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Abstract

Ultrafast ultrasound has recently emerged as an alternative to traditional focused ultrasound. By virtue of the low number
of insonifications it requires, ultrafast ultrasound enables the imaging of the human body at potentially very high frame
rates. However, unaccounted for speed-of-sound variations in the insonified medium often result in phase aberrations in the
reconstructed images. The diagnosis capability of ultrafast ultrasound is thus ultimately impeded. Therefore, there is a strong
need for adaptive beamforming methods that are resilient to speed-of-sound aberrations. Several of such techniques have
been proposed recently but they often lack parallelizability or the ability to directly correct both transmit and receive phase
aberrations. In this article, we introduce an adaptive beamforming method designed to address these shortcomings. To do
so, we compute the windowed Radon transform of several complex radio-frequency images reconstructed using delay-and-sum.
Then, we apply to the obtained local sinograms weighted tensor rank-1 decompositions and their results are eventually used to
reconstruct a corrected image. We demonstrate using simulated data that our method is able to successfully recover aberration-
free images and that it outperforms both coherent compounding and the recently introduced SVD beamformer. Finally, we
validate the proposed beamforming technique on in-vivo data, resulting in a significant improvement of image quality compared

to the two reference methods.
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Abstract— Ultrafast ultrasound has recently emerged as
an alternative to traditional focused ultrasound. By virtue
of the low number of insonifications it requires, ultrafast
ultrasound enables the imaging of the human body at po-
tentially very high frame rates. However, unaccounted for
speed-of-sound variations in the insonified medium often
result in phase aberrations in the reconstructed images.
The diagnosis capability of ultrafast ultrasound is thus
ultimately impeded. Therefore, there is a strong need for
adaptive beamforming methods that are resilient to speed-
of-sound aberrations. Several of such techniques have
been proposed recently but they often lack parallelizability
or the ability to directly correct both transmit and receive
phase aberrations. In this article, we introduce an adaptive
beamforming method designed to address these shortcom-
ings. To do so, we compute the windowed Radon transform
of several complex radio-frequency images reconstructed
using delay-and-sum. Then, we apply to the obtained lo-
cal sinograms weighted tensor rank-1 decompositions and
their results are eventually used to reconstruct a corrected
image. We demonstrate using simulated data that our
method is able to successfully recover aberration-free im-
ages and that it outperforms both coherent compounding
and the recently introduced SVD beamformer. Finally, we
validate the proposed beamforming technique on in-vivo
data, resulting in a significant improvement of image quality
compared to the two reference methods.

Index Terms— Aberration Correction, Adaptive Beam-
forming, Ultrafast Ultrasound

[. INTRODUCTION

N the last 20 years, ultrafast ultrasound has emerged as a

new paradigm rivalling traditional focused ultrasound [1].
It relies on the emission of unfocused waves by an ultrasound
transducer. The recorded echoes are then synthetically focused
to recover an image estimating the reflectivity of the human
soft tissues. To improve the image quality, images correspond-
ing to different insonifications can then be combined into
one, most commonly using coherent compounding [2]. Due
to the high frame-rate the method allows, ultrafast ultrasound
has enabled new diagnostic techniques such as shear-waves
elastography [3]-[5] or neurofunctional imaging [6], among
others.
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To reconstruct an image, ultrafast ultrasound—as well as
traditional focused ultrasound—presupposes a constant speed
of sound (SoS) in the imaged tissues. This hypothesis is how-
ever not met in practice since the SoS of human soft tissues
can vary up to the order of 5% [7]. In effect, SoS variations
introduce high-order aberrations in the reconstructed images
that are ultimately detrimental to the diagnostic capability of
ultrasound imaging [8], [9]. Therefore, there exists a strong
impetus to design image reconstruction techniques that are
resilient to aberrations induced by SoS variations.

Numerous aberration correction methods have thus been
proposed throughout the development of ultrasound imaging
[10]-[12]. A large part of these methods posits the existence of
a thin aberrating layer in front of the transducer. Angular aber-
rations are therefore supposed constant in the medium. This
hypothesis is justified in specific imaging configurations. In
general, however, such methods fail to address the aberrations
generated by a spatially varying SoS distribution.

The recent years have witnessed the development of pulse-
echo SoS imaging methods [13]-[16]. Their goal is to recon-
struct a map of the local SoS from pulse-echo ultrasound mea-
surements. To correct for SoS aberrations, propagation delays
can be deduced from the imaged SoS and then used by delay-
and-sum (DAS) and coherent compounding to reconstruct
an image [17], [18]. Especially relevant to our work is the
method presented in [19], where directional filters applied to
beamformed images are used to take into account aberrations.
Several drawbacks of this general approach can however
be highlighted. First, the local SoS recovery currently lacks
robustness, which may lead to errors in the propagation delays
estimation. Second, such techniques are also computationally
heavy and inherently non-parralelizable due to the SoS map
reconstruction. Finally, such methods do not allow a gain of
performance compared to DAS in the absence of aberrations.

In contrast, novel approaches have emerged recently to
better exploit the coherence existing between insonifications.
These methods provide an increased robustness against SoS
aberrations along with other artifacts such as diffraction
artefacts (side lobes, grating lobes) and multiple scattering
artefacts. The SVD beamformer introduced in [20], [21] is
especially relevant to our work. Its basic principle is to
beamform using DAS a series of complex radio-frequency
(CRF) images—one per insonification—and extract patches
from them. A stack of patches can be interpreted as a matrix
and its leading right singular vector corresponds to a patch
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of the corrected image. In addition, the leading left singular
vector corresponds to local aberrations and can be used to
estimate local SoS [22]. Computationally light and easily par-
ralelizable, SVD beamforming is however only able to directly
correct for transmit (Tx) aberrations. Receive (Rx) aberrations
are overlooked, penalizing in practice the performances of
the method. Another proposed approach exploiting redun-
dancy between insonifications is ultrasound matrix imaging
(UMI) [23], [24]. This technique constructs virtual emitters
and receivers in the imaged medium. Aberration correction—
among other features of UMI—is performed by maximizing
the energy of emitters-receivers pairs when placed at the
same location. However, UMI-based aberration correction is
computationally demanding and unfit to parralelization since
several image correction steps are necessary.

Therefore, our goal in this article is to propose an adaptive
beamforming method for ultrafast ultrasound that adheres to
the following guidelines:

« It should be able to simultaneously correct for spatially-
varying Tx and Rx phase aberrations,

o It should also provide additional robustness to artifacts
such as multiple scattering and diffraction artifacts with
respect to coherent compounding,

« It should be easily parallelizable and thus avoid to itera-
tively reconstruct images or to compute a local SoS map.

To do so, we rely on the concept of change of basis from
the canonical sensor basis to a Rx plane waves (PWs) basis—
sometimes denoted as Radon domain—proposed recently [25],
[26]. Following [20], [24], the main rationale behind the
proposed method is to express the data into a local Rx PW
basis to account for the locality of the phase aberrations
induced by SoS variations.

Il. THEORY

In this section, we first describe the model of the received
signal. Then, we detail the theoretical argument underpinning
the proposed method.

A. Signal Model and Beamforming

In this article, we restrict ourselves to the case of a linear
transducer. We suppose that it is aligned with the x axis and
facing the positive z direction. An element of the transducer
is then defined by its position ' = [x®,0]7. Furthermore,
we assume that the transducer emits PWs parametrized by
their steering angles 67%. According to [27], we model the
CRF echo-signal m received by an arbitrary sensor when an
arbitrary steered PW is transmitted as

m(QTX,Xd, t) = Vpe(t)*t

/[ETX(QT",r, 1) % R (x r, )] y(rydr, (1)
r

where the functions #™* and AR* designate the Tx and Rx
spatial impulse responses (SIRs), respectively, and *, repre-
sents a temporal convolution. We denote by v the pulse-echo
waveform accounting for the electro-acoustic (Tx) impulse
response, acousto-electric (Rx) impulse response and electric

excitation waveform. We represent by y the tissue reflectivity
function (TRF) which factors in the local fluctuations of
density and SoS generating scattered echo signals.

Following [28], [29], we introduce a Tx and Rx far-field
approximations. Moreover, we assume that v, is a complex
signal with center frequency fy = wo/2n. Under these assump-
tion, we can rewrite (1) as

m(‘ng’xel’ I) — /th (ng’ r) th (xel’ r)e—ijATTX(HTX,r)
r
eI AT (xLr) Vpe (t — O™, p) = TR (2, r))y(r) dr. (2)

Here, the functions #™* and AR* are real and positive and
they factor in element directivity, decay and attenuation. In
(2), we split the Tx and Rx propagation times into two
distinct terms: the expected propagation times 7'%, 7R and
the aberrations delays AT™*, ATR*, In-line with previous works
on SoS estimation and aberration correction [15], [19], [20],
we reduce the effect of aberration delay to a phase shift by
assuming that vpe is narrow-band.

We compute the expected propagation times by positing a
uniform SoS co in the medium. The Tx propagation time is
then given by

1 . sin(6)
Tx (pTx _ Tx —
X0, r) = ” (u(& )r> with u () cos(6)| " 3)
and the Rx propagation time is given by
1
™ r) = —[lr =¥ ©))
co

Aberration delays A7t ™*/R* are therefore the result of a mis-

match between the physical local SoS and the assumed SoS
Cco.

We now suppose that DAS is applied independently to
the data obtained for each PW insonification. Moreover, we
assume that we have access to a continuous range of sensor
positions x° € [ - xmax,xmax]. Under this hypothesis, DAS
can be expressed as

yPAS(gT% /) = /
X

el —_ ymax

max
XM

aTx (QTX, r/) Cle (xel’ r/)
m(QTX,Xd, TTx (QTX, r/) + TRx (xel, I")) dr, (5)
where a™ and a®* denote real and positive apodization
weights. In particular, the sensor continuum hypothesis has
the practical effect of neglecting grating lobes altogether. The

resulting expression yPAS is a function of both the spatial
position in the image r’ and the Tx angle 67*.

B. Local Angular Framework

To further our analysis, we focus on the vicinity V(r") of
a point ¥ = [x¥,z%]T in the image series yPAS. We first
suppose that aT¥/Rx pTX/Rx “and ArT*/RX vary slowly in the
medium and thus can be assumed constant in V(r") and equal

to their value at r%. Practically, V(r%") is equivalent to the
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isoplanatic patch used in [20], [23]. Moreover, we introduce
a local Rx angle

(6)

w el
xV —x
%% = arctan ( ) ,

ZW
and re-express each function of x®' as a function of 6%*. Based
on this change of variable, we posit that the Rx expected time

can be assumed linear within V(r%) and expressed as:

ZW

(u(6®),r —r¥) + coT(ORX)

)

1
TRX(QRX, r) ~ —
€0

with u(6) the vector defined in (3). Factoring in (2), we can
rewrite (5) as:

DAS (oTx ./ ~ Tx (pTx) jRx ( pRX
S )~ [ e ) [y

e B on (255 (2425 )

co

where we define two apodization/aberration functions

[™(67) = aTx(eTx)th(eTx)e—jwoATT"(ﬁT")

s

9

le (ng — ZZE)GRX) aRx (HRX) th (ng)e—jw()ATR" (HRX) )
COS

Note that there is an implicit dependency of {™/R* and %% to
r¥, omitted here for conciseness. Furthermore, the additional
term appearing in the definition of /R* compared to /™ stems
from the change of variable (6) applied to the integral.

We assume the additional hypothesis

Tx _ gRx
0 ze )zl,

cos ( (10)

which holds as long as both Tx and Rx angles remain close
to 0. Equation (8) can then be rewritten as

,)/DAS(QTX”,/) z‘/‘
ng
s (eT", oR*, <u (—6’“59‘“) - rw>) doR* (1)
with

s (O™, 6%, d) = 1™ (6™) 1R (6%%) f (mx;ng’d) (12)

and

£(0.4d) =/H” vpe(f—o(d—a“))
/My(allu(a) +atut(6) +rw) dotdel, (13)

with ut a vector perpendicular to u and d a variable repre-
senting the spatial displacement with respect to r*.
According to (12), the series of sinograms s is given by the
product the two aberration/apodization functions /™/R with a
function f, a term factoring in the reflectivity and the pulse-
echo waveform. In fact, function f represents the local Radon
transform of an unapodized image free of aberrations.
Therefore, our proposition for an adaptive beamforming
method can be summarized as follows. We reconstruct using
DAS a series yPAS of one image per insonification. These

TABLE |
TRANSDUCER AND SEQUENCE
Transducer GE9L-D
Number of elements N¢! 192
Pitch 230 um
Aperture 43.93 mm
Element width 0.9-230 pm?
Element height 6 mm
Elevation focus 28 mm
Center frequency 5.3MHz
Fractional bandwidth 75%
Steering angle spacing 5°
Number of insonifications NT* 9
Excitation cycles 1
Excitation frequency fo 5.208 MHz
Sampling frequency fs 20.833 MHz
Pulse repetition frequency 9kHz

4No official data available, guessed value

images are divided into zones (or patches) V(r%) to abide
by the strong hypotheses introduced in this section. For each
zone V(r%) we estimate first function s, then function f.
Ultimately, function f is used to reconstruct an aberration-
free image restricted to V(r%) and the local images obtained
for different zones are combined into a single one.

I1l. METHOD

In this section, we present the practical aspects of the
proposed method. We first detail the data acquisition and
beamforming processes. We describe thereafter which patches
V(r%) to select and how to obtain s for each patch, followed
by the computation of f using tensor rank-1 decomposition.
Finally, we present the reconstruction of the image, along
with our implementation of the SVD beamformer used as a
reference method.

A. Acquisition

All data considered throughout this article has been simu-
lated or acquired using a GE9L-D ultrasound transducer (GE
Healthcare, Chicago, Illinois, USA) connected to a Vantage
256 system (Verasonics, Kirkland, WA, USA). This transducer
comprises a seties of N®' = 192 discrete sensors with positions
x%, j =1,..., N and we suppose it sends sequentially a series
of discrete PWs with uniformly spaced steering angles QZ.T", i=
1,..., N™ with N™ = 9 unless stated otherwise. The echoes
signals are then recorded using all N® elements. We directly
apply the Hilbert transform to the raw measurements so that
they can be described by a series of analytic signals gathered
into a vector m € CN"N“N'_ Nt denotes here the number of
time samples considered after sampling with frequency f;. The
specifications of the transducer and sequence are summarized
in Table 1.

B. Delay-and-Sum

Given the measurements m, we use DAS to compute the
beamformed PW images y°2S. In practice, we discretize (5) as
a sum over all sensors x! and we interpolate cubically between
time samples. Function yPAS is estimated at a series of points
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r’ = [x,’,1,z,’1]T, m=1,...,.N*, n=1,..., N*. Therefore, it is
represented by a vector yPAS e CN TNTNE

To ease the implementation of the proposed method, we use
an isotropic grid with a spatial spacing selected to guarantee a
200% fractional bandwidth Ax’ = Az" = ¢o/(8fy) = 38.5 um.
The Tx apodization a™ is set to 1 whereas a Tukey apodization
with 42° half-aperture and 0.15 cosine fraction is used as the
Rx apodization a®* to reduce grating lobe level.

The 42° half-aperture is chosen to ensure that the direc-
tivity of an element reaches 6dB below its maximum value.
Assuming a soft baffle boundary condition, we compute the
theoretical angular directivity of a narrow element in the far
field according to [30].

C. Windowed Radon Transform

As detailed in Section II-B, beamformed images S must
be restricted to a series of patches V(r"). Practically, we thus
window yPAS with a function w shifted by a series of vectors
r¥, such that rV represents the center of the window and
vy ={r: w(r' -r") >0}

To estimate function s for a specific window position r",
we can insert the windowing operation into (11). The result
can be rewritten as

w(-=rY)yPAS = R*s, (14)

where R* denotes the adjoint of the Radon transform, often
designated as backprojection.

The inverse of the Radon transform is given by filtered
backprojection, namely the composition of a filtering operator
¥ and the adjoint of the Radon transform R* [31]. Equation
(14) can thus be further re-expressed as

5= FIR[w( - =r)yPAS). (15)
We define the inverse filtering operator #~! applied to an
arbitrary signal g(d) as

7@ (O = (&)
in the frequency domain, with ¢ the Fourier transform of g
and ¢ the spatial frequency associated with d.
Equation (15) without the inverse filtering operation is
known as a windowed Radon transform [32]. In the continuous
domain, it can be written as

(16)

r

5((u (-2 ) r =) —a)ar. 7y

In practice, we consider NR®* discrete angles 9‘;", j =
1,..., N® and N? values of d such that the spatial spacing of
d is equal to the spatial grid spacing of the image Ax’ = Az’
Furthermore, we consider a discrete grid of window centers
rg,p suchthat p = 1,..., N¥* g = 1,..., N¥% with NV*, NW-2
the number of points in the x and z directions. The distance
between two window centers is set to AxV = AzV = 24Ax =
0.924mm to ensure a sufficient overlap between windows

since it is necessary in the image reconstruction step—c.f.

g(ng’ GRX’ d, rw) — / ,yDAS (ng’ r/)w(r/ _ rw)

Section III-E—. One can now apply the inverse filtering
introduced in (16) to recover a bona fide estimation of s from §.
Effectively, (16) is implemented as a linear system of equations
in the spatial domain.

It is important to mention that the mathematical analysis
detailed in Section II-B neglects the windowing of the image
introduced in (17). A side effect of the windowing is the
limitation of the angular resolution of s with respect to 6%* due
to the convolution in the frequency domain between the the 2D
spectrum of the window and the spectra of the images yPAS.
To minimize this phenomenon, one must choose a window
w with a narrow main lobe. Furthermore, the window must
have a smooth profile to avoid artifacts in the reconstruction—
c.f. Section III-E—. Thus, a Tukey window with 0.5 cosine
fraction is chosen as a trade-off. The radius RY must also
achieve a critical trade-off. It needs to be sufficiently small to
enforce the hypotheses introduced in Section II-B, but large
enough to be resilient to local TRF variations. We determined
empirically that RY = 2mm provides a good compromise for
the proposed imaging configuration.

In turn, the Rx angular spacing is constrained by the size
of the window. This constraint stems from the necessity to
sample the whole 2D frequency plane. If this condition is
not met, strong local grating lobe artefacts can appear in the
reconstructed image. Let us recall that the main lobe width of
a 2D Tukey window with radius R" and 0.5 cosine fraction
is f% = 0.902/RY. We posit that the distance between two
samples in the frequency plane must be at most equal to the
window main lobe width. In accordance with the size of the
image grid, we need to guarantee a 200% fractional bandwith.
Therefore, the maximum 2D spatial frequency magnitude we
must consider is f™* = 2. 2fy/co. Under a small angle
hypothesis, the minimum angular spacing of the Radon angle
is then given by f%/f™ =0.033 = 1.91°. According to (17),
there is a one-half factor between the Radon angle and the
Rx angle, the maximum Rx angular spacing is consequently
3.82°. Regarding the maximum Rx angle, we set it such
that it corresponds to the last angle not affected by the Rx
apodization a®*, namely 0.85 - 42°~ 35°.

D. Tensor Rank-1 Decomposition

To recover [™/R% and f from s, we propose to solve the

following inverse problem

min

1 Tx jRx »Tx,Rx
fJTxJRxE”l l f

2
- S||QTX><QRX><Q‘1+
L,

Pl Bogas (18)

with

”lTx/RxH?ZTX/Rx — ‘/HTX/RxegTX/Rx |lTx/Rx(0Tx/Rx)|2 d@TX/Rx, (19)

”f”?zﬂxgd = //9999 Jea |f(9, d)iz do dd,

2 —
”g“QTXxQRXxQ" - /[/HTxeng,ngeQRX,deQd

g (6™, 6%, d)|” d6™ do”*dd, (21)

(20)
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and

FTRRX(gTx gRX ) = ¢ (oTXZBRX’d) . (22)
In (18), QTx/Rx 00 and Q9 denote the ranges of 9T*/Rx g and
d, respectively. Problem (18) can be interpreted as a weighted
and regularized rank-1 canonical polyadic (CP) decomposition
in the continuous domain.

The regularization term is necessary to prevent a divergence
of the solution, for instance if [T* and [®* are null for certain
angles. In fact, the regularization term enables a dynamical
apodization of the image. A small regularization parameter
p implies that the proposed method compensates for the
angular directivity of the sensors, among other magnitude
effects acting on the received signals. Lateral resolution is
thus typically favored at the expense of robustness to multiple
scattering and diffraction artifacts. The opposite phenomenon
occurs when a large regularization parameter u is chosen. The
proposed method is then more robust to artefacts at the expense
of lateral resolution. We determined empirically that g = 1
provides a good trade-off—c.f. Section IV-B—. The adaptive
apodization of the proposed method extends in effect the Tx
adaptive apodization already enforced by SVD beamforming.
This adaptive apodization can induce a gain of performance—
especially contrast—compared to coherent compounding, even
in the absence of aberrations.

We solve (18) with alternating least-squares (ALS), a com-
mon method for CP decomposition [33]. Its fundamental prin-
ciple is to solve least-squares problems by fixing alternatively
two out of the three variables f, [T, and IR*. The ALS scheme
with continuous signals is detailed in Algorithm 1, where ~
denotes the complex conjugate. To the best of our knowledge,
there exists no proof of convergence for ALS in the present
case of weighted CP decomposition. Convergence guarantees
exist however for the unweighted regularized case [33]. Even
if we are not certain that ALS converges to a global minimum,
we are guaranteed that it will converge to a local minimum
that is at least as good—with respect to the loss—as the case
where /™ and IRX are uniform.

In practice, we need to discretize [T [RXand f. First of
all, we can naturally express [T as a vector I™ e CN",
In addition, we can determine the discrete Rx angles %
and Radon angles @ such that interpolation can be avoided
in the implementation of Algorithm 1. To do so, the Tx
and Rx angular spacings should be multiples of one another
and the angular spacing of @ should be half of the mini-
mum of the Tx and Rx angular spacings. Consequently, we
can infer that %% = [-35°,-32.5°,...,35°] since it must
comply with criteria introduced in Section III-C, and that
0 = [-27.5°,-26.25°,...,27.5°] since the maximum mid-
angle is given by (35°+20°)/2 = 27.5°. Practically, only a
few iterations are necessary in order for ALS to converge, in
particular we set N1'=20.

Ultimately, Algorithm 1 is run for each window position
ry 4 Moreover, we normalize I® and I™ and reweight f
accordingly, ensuring a consistent amplitude of f between the
different window positions.

Algorithm 1: Alternating Least Squares

Initialize uniformly /7%;
Initialize uniformly /RX;
for i := 1 to N do

f(@, d) —
Z/HTX l-rX(HTx)l—RX (ZH—HTX)S(HT",ZF)—(JTXA) doT
2 Jyrx ITX(OTX)IRX(M_G“) 2d0“+ﬂi ™ ;Tx leH;RX ’
lTX (eTx) —

A f( HTXE‘)RX ,d)TR‘ (6%)s (6™, 6% ,d) do®* da

o | (o) o
le (HRX) —

Mot a f( QTXE”"RX ,d)l‘“ (6™)s (6™, 6%*,a) d6™ ad

/feTX,d f( GT"EE’R" ,d)lTX (HTX)

2 2
doRrx dd+;4||lRX|| R

> ;
oTx

2
f”szgxﬂd

1Tx

2
d6™ dd-+p

end
Return: f, [T, [R

E. Image Reconstruction

Once a single sinogram f per window position is ob-
tained using Algorithm 1, we recover the estimations of the
corresponding local patches by applying the backprojection
operator R* to f

yEP(r, %) = /f (6. (u(),r' = r"),r") de, (23)
6

in the continuous domain. Backprojection is then repeated for
each window position ry .

We need to reassemble the patches obtained with (23) into
a single image . Unfortunately, each value of f is recovered
up to a arbitrary phase. We must therefore make sure that
the patches are added up in phase, otherwise detrimental
artifacts are likely to appear. We thus perform the image
reconstruction using Algorithm 2, where patches are added
to the image y' after a phase correction v that is updated
Niterout timeg, N0t jg et to 10 in practice. Moreover, we
compute a normalization factor n to correct for magnitude
variations induced by the windowing. The corrected image '
is discretized as a vector yf € CNV'N°, using the same grid
than the initial images y°*S. The brightness (B)-mode image
is ultimately computed as

yf,B(r’) =20log, \7f(",)|' @9

F. SVD Beamforming

To compare the performance of our approach to a state-
of-the art method, the SVD beamformer proposed in [20] is
implemented. The implementation is performed as follows.
First, we define wSYP as a square window, such that the multi-
plication of an image with wSVP shifted by 7 corresponds to
a patch extraction. Consequently, we can solve the following
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Algorithm 2: Image Reconstruction
yf(r’) «— 0;
n(r’) « 0;
for p =1to N"* and q :=1 to N** do
’ (r _rpq)yfp(r’rpq)

w(r' —r

( ’ pq)
n(f’) n(r') +

YH(r') — ¥ (r) +o"

b))
Y(r,ry )
end

for i := 1 to N o4 do

for p :=1to N and q :=1 to N** do

,yf,O(r/) — ,yf(r/) _ ,yf,w(r ’rp q)
v — /r/ ,yf,O(rr),)—/f,w(r ’rp q) dr’;
,yf,w(r/) — ﬁ,yf,w( );

end

,yf(r/) - 0’

for p :=1to N¥* and q := 1 to N** do
| Y)Y )
end

end

Return: y'

inverse problem

arg min //
YR, 1T |I=1 S S 0T

DAS(QTX /) SVD(

lTx HTX)

) de™dr’, (25)

for all the patch positions r*. This problem results in a
function P (r’, r") that can be directly used by Algorithm 2
with w = wSVP to reconstruct the corrected image y'. Similarly
to the proposed method, yPAS, 3P and I™ can be represented
by discrete complex vectors. The solution of (25) is thus given
by the two leading singular vectors of the windowed series of
images expressed as a matrix.

We set the parameters of the SVD beamformer to be as close
as possible to the ones of the proposed method to ensure a
meaningful comparison. In particular the half-side of a square
patch is identical to the window radius RY (2mm) and the
same distance between patch centers is kept.

IV. EXPERIMENTS

In this section, we detail the experiments we perform to
check the validity of the proposed method and present their
results. We also compare our method to standard coherent
compounding and SVD beamforming. We first assess quan-
titatively the proposed method using simulated data, followed
by a test of the method with in-vivo data.

A. Simulation

We depict in Figure la, the numerical phantom designed
to quantitatively assess the performance of our method. A
SoS of 1540ms™' is set in the phantom background. Two

inclusions—one anechoic and one hypoechoic 6dB below the
background echogeneicity—and six scatterers are embedded
within the medium. Moreover, we add an irregular aberrating
layer with a SoS of 1500ms~! and an echogeneicity 6dB
above the background on top of the phantom. We choose such
a layer—in opposition to a flat layer or a phase screen—for
its capacity to generate complex phase aberrations with strong
lateral variations. Complex laterally-varying aberrations can
typically occur in the imaging of the abdominal wall due to
the interweave of muscle and fat tissues. We simulated using
k-Wave [34] the data corresponding to 10 different speckle
realisations of the phantom.

In addition, figure la presents the zones considered to eval-
uate the performance of our method. As detailed bellow, three
different key features have been analyzed: contrast, scatterer
resolution and the ability to accurately correct aberrations.

o To compare contrast, we compute the contrast ratio (CR)
between the two inclusions and their adjacent back-
grounds. The inclusions’ interiors used to estimate the
CRs are highlighted with purple and green lines and the
backgrounds are bounded by lighter lines. To account for
the apparent position displacement due to the aberrating
layer, the centers of both inclusions are shifted by 200 um
along the z-axis in the coherent compounding, SVD
beamforming and proposed method cases.

« To compare resolution, we compute the axial and lateral
full width at half maximum (FWHM) of near and far field
scatterers. They are displayed in red and orange in Figure
la, respectively.

o Lastly, we check whether the proposed method is able
to correctly compensate for Tx and Rx aberrations and
recover speckle patterns coherent with a theoretical un-
aberrated image. To do so, we generate a reference image
with DAS and coherent compounding from a simulation
without the top aberrating layer. We then compute the
maximum of the normalized cross-correlation between a
series of patches extracted from the target CRF image and
the corresponding patch of the reference CRF aberration-
free image. The patches selected to perform this analysis
present speckle patterns that are especially aberrated in
the coherent compounding images. These patches are
displayed in blue in Figure la.

Figures 1b-1d show the results of coherent compounding,
SVD beamforming and the proposed method using data from a
single speckle realisation of the phantom. Close-ups of a near-
field and a far-field scatterers (in red and orange in figure 1a)
are also presented on the bottom row. Figure le displays the
reference aberration-free image. Furthermore, we summarize
on Table II the metrics computed on the phantom, averaged
over 10 speckle realisations. The standard deviation is given
between parentheses.

From the results presented in Table II, we can observe
that the most noticeable benefit of the proposed method with
respect to coherent compounding and SVD beamforming is its
capacity to accurately reconstruct the scatterers. As depicted in
the close-ups of Figure 1, the SVD beamformer improves the
quality of the far-field scatterer—even if it is not reflected on



BEURET et al.: WINDOWED RADON TRANSFORM AND TENSOR RANK-1 DECOMPOSITION FOR ADAPTIVE BEAMFORMING IN ULTRAFAST ULTRASOUND 7

Coherent
compounding

Phantom

scatterer

1 11
1 11
I Near-field 1|
: scatterer : :
1 11

1
1
Far-field :
1
1

SVD
beamforming

Proposed Reference

method

Fig. 1. Top row: B-mode images reconstructed from simulated data, bottom row: examples of reconstructed scatterers. a) Phantom geometry with
the top aberrating layer and the zones considered for the computation of the metrics highlighted. b) Coherent compounding image reconstruced
from a single speckle realisation of the phantom. ¢) Result of the SVD beamformer. d) Result of the proposed method. e) Reference coherent
compounding image obtained from data simulated without the aberrating layer.

TABLE I
SIMULATION RESULTS
CoherenF SVD ) Proposed Reference
compounding beamforming  method
Anechoic -18.83 -22.08 -25.08 -22.95
CR [dB] (0.33) (0.39) (0.36) (0.36)
Hypoechoic -5.86 -6.12 -6.29 -6.04
CR? [dB] (0.23) (0.33) (0.26) (0.27)
Near-field lateral 594 641 247 244
FWHM [um] (29) (28) “ (@)
Near-field axial 199 200 211 210
FWHM [um] (©) (6 “ “
Far-field lateral 333 333 260 280
FWHM [um] 19) (10) 6 Q)
Far-field axial 220 218 204 206
FWHM [pm] 3 3 3 @
Normalized 0.768 0.796 0.951 b
cross-correlation (0.085) (0.072) (0.027)

4Target value: -6dB
bThe cross-correlation is computed with respect to the reference image

its lateral FWHM—but fails to correct the near-field scatterer.
On the contrary, the proposed method recovers scatterers that
are qualitatively and quantitatively comparable to the ones
of the reference image. Nevertheless, we can notice that the
axial displacement in the apparent positions of the scatterers
compared to the reference image is not compensated by the
SVD beamforming and the proposed method.

Regarding the anechoic inclusion, we can notice that both
SVD beamforming and the proposed method provide contrast
improvements compared to coherent compounding. The pro-
posed method achieves however a better contrast ratio—even
outperforming the contrast ratio of the reference image—and
a better reconstruction of the inclusion’s shape. With regard
to the hypoehoic inclusion, all four methods achieve similar
average contrast ratios with similar standard deviations.

Finally, from the normalized cross-correlation with the
reference image, we observe that our method highly outper-
forms the SVD beamforming and the coherent compounding.
The SVD beamforming only achieves a limited improvement

compared to coherent compounding. In contrast, the image re-
constructed using the proposed method consistently correlates
with the reference image to a high degree, thus accurately
compensating for aberrations and maintaining speckle coher-
ence.

B. Regularization Parameter

One of the key enablers of our method is the regularization
parameter. To quantify its impact on imaging quality, we
reconstruct the images corresponding to the 10 speckle realiza-
tions of the phantom with different values of the regularization
parameter u. We present in Figure 2 the evolution of the
metrics—at the exception of axial resolution of the scatterers
which is only weakly affected by the aberrations, as seen in
Table II—with respect to u. We depict in the same figure the
metrics associated with coherent compounding, SVD beam-
forming and the reference image, which are all independent
from the regularization parameter. The plain lines and shaded
areas represent the mean and standard deviation of the metrics
over the 10 speckle realisations, respectively.

We can notice that the trade-off between resolution and
robustness described in Section III-D is confirmed experimen-
tally. Indeed, the lower the regularization parameter is, the
smaller the lateral resolution becomes. The resolution of the
reference image is even outperformed on both the near and
far-field scatterers when u < 1. By contrast, the contrast
ratios of the anechoic inclusion—and to a lesser degree
the hypoechoic inclusion—increase, a sign that the proposed
method becomes more sensible to diffraction artefacts. This
sensibility to diffraction artefacts can also be observed on the
normalized cross-correlation, since it also worsens when u
decreases. The change in cross-correlation cannot however be
solely explained by the presence of artefacts since the speckle
is tightened when p decreases. For illustration, we depict on
Figure 3 a scatterer and the anechoic inclusion for three values
of u, along with the reference image.

To conclude, we determine the default regularization pa-
rameter u = 1 as the value at which the lateral resolution



8 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2017
16 Anechoic inclusion 5.0 Hypoechoic inclusion o -10 Anechoic inclusion o -5.0 Hypoechoic inclusion
o o ' 5 -151 5 -5.51
®  -201 ® 957 - — 201 VP o —
- % 6.0 83 -251 88 ~
-24 1 2 g o= -6.51
g5 S0 6.5 £ -301 =] .
T _og IS 3 -351 ~N 8 V7
8 8 70 © '40 T T T T LI LA © -75 T T T T T T 17T
-32-4— T T -7.5— T T N i 5 10 20 50
ormalized Number of
1.0 cross-correlation insonifications N7
800 Near-field scatterer 400 Far-field scatterer ’
= = 3504 o 0-91 - Reference
= = 600 2 = K 0.81 Coherent compounding
B3 4001 T3 3001 0.71 SVD beamforming
% % 2501 0.6 +——rrr —rrr Proposed method
- 200+ = 500 5 10 20 50
j j j 101 100 10! Number of
Normalized Regularization insonifications N
1.0 cross-correlation parameter u
0.9 Fig. 4. Evolution of the average image quality metrics with respect to
o — Reference the number of insonifications. The metrics are computed over 10 speckle
§ 0.81 Coherent compounding realizations of the phantom and depicted with their standard deviations.
0.7 SVD beamforming
61— . . Proposed method ) .

101 100 10? From Figure 4, we can observe an improvement of the ane-
Regularization choic CR with the number of PWs, regardless of the method
parameter 1 applied. Notably, the relative difference between the four cases

stays approximately constant. A noteworthy exception occurs
Fig. 2. Influence of the regularization parameter y on the average When N™ > 40, the results of the proposed method become

image quality metrics. The metrics are computed over 10 speckle
realizations of the phantom and depicted with their standard deviations.

Proposed method Reference

u=1

u=0.1

u=10

Near-field
scatterer

Anechoic
inclusion

Fig. 3. B-mode examples of scatterer and anechoic inclusion recon-
structed using different values of the regularization parameter p. They
are compared with a reference aberration-free image and displayed with
a 60 dB dynamic range.

achieved by the proposed method is at least equal to the one
of the reference image.

C. Number of Insonifications

We also test the influence of the number of insonifications
on the quality of the image reconstruction. Figure 4 represents
the contrasts and speckle correlation with respect to the
number of PWs considered N*V. The plain lines and shaded
areas represent again the mean and standard deviation of the
metrics over the 10 speckle realisations, respectively. The
scatterers’ FWHMs are omitted due to the limited influence of
the amount of PWs. With regard to the proposed method, the
number of Radon angles and Rx angles are updated for each
NPV to comply with the criteria disclosed in Section III-D.

worse than the reference image. The influence of the number
of PWs on the hypoechoic CR and speckle correlation is more
limited. Nonetheless, an improved stability of the correlation
with respect to N1x can be observed with SVD beamforming
and the proposed method, especially when Nty < 10. Overall,
we can conclude that the proposed method does not require a
specific range of PWs to be effective.

D. In-vivo

To assess the in-vivo performances of the proposed method,
we acquired two sets of data on the abdominal wall of a
healthy volunteer (27 years old male), using 9 PW insonifica-
tions. The ultrasound sequence has been approved for research
with human subjects by the Cantonal Ethics Committee of the
Canton of Vaud, Switzerland. We reconstruct the images with
coherent compounding, SVD beamforming and the proposed
method, for both scanning positions. The resulting B-mode
images are depicted in Figure 5, along with close-up of four
areas of interest.

We can notice in each image the complex structure of the
medium, with a series of non-parallel muscle and fat layers.
Those layers are likely to possess a different SoS than the
expected ¢ =1540 m s~! [7], and thus to generate aberrations.

We can first observe that the SVD beamformer and pro-
posed method both improve contrast with respect to coherent
compounding. The contrast improvement is especially visible
in the median layer—between 2 and 3 cm—of both images
and corroborates the results obtained with simulated data.
However, the most noteworthy effect of the proposed method
is its capacity to reconstruct scatterers. It can be observed
in the top area of interest of the first image. An ovoidal
scatterer is reconstructed, whereas it lacks definition with the
two reference methods. It can also be seen in the bottom
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Fig. 5. Two in-vivo images of an abdominal wall (top and bottom row), using 9 plane wave insonifications and a 60 dB dynamic range. Results of
coherent compounding, SVD beamforing and the proposed method are depicted. Areas of interest are highlighted in blue.

zone of interest of the second image. The proposed method
reveals the presence of five scatterers whereas their presence
can only be guessed from the two reference methods. Overall,
our method permits a general qualitative improvement of the
images. As an illustration, we can see in the top zone of
interest of the second image the reconstruction of an interface,
whereas it appears faint with coherent compounding or split
in half with SVD beamforming.

V. DISCUSSION

In this article, we introduce a novel adaptative beamforming
method able to correct aberrations caused by SoS variations
in the imaged medium. We show using simulated data that
our method accurately corrects phase aberrations and recovers
an image that correlates to a high degree with an ideal
aberration-free image. In particular, the lateral resolution is
greatly improved. We also establish that the proposed method
allows a contrast improvement with respect to DAS even
when aberration-free data are considered. Lastly, we present
qualitative in-vivo results confirming, in particular, an im-
provement in scatterer resolution with regard to both coherent
compounding and SVD beamforming.

As desired, our method is highly parallelizable. Specifically,
the bulk of the proposed technique can be performed simul-
taneously for each patch. The windowed Radon transform—
the most computationally heavy operation of our method—
can be parallelized further with respect to the Tx angles. The
main temporal bottleneck is then given by the two iterative
algorithms (Algorithms 1 and 2), but the numbers of iterations
N and N %% remain small in practice. Our prototype GPU
implementation using 9PWs currently runs in 30 seconds on
an Nvidia GeForce 2080 Ti GPU (Nvidia Corporation, Santa
Clara, CA, USA). However, the performance of the code can
be significantly improved and the choice of parameters can
be optimized with respect to the computation time. Overall,

we are confident that the computation time can be reduced to
allow real-time image reconstruction.

The proposed method posits that the Tx and Rx aberrations
[™/Rx(9) are essentially different. If this fact holds true for
their amplitude (9), their phases in the continuous domain are
equal in theory. Therefore, adding a phase equality constraint
—or a penalty on the phase difference—to /™/®¥(8) could in
principle improve the quality of the estimation of f. In practice
however, it would increase the computational complexity of
Algorithm 1 and mitigate its convergence guarantees. More-
over, tissue movements may occur between insonifications.
Such movements can be interpreted as Tx phase shifts. Consid-
ering separate Tx and Rx aberrations likely provides additional
robustness to in-vivo movement artifacts, especially when the
number of insonifications grows.

A fundamental limitation of the proposed method is its
failure to retrieve the absolute position of reflective structures.
This drawback arises from the estimation of time delays by
phase shifts and from the inability of our method to recover
the global phase of I™/®*_ A reconstruction of the SoS map
is therefore probably necessary to address this shortcoming.
The parallelizability of such a method would however be
impaired. The phase-shift hypothesis also limits the maximum
aberration delay our method can correct. The applicability of
our method to cases where strong aberrations are present is
therefore hindered.

Nonetheless, we can state that our method is, first of all,
useful to improve B-mode imaging, as indicated by the in-vivo
examples. The proposed method can be especially relevant
to the challenging case of overweight patients, since the
presence of fat is likely to generate SoS aberrations [7]. Due
to the low number of insonifications required, our method
can also be used in conjunction with portable transducers,
since the amount of data they can acquire and transmit is
likely to be limited. Moreover, SoS aberrations affect the
quality of displacement tracking between consecutive frames.
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The performances of methods such as shear-wave elastog-
raphy are therefore diminished. Consequently, displacement-
tracking-based techniques could benefit from the capacity of

the

proposed method to correct for Tx and Rx aberrations.

Further research is however necessary to establish any positive
effect of the proposed method.
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