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Abstract

The Van der Pol Fourier representation of the Riemann Zeta function in the critical strip is evaluated using the Fast Fourier

Transform (FFT) algorithm and the Method of Stationary Phase. The Method of Stationary Phase approximation allows us

to introduce a new representation for the zeta function. The new representation is used to propose new analytic predictions

about non-trivial zeros.
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Abstract—The Van der Pol Fourier representation of the 

Riemann Zeta function in the critical strip is evaluated using the 

Fast Fourier Transform (FFT) algorithm and the Method of 

Stationary Phase. The Method of Stationary Phase 

approximation allows us to introduce a new representation for 

the zeta function. The new representation is used to propose 

new analytic predictions about non-trivial zeros. 

 

Index Terms— Riemann Zeta Function, Van der Pol Fourier 

Representation, FFT, Method of Stationary Phase, Non-trivial 

Zeros 

I. INTRODUCTION 

Riemann’s zeta function is defined as the Dirichlet sum for 

complex numbers 𝑠 = 𝜎 + 𝑖𝑡, 𝜎 > 1, 

 

𝜁(𝑠) = ∑
1

𝑛𝑠
∞
𝑛=1                                    (1) 

 

Riemann was able to extend the function to the whole 

complex plane using analytic continuation [1]. With the 

extended definition of the zeta function, Riemann was able to 

address fundamental questions related to the distribution of 

prime numbers using infinitesimal calculus. Riemann’s work is 

the foundation of analytical number theory. The non-trivial 

zeros of the zeta function are zeros with 0 ≤ 𝜎 ≤ 1 (also called 

the critical strip). The claim (hypothesis), made by Riemann 

more than 160 years ago states that the non-trivial zeros of the 

zeta function lie on the critical line 𝜎 =  1/2. 

Because the Riemann hypothesis makes precise predictions 

about the distribution of prime numbers, it is considered by 

many to be the most important unsolved problem in 

mathematics. Unsuccessful attempts at proving Riemann’s 

claim were made by some of the most accomplished 

mathematicians. The problem was so challenging that some of 

the same mathematicians who made fundamental contributions 

to understanding the zeta function were driven to the point 

where they believed that the Riemann claim is probably not true 

[2].  

Numerical methods were developed to find any counter 

example to the claim [3]. All the trillions of zeros that have been 

computed so far to a convincing numerical precision are found 

to lie on the critical line, but we still cannot verify that the claim 

still holds for the zeros that are beyond modern-day computers’ 

capabilities. There is a belief that the difficulty of the problem 

 
 

is due to some hidden pattern in the zeta function itself and not 

because of the lack of analytical or computational tools that 

have yet to be invented. 

Because the claim is intimately related to prime numbers, the 

zeta function and Riemann hypothesis have very few real-life 

applications such as the Miller prime numbers test algorithm [4] 

which is used for data encryption. This was before it was 

replaced with another efficient algorithm that does not even 

require the Riemann claim [5]. Contrary to popular belief, the 

zeta function and Riemann’s claim have no applications in 

physics or engineering except for a few values of the zeta 

function used for evaluating some infinite sums found in some 

engineering and physics problems. The natural question that 

arises is: why should an engineer care about the Riemann claim 

or the zeta function? 

Engineers bring a completely different perspective to 

problem solving. Van der Pol’s work on the zeta function was 

a prime example of what engineers can bring to the table. Van 

der Pol is more known in academic engineering departments for 

his work on non-linear oscillators and not for contributions to 

analytical number theory. Van der Pol [6] showed that the 

Riemann’s zeta function in the open critical strip 0 < 𝜎 < 1 can 

be written as a Fourier transform: 

 

𝜁(𝑠) = −𝑠 ∫ 𝑒−𝜎𝜔+∞

−∞
(𝑒𝜔 − [𝑒𝜔])𝑒−𝑖𝜔𝑡𝑑𝜔            (2) 

 

where [𝑥] is the integer part of 𝑥 (floor function). He proceeded 

to cutting the sawtooth function inside the integral on a circular 

disk. By using a motor to rotate the disk at a controlled speed 

and by shining light in the teeth of the function and measuring 

the light transmission using a photo sensor, Van der Pol was 

able to show actual physical measurements of the location of 

the first few zeros of the zeta function on the critical line. The 

measured values matched the known numerical values to within 

the precision allowed by the technology of his era. 

Equation (2) appears to be a continuous transformation but 

(1) is a discrete sum. The apparent difference is misleading 

because the sawtooth function is not continuous at  𝜔 = log(𝑛) 

for all positive integers 𝑛 > 1. An analytic integration of (2) for 

negative 𝜔 and using piece-wise integration between log(𝑛)  
and log(𝑛 + 1) for positive 𝜔 will show that (2) is the same as 

(1) to within the analytical continuation.  

The present study applies two algorithms used commonly to 

approximate Fourier integrals to evaluate Van der Pol’s 
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representation of the zeta function: the first is the Fast Fourier 

Transform (FFT) and the second is to approximate (2) using the 

Method of Stationary Phase. We will show that while FFT has 

some limitations due to computational burden, the Method of 

Stationary Phase is tailored to work for large 𝑡 which allows us 

to introduce a new representation of the zeta function in the 

critical strip. The new representation is used to make some 

analytic predictions about non-trivial zeros. 

II. MATERIAL AND METHODS 

Analytical and computer simulation tools are used to compare 

the accuracy of FFT and Method of Stationary Phase in 

approximating the Zeta function in the critical strip using the 

Van der Pol Fourier integral. 

III. SIMPLIFIED FOURIER INTEGRAL AND FFT 

 

From [7, page 14], we can write the zeta function that is valid 

for 𝜎 > 0 as 

𝜁(𝑠) = 𝑠 ∫
[𝑥]−𝑥+

1

2

𝑥𝑠+1

∞

1
𝑑𝑥 +

1

𝑠−1
+

1

2
                 (3) 

 

After making the substitution 𝑥 = 𝑒𝜔 , (3) can be written as 

 

𝜁(𝑠) = 𝑠𝐼 +
1

𝑠−1
+

1

2
                                  (4) 

where 

𝐼 =  ∫ 𝑒−𝜎𝜔∞

0
([𝑒𝜔] − 𝑒𝜔 +

1

2
) 𝑒−𝑖𝜔𝑡𝑑𝜔            (5) 

 

The difference between the positive sawtooth function used 

in (2) and the more symmetric sawtooth function in (5) allows 

the Fourier series expansion to be simplified for the upcoming 

Method of Stationary Phase. The main difference between the 

two forms is that the integral from (2) is simplified to reduce 

any numerical errors by computing the integral for negative 𝜔 

analytically. Also, the simplified form is valid for all 𝜎 > 0 

(Note: the critical strip included except for 𝜎 = 0). 

There are many numerical methods [3] that can be used to 

evaluate the zeta function and there are efficient numerical 

methods that use the FFT method when estimating the location 

of the non-trivial zeros when combined with the different 

representations of the zeta function such as the Riemann-Siegel 

sums [3]. The FFT observations highlighted in this study only 

apply to estimating the Van der Pol integral. 

We are going to focus on FFT with uniform sampling and not 

on non-uniform sampling algorithms such as NUFFT because, 

as stated earlier, the best non-uniform sampling strategy we can 

use to evaluate (5) is to perform piece-wise integration over 𝜔 

between log(𝑛)  and log(𝑛 + 1) for all positive integers 𝑛 > 1. 

In that case, (5) will be reduced to evaluating the infinite sum 

as shown in (1) and the Fourier transform is no longer required. 

There is no fundamental reason FFT cannot approximate any 

Fourier transform including the non-continuous decaying 

sawtooth function if we have enough computing power in terms 

of memory and computational speed. The precision and 

computational performance of the FTT approximation is 

defined by two numbers: 𝜔𝑚𝑎𝑥  that limits the integral upper 

limit, and ∆𝜔 that is the distance between the samples of the 

exponentially decaying sawtooth function.  

A reasonable ∆𝜔 must avoid aliasing by being able to capture 

the smallest tooth in the sawtooth function: 

 

∆𝜔~ 𝑙𝑜𝑔(𝑒𝜔𝑚𝑎𝑥 + 1)−𝜔𝑚𝑎𝑥~𝑒−𝜔𝑚𝑎𝑥  

 

This number is unreasonably small.  The resolution ∆𝑡 in the 𝑡 

domain where the zeros of the zeta function are evaluated is 

                       

∆𝑡 =  
2𝜋

𝜔𝑚𝑎𝑥

 

 

The maximum value 𝑡𝑚𝑎𝑥 that can be computed using FFT 

is 

𝑡𝑚𝑎𝑥 =  
𝜋

∆𝜔
 

 

Because FFT is discrete, finding the 𝑡 value of where the zeta 

function crosses 0 will require some form of interpolation 

between the discrete FFT points, but it was proven in [7] that 

for large 𝑡, the non-trivial zeros of the zeta function form a 

dense set where the distance between consecutive zeros goes to 

0. Because of that, a very large 𝜔𝑚𝑎𝑥  and a very small  ∆𝜔 must 

be used to study asymptotic zeros which will be a severe 

computational limit on the FFT approximation in terms of 

memory usage and execution time. However, with modest 

computational resources, as we are going to show in the 

experimental section of this study, FFT can still be used to study 

the zeta function in the critical strip for small values of 𝑡 where 

the error in locating the zeros is not very costly.  

Van der Pol did not have to deal will all the FFT limitations 

because his electromechanical device was the equivalent of an 

analog computer. The device was limited by other factors such 

as mechanical tolerances, the precision of the motor rotational 

speed, and the consistency of the light source and the photo 

detector, but the device did not have to deal with the FFT 

approximation issues stated previously except for the truncation 

error due to 𝜔𝑚𝑎𝑥 . 𝜔𝑚𝑎𝑥  is finite in the electromechanical 

device because of the mechanical tolerances that limit the 

ability to cut the smallest teeth in the exponentially decaying 

sawtooth function. 

IV. THE METHOD OF STATIONARY PHASE  

A. Problem definition 

We are going to apply the Method of Stationary Phase to 

approximate the integral shown in equation (5). The method 

was already used in [8] to show a simple derivation of the 

Riemann-Siegel sums which is the main method used for 

numerical analysis of non-trivial zeros. And to the best of our 

knowledge, the method was never used to approximate the Van 

der Pol integral directly. 

We use the following Fourier serries representation of the 

sawtooth function: 
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[𝑥] − 𝑥 +
1

2
=

1

𝜋
∑

𝑠𝑖𝑛(2𝜋𝑛𝑥)

𝑛

∞

𝑛=1

 

 

After swapping the integral and the sum, equation (5) can be 

written as: 

𝐼 =
1

𝜋
∑

1

𝑛
∫ 𝑒−𝜎𝜔

∞

0

𝑠𝑖𝑛(2𝜋𝑛𝑒𝜔)𝑒−𝑖𝜔𝑡𝑑

∞

𝑛=1

𝜔             (6) 

 

We also use the following relation to complete the phase 

representation of the integral: 

 

sin(𝑥) =
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖
 

 

Equation (6) can be written as 

 

𝐼 =
1

2𝜋𝑖
∑

1

𝑛
(𝐼1(𝑛) − 𝐼2(𝑛))

∞

𝑛=1

                        (7) 

 

where the integrals that need to be approximated are 

 

𝐼1(𝑛) = ∫ 𝑒−𝜎𝜔
∞

0

𝑒𝑖𝜑𝑛(𝜔)𝑑𝜔                           (8) 

and 

𝐼2(𝑛) = ∫ 𝑒−𝜎𝜔
∞

0

𝑒−𝑖𝜓𝑛(𝜔)𝑑𝜔                           (9) 

 

with the associated phases 

 

𝜑𝑛(𝜔) = 2𝜋𝑛𝑒𝜔 − 𝜔𝑡 

𝜓𝑛(𝜔) = 2𝜋𝑛𝑒𝜔 + 𝜔𝑡 

 

The stationary phase is the value of 𝜔 where the derivative of 

the phase with respect to 𝜔 is zero. For positive 𝜔 where the 

integral is defined and for 𝑡 > 0, 𝜑𝑛(𝜔)  has a single stationary 

point at 

𝜔0(𝑛) = log (
𝑡

2𝜋𝑛
)                              (10) 

 

However, 𝜓𝑛(𝜔) does not have any stationary points. Because 

of that, the Method of Stationary Phase will be used to 

approximate 𝐼1(𝑛) and the Method of Non-Stationary Phase 

will be used to evaluate 𝐼2(𝑛). 

 The fact that both approximations must hold under the 

infinite sum (7) is a challenge that does not exist for the regular 

Method of Stationary Phase. Additionally, the standard method, 

as illustrated by equation (11), rely on an independent global 

phase gain parameter 𝑘  that controls the approximation error.  

 

               ∫ 𝑔(𝑥)
𝑅

𝑒𝑖𝑘𝑓(𝑥)𝑑𝑥                              (11) 

 

But as shown in equations (8) and (9), the only parameter that 

can be made arbitrarily large is 𝑡. The lack of common phase 

gain is an additional complication that we must navigate. 

B. Stationary phase integral 

The Method of Stationary Phase works because the integral 

main contribution is at the stationary point. The stationary 

phase approximation of (11) when the phase has a single 

stationary point 𝑥0 as shown in [10]: 

  

   ∫ 𝑔(𝑥)
𝑅

𝑒𝑖𝑘𝑓(𝑥)𝑑𝑥 = 𝑔(𝑥0)𝑒𝑖𝑘𝑓(𝑥0)+𝑠𝑖𝑔𝑛(𝑓′′(𝑥0))𝑖𝜋/4√
2𝜋

𝑘|𝑓′′(𝑥0)|
+ 𝑂(𝑘−

3
2)  

 

We approximate 𝜑𝑛 𝑎round the stationary point 𝜔0(𝑛) using: 

 

𝜑𝑛(𝜔) =   𝑡 − 𝑡 𝑙𝑜𝑔 (
𝑡

2𝜋𝑛
) +

𝑡

2
(𝜔 − 𝑙𝑜𝑔 (

𝑡

2𝜋𝑛
))

2

+ ⋯   (12) 

 

 After applying the Method of Stationary Phase using (12), we 

get: 

𝐼1(𝑛) ≈   (
𝑡

2𝜋𝑛
)

−𝜎

𝑒𝑖(𝑡−𝑡 𝑙𝑜𝑔(
𝑡

2𝜋𝑛
)+

𝜋
4

)
  (

𝑡

2𝜋
)

−
1
2
                 

 

or equivalently 

 

𝐼1(𝑛) ≈ 𝑒
𝑖(𝑡+

𝜋
4

)
(

𝑡

2𝜋
)

−
1
2

−𝜎−𝑖𝑡

(
1

𝑛
)

−𝜎−𝑖𝑡

 

 

The infinite sum over 𝑛 can be replaced with a finite sum: 

 

1

2𝜋𝑖
∑

1

𝑛
(𝐼1(𝑛))

∞

𝑛=1

≈
1

2𝜋𝑖
𝑒

𝑖(𝑡+
𝜋
4

)
(

𝑡

2𝜋
)

−
1
2

−𝜎−𝑖𝑡

∑ (
1

𝑛
)

1−𝜎−𝑖𝑡

 

[
𝑡

2𝜋
]

𝑛=1

 

 

where [𝑥] is the integer part of 𝑥 (floor function). The infinite 

sum is truncated to [𝑡/(2𝜋)] because the stationary points (10) 

are only valid for positive 𝜔 where the integral is defined. 

 Luckily, the parameter 𝑡 in (12) is acting like the standard 

gain  𝑘 shown in (11) because all the derivatives 
𝑑𝑚

𝑑𝜔
𝜑𝑛(𝜔) at the 

stationary points are equal to 𝑡 for 𝑚 > 1. We also showed that 

the infinite sum is replaced with a finite one. Because 𝑡 is acting 

like 𝑘, the approximation error for the Method of Stationary 

Phase for each 𝐼1(𝑛) should decay by 𝑂 (𝑡−
3

2) for large 𝑡 [10].  

The error of the sum over 𝑛  should be 𝑂 (𝑡−
1

2) because we are 

simply multiplying 𝑂 (𝑡−
3

2) by the number of elements in the 

finite sum [𝑡/(2𝜋)]. The stationary part can be written as: 
 

1

2𝜋𝑖
∑

1

𝑛
(𝐼1(𝑛))

∞

𝑛=1

=
1

2𝜋𝑖
𝑒𝑖(𝑡+

𝜋
4

)
(

𝑡

2𝜋
)

−
1
2−𝜎−𝑖𝑡

∑ (
1

𝑛
)

1−𝜎−𝑖𝑡

+  𝑂 (𝑡−
1
2)  

[
𝑡

2𝜋]

𝑛=1

 

 

C. Non-stationary part 

The terms 𝐼2(𝑛) are hard to estimate analytically and the only 

course of action is to estimate how much error is added if they 

are approximated to zero for all 𝑛. 

The standard way to estimate errors for the Method of Non-
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Stationary Phase is to apply the Van der Corput’s lemma [9, 10] 

or simply to integrate (9) by parts after dividing by the non-zero 

derivative �̇�𝑛(𝜔) of the phase 𝜓𝑛(𝜔): 

 

𝐼2(𝑛) =  [
𝑒−𝜎𝜔𝑒−𝑖𝜓𝑛(𝜔)

−𝑖�̇�𝑛(𝜔)
]

0

∞

− ∫
𝑑

𝑑𝜔
(

𝑒−𝜎𝜔

−𝑖�̇�𝑛(𝜔)
)

∞

0

𝑒−𝑖𝜓𝑛(𝜔)𝑑𝜔        

 

And since �̇�𝑛(𝜔) =  2𝜋𝑛𝑒𝜔 + 𝑡, we can write 

 

𝐼2(𝑛) =  −
𝑖

2𝜋𝑛 + 𝑡
− 𝑖 ∫

𝑑

𝑑𝜔
(

𝑒−𝜎𝜔

2𝜋𝑛𝑒𝜔 + 𝑡
)

∞

0

𝑒−𝑖𝜓𝑛(𝜔)𝑑𝜔        

 

After taking the absolute value, we can write 

 

|𝐼2(𝑛)| ≤  
1

2𝜋𝑛 + 𝑡
+ ∫ |

𝑑

𝑑𝜔
(

𝑒−𝜎𝜔

2𝜋𝑛𝑒𝜔 + 𝑡
)|

∞

0

𝑑𝜔        

 

The next idea is based on Van der Corput’s lemma.  

Since 
𝑒−𝜎𝜔

2𝜋𝑛𝑒𝜔+𝑡
 is the product of two decreasing functions for 

𝜔 ≥ 0,  
𝑒−𝜎𝜔

2𝜋𝑛𝑒𝜔+𝑡
 is a monotonic function. Therefore, 

𝑑

𝑑𝜔
(

𝑒−𝜎𝜔

2𝜋𝑛𝑒𝜔+𝑡
)  

has a fixed sign and we can swap the absolute value and the 

integral and write 

|𝐼2(𝑛)| ≤  
2

2𝜋𝑛 + 𝑡
 

 

 Also, the error on the infinite sum has the following bound: 

 

|
1

2𝜋𝑖
∑

1

𝑛
(𝐼2(𝑛))

∞

𝑛=1

| ≤
2

(2𝜋)2
 ∑

1

𝑛 (𝑛 +
𝑡

2𝜋
)

∞

𝑛=1

 

 

If we define 

𝐻(𝑎) =  ∑ (
1

𝑛
−

1

𝑛 + 𝑎
)

∞

𝑛=1

 

and use the limit 

 

lim
𝑎→∞

(𝐻(𝑎) − 𝑙𝑜𝑔(𝑎)) = 𝛾  

 

where 𝛾 is Mascheroni’s constant. We can write the following 

approximation for 𝑎 ≫ 1: 

 

∑
1

𝑛(𝑛 + 𝑎)

∞

𝑛=1

≈
log (𝑎)

𝑎
 

 

Finally, for large 𝑡 we get: 

 

1

2𝜋𝑖
∑

1

𝑛
(𝐼2(𝑛))

∞

𝑛=1

= 𝑂 (
 log (t)

𝑡
) 

 

This bound is much smaller than the stationary phase 

approximation error. The total error will be dominated by the 

stationary phase approximation 𝑂 (𝑡
−

1

2). 

D. Approximation results 

In this section, we are going to see how close the 

approximation is to actual numerical values of the zeta function 

in the critical strip. By combining the results of the last two 

sections, the approximation of the Van der Pol integral for large 

𝑡 is: 

𝐼 =
1

2𝜋𝑖
𝑒

𝑖(𝑡+
𝜋
4

)
(

𝑡

2𝜋
)

−
1
2

−𝜎−𝑖𝑡

 ∑ (
1

𝑛
)

1−𝜎−𝑖𝑡

+ 𝑂 (𝑡
−

1

2)  

[
𝑡

2𝜋
]

𝑛=1

 (13) 

 

Relation (13) illustrates that we are still computing a similar 

discrete sum to (1) at 𝑠 = 𝜎 + 𝑖𝑡. The work done so far allowed 

us to truncate the infinite sum and estimate the approximation 

error for 𝜎 > 0 and large 𝑡. 

To compute zeta function in the half-closed critical strip 1 ≥
𝜎 > 0 and as stated earlier, (13) is combined with the following 

relation:  

𝜁(𝑠) = 𝑠𝐼 +
1

𝑠−1
+

1

2
                                         

 

The error in computing 𝜁(𝑠) will be the same as (13) because 

the Method of Stationary Phase can be applied again to 

approximate the multiplication 𝑠𝐼. The MATLAB script shown 

in Appendix computes 𝐼 in two ways. The first is using FFT and 

the second is using relation (13). Fig. 1 and Fig. 2 show the 

results for both methods for low and large 𝑡 values. 

 

     
Fig. 1.  FFT and Method of Stationary Phase Approximations (SPA) of the zeta 

function on the critical line (𝜎 = 0.5) are shown for small 𝑡 values. It is worth 

noting that the Method of Stationary Phase is close to the FFT given the fact 
the method should only be valid for large t. The zeros of the zeta function are 

the points where the magnitude = 0. 

 

The unexpected observation from the data is that the Method 

of Stationary Phase gives reasonable results for small 𝑡 values 

because the method is only valid for large 𝑡. We used the FFT 

method with 𝜔𝑚𝑎𝑥  = 500 and ∆𝜔 = 1.0e-6 to reduce the error 

for large 𝑡 as shown in Fig. 2. The first zeros of the zeta function 

were compared against known values. The error for the first few 

zeros was 1.0e-5 using polynomial interpolation which is 

reasonable considering the computational constraints we were 

working with. But without very large 𝜔𝑚𝑎𝑥 and very small  ∆𝜔, 

the FFT method will not be adequate for computing large zeros 



 5 

as stated previously. 

      
Fig. 2.  FFT and Method of the Method of Stationary Phase (SPA) 

approximations of the zeta function on the critical line (𝜎 = 0.5) are shown for 

large 𝑡 values. The difference between the two methods is very small when 

using FFT parameters 𝜔𝑚𝑎𝑥 = 500 and ∆𝜔 = 1.0e-6. The span of the 𝑡 axis is 

the same as in Fig. 1. Notice that the number of zeros increase for large 𝑡 as 

stated earlier in the study. The magnitude of the zeta function between zeros 
does not follow any pattern as observed by Van der Pol using his 

electromechanical device. 

  

Because both methods are valid for 𝜎 > 0, Fig. 3 illustrates 

the Riemann hypothesis where zeta function does not have 

zeros (magnitude > 0) if 𝜎 ≠ 0.5. 

      
Fig. 3.  FFT and Method of Stationary Phase (SPA) approximations of the zeta 

function away from the critical line. The zeta function magnitude no longer 

crosses 0, illustrating Riemann’s hypothesis. 

V. FURTHER SIMPLIFICATIONS  

In this section, we will try further simplifications of the 

representation of the zeta function using relation (13) in the 

critical script and on the critical line where Van der Pol 

performed his measurements.   

Because of the Method of Stationary phase can be applied 

again to approximate the multiplication 𝑠𝐼 in [4] where 𝑠 is 

replaced asymptotically by 𝑠 ≈ 𝑖𝑡  for large 𝑡, and if use the fact 

that 
1

𝑠−1
 in [4] decays faster that  𝑂 (𝑡

−
1

2) , the zeta function in the 

critical strip 1 ≥ 𝜎 > 0 and for large 𝑡 is: 

 

𝜁(𝑠) =
1

2
+ 𝑒

𝑖(𝑡+
𝜋
4

)
(

𝑡

2𝜋
)

1
2

−𝜎−𝑖𝑡

∑ (
1

𝑛
)

1−𝜎−𝑖𝑡

+ 𝑂 (𝑡
−

1

2)  

[
𝑡

2𝜋
]

𝑛=1

  (14) 

                                      
On the critical line (𝜎 = 1/2), the zeta function for large 𝑡 is: 

 

𝜁 (
1

2
+ 𝑖𝑡) = 𝑓(𝑡) +  𝑂 (𝑡

−
1

2)                          (15) 

with 

𝑓(𝑡) =
1

2
+ 𝑒

𝑖(𝑡+
𝜋
4

)
(

𝑡

2𝜋
)

−𝑖𝑡

∑ (
1

𝑛
)

1
2

−𝑖𝑡
[

𝑡
2𝜋

]

𝑛=1

                (16) 

 

The function 𝑓(𝑡) would have been what Van der Pol would 

have measured if he could extend his electromechanical device 

to large 𝑡 values because as seen in Fig. 4, the zeta function and 

𝑓(𝑡) are undistinguishable for large 𝑡. Using relations (14) and 

(15) could be a better way to understand the zeta function in the 

critical strip and on the critical line because of their simplicity.  

      
Fig. 4.  Zeta function and 𝑓(𝑡) are undisguisable for large 𝑡. 

 

However, using (16) to compute large zeros is problematic 

because the Riemann-Siegel sums [8] gets truncated at [√𝑡/2𝜋] 

but the sum in 𝑓(𝑡) is truncated at a much larger value [𝑡/(2𝜋)]. 
This could be an expensive tradeoff for large 𝑡.  

VI. NON-TRIVIAL ZEROS 

Relation (14) may lack computational efficiency, but its 

simplicity will allow us to make new analytic predictions about 

the behavior of the non-trivial zeros for large 𝑡 and highlight the 

difficulty of proving the Riemann hypothesis. 

The complexity of (14) is dominated by the following single 

term: 

𝑃(𝑠) = ∑ (
1

𝑛
)

1−𝜎−𝑖𝑡

  
[

𝑡

2𝜋
]

𝑛=1                               (17) 

 

However, from (14) and for large 𝑡, 𝑃 can be written as:  

 

𝑃 =  (𝜁(𝑠) −
1

2
) 𝑒

−𝑖(𝑡+
𝜋
4

)
(

𝑡

2𝜋
)

−
1
2

+𝜎+𝑖𝑡
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At the zeros of the zeta function 𝜁(𝑠) = 0, we can write: 

 

𝑃 =  −
1

2
𝑒

−𝑖(𝑡+
𝜋
4

)
(

𝑡

2𝜋
)

−
1
2

+𝜎+𝑖𝑡

 

 

 After using the absolute value, we get: 

 

|𝑃| =  
1

2
(

𝑡

2𝜋
)

−
1

2
+𝜎

                                  (18) 

 

The new representation allowed us to simplify a very 

complicated relation (17) at the zeros of the zeta function.  If 

the Riemann hypothesis is true (𝜎 = 1/2), then all the non-

trivial zeros of the zeta function must satisfy the following 

relation: 

 

|𝑃| =  
1

2
 

 

In the following section, we are going to use the new 

representation of the zeta function to illustrate the difficulty of 

proving that 𝜎 = 1/2  is the only valid solution.  

Equation (14) can be written as: 

 

𝜁(𝑠) =
1

2
+ 𝑒

𝑖(𝑡+
𝜋
4

)
(

𝑡

2𝜋
)

1
2

−𝜎−𝑖𝑡

𝑃(𝑠) + 𝑂 (𝑡
−

1

2)          (19) 

 

Given 𝑠 =  𝜎 + 𝑖𝑡  and let us consider the number: 

 𝑠+ = 1 −  𝜎 + 𝑖𝑡 For 1 > 𝜎 > 0. We also can write the 

following: 

 

𝜁( 𝑠+) =
1

2
+ 𝑒

𝑖(𝑡+
𝜋
4

)
(

𝑡

2𝜋
)

−
1
2

+𝜎−𝑖𝑡

𝑃( 𝑠+) + 𝑂 (𝑡
−

1

2)          (20) 

 

where: 

𝑃(𝑠+) = ∑ (
1

𝑛
)

𝜎−𝑖𝑡

  

[
𝑡

2𝜋
]

𝑛=1

 

 

Because of the Riemann’s functional equation [7, page 13], 

the zeros of the zeta function are symmetric with respect to the 

vertical line 𝜎 = 1/2 . If 𝑠 is a zero of the zeta function, then 
 𝑠+ must also be a zero. At the zeros of the zeta function 𝜁(𝑠) =
𝜁(𝑠+)  = 0, we can write the following for large 𝑡 and 1 > 𝜎 > 

0: 

(
𝑡

2𝜋
)

1
2

−𝜎−𝑖𝑡

𝑃(𝑠) =  (
𝑡

2𝜋
)

−
1
2

+𝜎−𝑖𝑡

𝑃( 𝑠+) + 𝑂 (𝑡
−

1

2)          (21) 

 

or: 

𝑃(𝑠) =  (
𝑡

2𝜋
)

−1+2𝜎

𝑃( 𝑠+) + 𝑂(𝑡−1+𝜎)                (22) 

 

The zeros at 𝑠 and  𝑠+ should be numerically 

indistinguishable. We extend the idea of symmetry and write at 

the zeros of the zeta function: 

 

|𝑃(𝑠)| = |𝑃( 𝑠+)|                                (23) 

 

If we assume that (23) is true, then and for large 𝑡, we must 

have: 

 

(
𝑡

2𝜋
)

−1+2𝜎

= 1                               (24) 

 

The only way that (24) holds for any large 𝑡 is for 𝜎 = 1/2. 

However, the proof that 𝜎 = 1/2 is the only valid solution 

hinges on the symmetry assumption (23) at the zeros of the zeta 

function which is difficult to prove.  

A better way to tackle the problem could be to avoid using 

the symmetry of the functional equation and focus on the zeta 

function itself. If we can show for example, that at the zeros of 

the zeta function for 1 ≥ 𝜎 > 0: 

 

                𝑃 = 𝑂(𝑡𝜀) for any 𝜀 > 0.  

 

Then it is easy to show after using (18), that the following 

relation and for an arbitrarily small 𝜀: 
 

1

2
(

𝑡

2𝜋
)

−
1
2

+𝜎

=  𝑂(𝑡𝜀) 

 

is not valid for 1 ≥ 𝜎 > ½ which goes a long way to proving the 

Reimann hypothesis.  However, proving that 𝑃 = 𝑂(𝑡𝜀)  at the 

zeros of the zeta function is an equally difficult problem. 

We just illustrated that the Riemann hypothesis can be 

transformed into an equivalently challenging proposition. The 

Riemann hypothesis is in fact equivalent to more than thirty 

other propositions [11]. However, proving all these equivalent 

propositions is just as challenging as the original Riemann 

claim. 

VII. CONCLUSION  

We used the Method of Stationary Phase to approximate the 

Van der Pol Fourier representation of the zeta function in the 

critical script. The approximation was used to introduce a new 

representation of the zeta function. Error analysis and computer 

simulations demonstrated the usefulness of proposed method in 

studying the zeta function. The advantage of the proposed 

method compared with other established computational 

methods is yet to be determined. The new representation is used 

to make analytic predictions about non-trivial zeros to illustrate 

the difficulties associated with proving the Riemann 

hypothesis. 

We tried to share proofs and computer scripts to make the 

ideas accessible not just to mathematicians but also to 

engineers. We believe that the new simplified representation of 

the zeta function could open new avenues for studying the zeta 

function in the critical strip.  
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