corpora, i.e., Logotypografia and
CommonVoice, for multi-domain evaluation.

In our experiments, we find that while most UDA baselines
fail in our low-resource setting, the proposed mixed task
and multi-domain self-supervised finetuning strategy yields
significant improvements for the majority of adaptation sce-
narios. Furthermore, we focus our ablations on showcasing
the sample efficiency of the proposed finetuning strategy,
and demonstrating the necessity of including both source
and target domain data for self-supervision. Finally, we show
that M2DS2 can be combined with simple language model
adaptation techniques in a relaxed weakly supervised setting,
where we achieve significant performance improvements with
a few hours of in-domain audio and a small, unpaired in-
domain text corpus.

More concretely, in Table VII we present a summary of
the discussed unsupervised and weakly supervised adaptation
combinations, for different amounts of available in-domain
audio and text. Note that for the weakly supervised scenarios,
the in-domain audio and text are unpaired. We see, that when
no in-domain data are available, including an n-gram LM
trained on large corpora is recommended. Furthermore, when
in-domain audio is available, following a mixed multi-domain
finetuning strategy using M2DS2 can yield significant WER
reductions, even for a few hours of audio. When small amounts
of in-domain text is available, using a corpus augmentation
strategy, e.g., perplexity filtering, can produce adapted LMs
and yield small improvements to the final WER. In the case
of sufficient amounts of unpaired in-domain text and audio,
independent adaptation of XLSR-53 using the audio data and
the n-gram LM using the text data can yield comparable
performance with a fully supervised finetuning pipeline.

X. FUTURE WORK

In the future we plan to explore the effectiveness of the
proposed adaptation strategy for other languages, and different
adaptation settings, e.g., accent or cross-lingual adaptation.
Of special interest is the investigation of the effectiveness
of our approach for endagered languages, e.g., Pomak. Fur-
thermore, we plan to explore the combination of in-domain
self-supervision, when combined with other popular UDA
techniques, e.g., teacher student models, adversarial learning,
and data augmentation approaches. On the language adaptation
side, we plan to explore multi-resolution learning, which has
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shown promise for ASR [75], and investigate more elaborate
end-to-end weakly supervised adaptation methods. Finally, we
plan to expand our study in a multimodal setting, where both
audio and video are available, e.g., lip reading.
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