
P
os
te
d
on

1
F
eb

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
19
53
18
9.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Why Smart Contracts Reported as Vulnerable were not Exploited?

Tianyuan Hu 1, Jingyue Li 2, André Storhaug 2, and Bixin Li 2
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Abstract

As smart contracts process digital assets, their security is essential for blockchain applications. Many approaches have been

proposed to detect smart contract vulnerabilities. Studies show that few of the reported vulnerabilities are exploited and

hypothesize that many of the reported vulnerabilities are false positives. However, no follow-up study is performed to confirm

the hypothesis and understand why the reported vulnerabilities are not exploited. In this study, we first collect 136,969 unique

real-world smart contracts and analyze them using four vulnerability detectors, namely Oyente, SmartCheck, Slither, and

SolDetector. Then, we apply Strauss’ grounded theory approach to manually analyze the source code of the smart contracts

reported as vulnerable to recognizing false positives and understand the reasons for false results. In addition, we analyze the

transaction logs of the smart contracts reported as vulnerable to identifying and understanding their exploitations. Our results

show that 75.37% of the 4,364 smart contracts reported as vulnerable are false positives, and eleven reasons are causing the false

positives. After analyzing the 4,106,134 transaction logs of the contracts reported as vulnerable, we find that vulnerabilities of

only 67 (0.015%) of the contracts have been exploited in history. We also identify six reasons for demotivating and preventing

the attackers from exploiting the vulnerabilities. Our results reveal that state-of-the-art smart contract vulnerability detectors

primarily treat the smart contracts as yet another application developed using Object Oriented (OO) languages when analyzing

and reporting the smart contract vulnerabilities. Without considering the specific design principles of the Solidity programming

language and the characteristics of smart contracts’ application scenarios and execution environments, many of the reported

vulnerabilities are not exploitable or not cost-effective to be exploited by adversaries.
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✦

1 INTRODUCTION

Due to blockchains’ monetary and anonymous nature, they
are targets of adversaries. The security of smart contracts
is critical because they may handle and store digital assets
worth millions of dollars. The DAO hack [1] exploiting the
reentrancy vulnerability in smart contract code resulted in a
60 million dollars loss. It is, therefore, imperative to prune
out smart contracts’ security problems before deploying
them.

Many methods and corresponding tools, e.g., Oyente [2],
Securify [3], sFuzz [4], ContractFuzzer [5], ContraMaster [6],
DefectChecker [7], EXGEN [8], HONEYBADGER [9], have
been proposed to detect smart contract vulnerabilities. Ren
et al. [10] point out that the tools are evaluated by the tool
authors using different datasets and metrics, which may
result in biased conclusions. Several empirical studies were
conducted by other researchers using manually annotated
datasets or real-world smart contracts to evaluate these tools
fairly. SolidiFI [11] is used to evaluate six tools [2], [3], [12],
[13], [14], [15]. The results show that none of the tools detect
all the injected bugs correctly, and all the evaluated tools
report several false positives. Durieux et al. [16] evaluated
nine vulnerability detectors [2], [3], [9], [12], [13], [14], [15],
[17], [18], and found that 97% of the real-world contracts
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analyzed were labeled as vulnerable by the detectors. Perez
and Livshits [19] analyzed 821,219 real-world contracts us-
ing six tools, namely Oyente [2], ZEUS [20], MAIAN [17],
Securify [3], TEETHER [21], Madmax [22]. They classified the
analyzed smart contracts as:

• Reported as vulnerable: A contract is reported as
vulnerable if it is flagged as vulnerable by the vul-
nerability detector.

• Truly vulnerable: A contract is truly vulnerable if an
external attacker could exploit its vulnerability.

• Exploited: A contract is exploited if a transaction
on Ethereum’s main network has triggered one of its
vulnerabilities.

Results of the study by Perez and Livshits [19] show
that, among the 73,62 contracts reported as vulnerable by
at least two tools, only 463 contracts were exploited. They
hypothesized that most reported vulnerabilities are false
positives. However, no follow-up study tried to confirm
the hypothesis and understand the reasons for the false
positives. Christakis and Bird’s survey in Microsoft [23]
concluded that “90% of developers accept 5% false positives,
50% of developers accept 15% false positives, and only 24%
of developers accept more than 20% false positives.” Thus, it
is vital to reduce smart contract vulnerability detectors’ false
positive rates. In this study, we are motivated to answer two
research questions (RQs):

• RQ1: Whether smart contracts reported as vulnera-
ble by existing tools are truly vulnerable, and why
do the false positives occur?
As aforementioned, the definition of true vulner-
ability by Perez and Livshits [19] is ”the attacker
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could exploit the vulnerability,” meaning the vul-
nerability could be executed by the adversary, and
the execution could lead to security compromises.
Accordingly, our definition of false positive is ”the
reported vulnerability could neither be executed by
the adversary nor possibly lead to security compro-
mise.”

• RQ2: Whether the vulnerable smart contracts are
exploited and what can prevent attackers from ex-
ploiting them?
If a smart contract is found to be truly vulnerable,
i.e., executable by the adversary and possibly lead
to security compromise, we want to know if it has
been executed at least once, although we may not
know exactly the actual loss due to the execution. In
addition, we want to identify commonalities between
the vulnerable smart contracts that have and have
not been executed.

To answer RQ1, we collected 136,969 unique real-
world smart contracts and used four vulnerability detectors,
namely, Oyente [2], SmartCheck [13], Slither [14], SolDetector
[24] to label their vulnerabilities. We then analyzed the
reported vulnerabilities of ten popular vulnerability types
supported by at least two tools. We manually analyzed the
source code of the smart contracts reported as vulnerable
to judge whether they are truly vulnerable and adopted
Strauss’ grounded theory method [25] to identify the rea-
sons for false positives. To answer RQ2, we collected the
transaction logs of the reported vulnerable contracts and
replayed their transactions on a full Ethereum node. We
designed transaction log analysis rules to identify the vul-
nerability exploitation and used Strauss’ grounded theory
method to understand the contracts’ exploitations and non-
exploitations.

Results of the study confirmed the hypothesis by em-
pirical studies, e.g., [16] and [19], that there are many false
positives of reported vulnerable contracts. Among the 4,364
vulnerable contracts labeled by at least two of our evaluated
tools, 3,272 are false positives. After analyzing the 4,106,134
transaction logs of the 4,364 smart contracts reported as
vulnerable, we found vulnerabilities of only 67 contracts
were exploited.

To understand the reasons for the low exploitation rate
of the reported vulnerabilities, we applied the grounded
theory analysis approach and analyzed the source code and
transaction logs of the smart contracts. Through open and
axial coding, we identified eleven reasons causing the vul-
nerability detectors to report false positives and six reasons
that may have demotivated adversaries to attack the true
vulnerabilities. Through selective coding, we identified two
main themes of reasons for the low exploitation rate. One
theme is that the studied vulnerability detectors mainly
adapted existing approaches to analyze OO applications
with weaknesses. Another theme is that the detectors have
not sufficiently considered Solidity’s principle as a contract-
oriented programming language for applications running
on EVM and blockchain to securely transfer assets or ether
between supplier and client and minimize the gas cost of ex-
ecution. The reported vulnerabilities can trigger false alarms
and mislead smart contract developers without considering

these characteristics.
The contributions of this study are:

• We empirically confirmed the hypothesis by many
existing studies that a high false positive rate is a
critical challenge of the state-of-the-art smart contract
vulnerability detectors.

• We have identified eleven reasons for false positives,
which are valuable for many vulnerability detectors
to improve and reduce their false positive rates.

• We have identified six explanations for the non-
exploitation of the vulnerable smart contracts, which
can help security engineers to rank the reported vul-
nerability and to design possible mitigation strate-
gies.

• We have derived theories regarding the reasons for
the low exploitation rate and raised the alarm that
the community working on the smart contract vul-
nerability detectors needs to consider the specific
characteristics of the smart contract programming
language and smart contracts’ application scenario
and execution environment when analyzing, report-
ing, and ranking the smart contract vulnerabilities.

• Last but not least, we have created a bench-
mark dataset containing 4,364 real-world Solid-
ity smart contracts, which are manually labeled
with ten types of vulnerabilities. The dataset is
around 20 times bigger than the similar state-
of-the-art benchmark [10]. The dataset can help
evaluate the vulnerability detector tools more
consistently and objectively and is available at
https://github.com/1052445594/SC UEE.

The rest of the paper is organized as follows. Section 2
introduces related work, and Section 3 presents the research
design. The answers to RQ1 and RQ2 are given in Sections
4 and 5, respectively. Section 6 discusses the results and
Section 7 concludes.

2 RELATED WORK

The approaches to detect smart contract vulnerabilities can
be classified into pattern matching, symbolic execution,
dependency analysis, machine learning (ML), and fuzzing,
as shown in Table 1.

2.1 Tools Using Pattern Matching Approaches
SmartCheck [13] translates Solidity source code into an XML-
based intermediate representation and checks it against
XPath patterns. SolDetector [24] is a static detection tool
based on the knowledge graph of Solidity source code. For
each smart contract to analyze, it constructs the knowledge
graph containing the ontology and instance layers. Based
on the knowledge graph, it uses the SPARQL [33] query to
manipulate the knowledge graph and identify the defect.

2.2 Tools Relying on Symbolic Execution
Oyente [2] builds control flow graphs from smart con-
tract bytecode to identify vulnerabilities using vulnerabil-
ity patterns. By analyzing dependency diagrams of smart
contracts, ZEUS [20] combines abstract interpretation and
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TABLE 1: Smart Contract Vulnerability Detection Tools (SC
represents source code; BC represents bytecode)

Year and ref. Tool name Vul. types covered Inputs
Pattern Matching

2018 [13] SmartCheck 37 types SC
2021 [24] SolDetector 20 types SC

Symbolic Execution
2016 [2] Oyente 6 types SC
2018 [20] ZEUS 7 types SC
2018 [12] Mythril SWC Registry SC
2018 [3] Securify 37 types SC/BC

2018 [21] TEETHER 4 types BC
2018 [17] MAIAN 3 types SC/BC
2019 [9] HONEYBADGER Honeypots BC
2021 [7] DefectChecker 8 types SC
2022 [8] EXGEN 4 types SC

Data Flow Analysis
2018 [18] Osiris Integer Vulnerability BC
2018 [22] MadMax 3 types BC
2019 [14] Slither 71 types SC
2020 [26] Clairvoyance Reentrancy SC
2020 [27] Ethainter 5 types BC

Machine Learning
2019 [28] GNN-based 3 types SC
2020 [29] ContractWard 6 types Opcode
2021 [30] VSCL 6 types BC

Fuzzing
2018 [5] ContractFuzzer 7 types BC+ABI
2018 [31] Reguard Reentrancy SC/BC
2020 [4] sFuzz 9 types BC
2020 [32] Ethploit 3 types SC

symbolic execution to model smart contracts. As ZEUS
analyzes artifacts at the low level virtual machine (LLVM)
intermediate level, it cannot locate vulnerabilities at the
Ethereum virtual machine (EVM) bytecode level. Mythril
[12] uses symbolic execution and taint analysis to detect
vulnerabilities. It performs decompilation and produces ex-
ecution traces using a dynamic symbolic execution engine
called Laser-EVM. However, Mythril is slow due to multiple
symbolic executions. Securify [3] combines abstract interpre-
tation and symbolic execution. The tool automatically classi-
fies behaviors of a contract into three categories, compliance
(matched by compliance properties), violation (matched by
violation properties), and warning (no matches). Krupp et
al. [21] first give a generic definition of vulnerable contracts
and build TEETHER, a tool that employs symbolic execution
to create an exploit automatically. However, TEETHER has
difficulty solving hard constraints in execution paths and
cannot simulate the blockchain behaviors very well, causing
a loss of coverage. MAIAN [17] is a symbolic execution
tool analyzing EVM bytecode. MAIAN classifies vulnerable
contracts into three categories, namely, greedy, prodigal, and
suicidal. HONEYBADGER [9] uses symbolic execution and
pre-defined heuristics to expose honeypots. DefectChecker
[7] symbolically executes the smart contract bytecode and
generates their control flow graphs, stack events, and other
features. Based on the information, it uses eight rules to
detect different types of vulnerabilities. However, the public
version of DefectChecker supports only Solidity 0.4.24. EX-
GEN [8] generates multiple transactions as exploits to vul-
nerable smart contracts and verifies the generated contracts’
exploitability on a private chain with values crawled from
the public chain. Osiris [18] is a framework that combines
symbolic execution and taint analysis to detect vulnera-
bilities related to arithmetic operations in Ethereum smart

contracts.

2.3 Tools Applying Data Flow Analysis
MadMax [22] is a gas-focused vulnerability detection tool
consisting of a decompiler, which converts low-level EVM
bytecode to code represented using an intermediate lan-
guage. It then analyzes the code to detect out-of-gas vul-
nerabilities that require coordination across multiple trans-
actions. Slither [14] is a highly scalable static analysis tool.
It first converts Solidity smart contracts to an intermediate
representation called SlithIR through control flow graph
analysis. Then, it applies both data flow and taint analysis to
detect vulnerabilities. Clairvoyance [26], [34] presents a static
analysis tool that models cross-function and cross-contract
behavior to detect the reentrancy vulnerability. Brent et al.
[27] present Ethainter to detect composite vulnerabilities that
escalate a weakness through multiple transactions. Based on
the Datalog language [35] and the Soufflé Datalog engine
[36], Ethainter constructs graphs containing data flow and
control flow dependencies to identify vulnerabilities.

2.4 Tools Using Machine Learning Technologies
Zhuang et al. [28] use a graph neural network to classify
vulnerable smart contracts. ContractWard [29] is machine
learning-based vulnerability detection tool targeting six vul-
nerabilities. It employs three supervised ensemble classifica-
tion algorithms, namely, XGBoost, AdaBoost, and Random
Forest (RF), and two classification algorithms, namely, Sup-
port Vector Machine (SVM) and k-Nearest Neighbor (KNN).
Their evaluations show that XGBoost is the best-performing
classifier algorithm. VSCL [30] is a smart contract vulnerabil-
ity detection framework that constructs a control flow graph
(CFG) to understand program run time behavior. Further,
n-gram and Term Frequency–Inverse Document Frequency
(TFIDF) techniques are used to generate numeric values
(vectors) to present features of smart contracts. Finally, the
generated feature matrix is used as input for the deep neural
network (DNN) model.

2.5 Tools Using Fuzz Testing
Fuzz testing [37] is an automated testing technique for ana-
lyzing computer programs. ContractFuzzer [5] is a fuzzing
tool that generates random inputs to smart contracts ac-
cording to the contracts’ Application Binary Interface (ABI).
ContractFuzzer defines a set of predefined test oracles that
describes specific vulnerabilities. However, due to the ran-
domness of the inputs, ContractFuzzer’s execution covers
only limited system behavior. ReGuard [31] is a fuzzing
tool to detect reentrancy vulnerabilities. It first converts
the input to smart contracts into a C++ program via the
Abstract Syntax Tree (AST) or CFG and generates random
inputs to perform the fuzzing. sFuzz [4] employs an efficient,
lightweight, adaptive strategy for selecting seeds to improve
the fuzzing method based on random input generator [5].
EthPloit [32] adopts static taint analysis to generate exploit-
targeted transaction sequences. It uses a dynamic seed strat-
egy to pass hard constraints and an instrumented EVM to
simulate blockchain behaviors. ContraMaster [6] is an oracle-
supported dynamic exploit generation framework that can
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mutate transaction sequences. It uses data flow, control flow,
and dynamic contract state to guide its mutations of the
transaction sequences.

2.6 Empirical Evaluations of Vulnerability Detectors

Although studies proposing new detection tools always
provide evaluation results, the evaluations can be biased.
The studies may use different terms and definitions of
the same vulnerability and use datasets that favor their
tools. Thus, other researchers performed empirical studies
as shown in Table 2 to evaluate and compare the smart
contract vulnerability detectors.

TABLE 2: Empirical Study of Vulnerability Detectors
Year and ref. 2020 [11] 2020 [16] 2021 [10] 2021 [19]

SmartCheck [13] ✓ ✓
Oyente [2] ✓ ✓ ✓ ✓
ZEUS [20] ✓

Securify [3] ✓ ✓ ✓
Mythril [12] ✓ ✓ ✓
Slither [14] ✓ ✓

Manticore [15] ✓ ✓
MAIAN [17] ✓ ✓

Orisis [18] ✓ ✓
HONEYBADGER [9] ✓

ContractFuzzer [5] ✓
TEETHER [21] ✓
MadMax [22] ✓

sFuzz [4] ✓

Ghaleb et al. [11] proposed SolidiFI to evaluate six static
analysis tools [2], [3], [12], [13], [14], [15] using a dataset
with injected vulnerabilities. They assumed that a vulnera-
bility reported by most tools could not be a false positive.
Experiment results on a set of 50 contracts injected with
9369 distinct vulnerabilities show that the evaluated tools
do not detect several instances of vulnerabilities despite
their claims of being able to detect such vulnerabilities. Only
one tool, i.e., Slither [14], detected all injected reentrancy
and TxOrigin vulnerabilities. Ghaleb et al. [11] also found
that all evaluated tools have reported several false positives,
ranging from 2 to 801 for different vulnerability types.

Ferreira et al. [38] presented SmartBugs, an extensible and
easy-to-use execution framework that simplifies the execu-
tion of tools analyzing Solidity smart contracts. SmartBugs
supports ten tools [2], [3], [9], [12], [13], [14], [15], [17], [18],
[39] and provides two datasets of Solidity smart contracts.
One dataset contains 143 annotated vulnerable contracts
with 208 tagged vulnerabilities, and another contains 47,518
unique contracts collected through Etherscan [40]. However,
the 47,518 real-world contracts are not manually labeled. By
using SmartBugs, Durieux et al. [16] evaluated nine tools [2],
[3], [9], [12], [13], [14], [15], [17], [18]. The evaluation was
based on 69 annotated vulnerable smart contracts and all
the real-world smart contracts in SmartBugs. The evaluation
results showed that 97% of the real-world contracts were
labeled as vulnerable. Durieux et al. [16] questioned that
many reported vulnerabilities are false positives.

Ren et al. [10] evaluated six tools [2], [4], [5], [12],
[18], [41], and proposed a unified standard to eliminate
the evaluation biases. They constructed a benchmark suite
with three datasets, including unlabeled real-world con-
tracts (UR), contracts with manually injected vulnerabilities

(MI), and confirmed vulnerable contracts (CV). The experi-
ment results on these datasets demonstrated that different
choices of experimental settings could significantly affect
tool performance and lead to misleading or even oppo-
site conclusions. The experiment results in [14] show that
SmartCheck has more false positives than slither. However,
Ren’s study [10] gives opposite conclusions and shows that
SmartCheck reports fewer false positives than slither on UR
and MI datasets.

Perez et al. [19] evaluated six tools [2], [3], [17], [20],
[21], [22] on real-wold smart contracts and found many
contradict results from different tools [19]. Taking the reen-
trancy vulnerability as an example, Oyente and Securify
agree on only 23% of the contracts reported as vulnerable
to reentrancy, while ZEUS does not agree with any other
tools [19]. In addition, they analyzed more than 20 million
Ethereum blockchain transactions and found that only 463
contracts related to six vulnerability types were exploited.
Based on the evaluation results, they questioned whether
the vulnerabilities reported by the evaluated tools were
either false positives or not exploitable in practice.

Although the aforementioned empirical studies hypoth-
esized that existing vulnerability detectors report many false
positives, especially on real-world contracts, no follow-up
study was performed to confirm the hypothesis and identify
the reason for the false positives.

3 RESEARCH DESIGN

3.1 Research Design to Answer RQ1
To answer RQ1, we designed the research flow as follows.

3.1.1 Step 1. Collect unique real-world smart contracts
We crawled all available smart contracts with at least one
transaction from Etherscan [40] on 1st April 2022. As there
are duplicated smart contracts, we filtered contracts for
uniqueness with a similarity threshold of 0.9, calculated
using the Jacard index [42]. This means that if two contracts’
code shares more than 90% of the tokens, one of the con-
tracts will be discarded. The low uniqueness requirement is
due to the often large amount of embedded library code. If
the requirement is set to high, the actual contract code will
be negligible compared to the library code. Most contracts
will be discarded, and the resulting dataset will contain
mostly unique library code.

3.1.2 Step 2. Select vulnerability detectors
As shown in Table 1, there are many smart contract vulner-
ability detection tools. We use the following criteria to select
the tools we focus on in this study.

• The tools shall take smart contract Source Code as Input
(SCI): As we want to confirm false positives and
understand the reasons for them, we need to access
the smart contract source code. Thus, we exclude
tools that do not analyze Solidity smart contract
source code.

• The tools shall provide Vulnerability Localization (VL):
To analyze the reported vulnerabilities precisely, we
only consider tools that provide the location, i.e.,
code line number, of the vulnerabilities at the source
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code level. The tools only label the smart contract as
vulnerable without providing vulnerability location
information are excluded.

• The tools shall support multiple Solidity Versions (SV):
When we crawl real-world smart contracts, we get
smart contracts developed using various Solidity
versions. If the tools support only a limited number
of versions of Solidity, the smart contracts they can
analyze are limited, meaning we cannot get sufficient
vulnerable smart contracts to study. Thus, we require
the tools to support several versions of Solidity.

• The tools shall be efficient (Eff) to run: The crawling
of Etherscan [40] results in many smart contracts. If
the detection tools are too slow to run, analyzing the
smart contracts will take a long time. In addition,
low-performance tools are unlikely to be used by
industry practitioners. Thus, we exclude them from
our study.

• The tools shall be available to us (Available): Not all pa-
pers make their tools publicly available. We exclude
tools we cannot access.

3.1.3 Step 3. Choose vulnerability types to focus and use
the selected tools to analyze the chosen types of smart
contracts
The vulnerability detection results from a particular tool can
be biased by the tool’s design flaws or bugs. As we want
to identify generic reasons for false positives, we choose to
analyze only the vulnerability types supported by at least
two tools to reduce the possible biases introduced by a
single tool.

After using the detectors to analyze the chosen smart
contracts on the chosen vulnerability types, we get detection
results containing vulnerability type names and locations.

3.1.4 Step 4. Analyze the vulnerabilities reported by the
detection tools
The vulnerability detection tools report different vulnera-
bilities and their locations for the same smart contracts.
Again, to avoid the biases caused by a single detector, we
analyze only the smart contracts labeled as vulnerable to
a particular vulnerability type by more than one tool. The
chosen smart contracts are, hereafter, called cross-reported
vulnerable contracts.

Analyzing detection reports aims to identify false posi-
tives and the corresponding reasons. We believe the reasons
for the false positives are not limited to the imperfect
implementations of the tools. There must be common and
possibly unknown reasons that result in many tools report-
ing identical false positives. Thus, we choose to use Strauss’
grounded theory approach [25], which is often used to
identify generic and unknown theories from data. Strauss’
grounded theory approach [25] is an iterative and recursive
approach where the researchers must go back and forth until
they achieve theoretical saturation. Our grounded theory
analysis included several steps. First, we read the source
code of each smart contract reported as vulnerable and
classified them into two categories, i.e., truly vulnerable
or false positive, in parallel with root cause analysis and
open coding to code the reasons for the false results of each
false positive. As a second step, these codes are grouped

into conceptual categories through axial coding. We did a
constant comparison and theoretical saturation to consoli-
date the reasons for the false positives across vulnerability
types. The analysis ended when we could not derive more
categories of reasons from the open codes. The axial coding
resulted in eleven reasons for the false positives, which are
explained in Section 4.5.

3.2 Research Design to Answer RQ2
The steps to answer RQ2 are as follows.

3.2.1 Step 1. Collect transaction logs
For all the cross-reported vulnerable contracts, we retrieve
their transaction logs on Ethereum through the debug func-
tion of EVM, which supports replaying transactions and
tracing transaction logs. The EVM’s debug function is ac-
cessed through the Remote Procedure Call (RPC) provided
by the Ethereum client.

3.2.2 Step 2. Analyze transaction logs to identify vulnera-
bility exploitation
Step 4 to answer RQ1 identifies several false positives. For
the false positive ones, we analyze their transaction logs to
check if they are exploited. The purpose is to verify that our
conclusions on the false positives are correct. We expect that
there shall have no exploitation in the transactions logs of
the false positive ones.

Step 4 to answer RQ1 also identifies true vulnerable
smart contracts. We analyze these smart contracts’ transac-
tions to determine if the vulnerabilities have been exploited.
We developed different detectors for each vulnerability type
to analyze the vulnerability exploitation.

3.2.3 Step 3. Identify reasons for vulnerability exploitation
Step 2 finds many vulnerable smart contracts that are not ex-
ploited. We, again, use Strauss’ grounded theory approach
[25] to discover the possible reasons for this phenomenon.
Besides the transaction logs, the extra data we analyze
include the smart contracts’ account types and balances.
After the open coding and axial coding similar to what we
did to answer RQ1, we derived several possible reasons,
shown in Section 5.3.

In the end, we performed selective coding to connect
reasons identified through axial coding of RQ1 and RQ2 to
generate a coherent explanatory scheme. The selective cod-
ing resulted in two themes to explain the low exploitation
rate of the reported vulnerabilities, namely, the weakness of
adapting classical approaches to analyze smart contracts as
OO applications and overlooking of specific characteristics
of smart contract programming language and applications,
which will be extensively recounted in Sections 4.5 and 5.3.

4 RESULTS OF RQ1
4.1 Collected Unique Smart Contracts
We crawled 2,217,692 smart contracts from Etherscan. From
these contracts, 2,080,723 duplications were found, giv-
ing a duplication percentage of 93.82%. After duplica-
tion filtering, we got 136,696 unique smart contracts with
318,026,937 transactions (before 2022.6.1, UTC+2 08:23:22).
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Fig. 1: Distribution of the Number of Transactions of the
chosen Smart Contracts

Figure 1 shows the transaction information of these con-
tracts and indicates that 88.37% of contracts have more than
one transaction. Figure 1 also shows that the contracts have
broad coverage of different numbers of transactions. Thus,
we believe the chosen smart contracts are representative.

4.2 Selected Vulnerability Detectors
Based on the tool selection criteria, we choose to study
four tools, namely, Oyente [2], Smartcheck [13], slither [14],
SolDetector [24]. The chosen tools cover pattern matching,
symbolic execution, and dependency analysis approaches.
The other tools are excluded because they do not satisfy one
or multiple selection criteria.

• Source Code Input (SCI): TEETHER [21], HONEYBAD-
GER [9], Osiris [18], MadMax [22], Ethainter [27],
VSCL [30], ContractFuzzer [5], sFuzz [4] are excluded
because they do not take source code as input. Even
though the framework SmartBug [38] supports using
HONEYBADGER [9] and Osiris [18] with the source
code as input, we exclude them because they often
report compilation errors, such as “Solc experienced
a fatal error”, when detecting real-world contracts
and return null results. For example, when we run
HONEYBADGER [9] and Osiris [18] with 100 real-
world smart contracts, they reported 76 and 68 com-
pilation errors respectively.

• Vulnerability Localization (VL): MAIAN [17], GNN-
based tool [28], VSCL [30], and ETHPLOIT [32] do
not provide location information of the identified
vulnerability and are, therefore, excluded.

• Solidity Versions (SV): Securify 2.0 [43] and De-
fectChecker [7] are excluded because they only sup-
port limited versions of Solidity. DefectChecker [7]
aims at Solidity version 0.4.25, which is the most
widely used version at the time of developing this
tool. The updated tool Securify 2.0 [43] only supports
contracts written in Solidity after its version 0.5.8.

• Efficiency (Eff): Reguard [31] needs to set the time limit
for each contract detection because processing one
smart contract can take more than 20 minutes. The
study [7] demonstrated that Mythril is a slow tool
and the maximum time to analyze a smart contract
using Mythril is 2480.26s. We exclude Reguard and
Mythril due to their slow performance.

• Availability: We cannot get access to the source or
executable code of three tools [8], [20], [26], although
we have contacted the paper authors and asked for
the code.

A more structured summary of the reasons for excluding
the detectors is shown in Table 8 in Appendix A.

4.3 Chosen Vulnerability Types
To choose vulnerability types supported by at least two
tools, we did a mapping of the types between the tools
and decided to focus on ten types of vulnerability, as shown
in Table 3. It is worth noting that the vulnerability names
in Table 3 are extracted from the detection results of the
tools, which may be different from the names in the papers
presenting the tools because the authors of the tools did not
make the names to be consistent.

According to state-of-the-art books and literature, e.g.,
[44] and [45], the definitions and characteristics of the ten
chosen vulnerability types are as follows.

4.3.1 Unprotected Suicide (UpS)
The selfdestruct(address) function can remove all bytecode
from the contract address and sends all ether stored in
this contract to the address. If a contract is vulnerable to
UpS, attackers can self-destruct the contract and transfer all
contract balances to an attacker-specified address. According
to [44], a contract vulnerable to the UpS attack has the
following characteristics.

1) A function containing the selfdestruct(address) function.
2) No access control prevents attackers from calling the
selfdestruct(address) function to destroy the contract.

4.3.2 TxOrigin (TO)
In Solidity, tx.origin returns the address of the originating
Externally Owned Account (EOA) of a transaction [45].
Using tx.origin for authorization could make a contract
vulnerable if an authorized user calls into a malicious
contract. An example attack exploiting the TO vulnerability
is shown in Figure 2. The attacker first lures the owner
of VulnerableContract to transfer ether to the AttackContract.
After that, the tx.origin of this transaction is the owner of the
VulnerableContract. Once the AttackContract receives ether,
the fallback function of the AttackContract will be triggered.
Because the tx.origin of this transaction is the owner of
the VulnerableContract, the call from the fallback function
to the VulnerableContract can pass the authorization check
if(tx.origin==owner) and execute the addr.transfer() function,
which will cause unexpected ether transfer. According to
[45], a contract with TO vulnerability has the following
characteristics.

1) tx.origin is used for authorization in a function.
2) There are critical operations after successful tx.origin
authorization.

Fig. 2: An Attack Process Exploiting TO
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TABLE 3: Mapping of the different vulnerabilities analyzed
Oyente SmartCheck Slither SolDetector

UpS - - Suicidal Unprotected Suicide
TO - Tx Origin Tx-Origin TxOrigin

IOU Integer Overflow/Underflow - - Integer Overflow and Underflow
DC - - Controlled-Delegatecall DelegateCall
UcC Callstack Depth Attack Unchecked Call Unchecked-Send Unchecked Send
RE Re-Entrancy - Reentrancy Reentrancy
FE - Locked Money Locked-Ether Frozen Ether
NC - Transfer in Loop Calls-Loop, Costly-Loop Nested Call
TD Timestamp Dependency - Timestamp Dependency of timestamp

TOD Transaction-Ordering Dependency - - Transaction Order Dependency

4.3.3 Arithmetic Overflow and Underflow

An arithmetic overflow or underflow [18], [46], which is
often also called Integer Overflow or Underflow (IOU),
occurs when an arithmetic operation attempts to create a
numeric variable value that is larger than the maximum
value or smaller than the minimum value of the variable
type. The popular IOU preventative technique is to use
secure mathematical libraries, i.e., SafeMath, to replace the
standard math operators, i.e., addition, subtraction, and
multiplication. Thus, the arithmetic overflow or underflow
may happen if a smart contract meets the following charac-
teristic [44].

1) The arithmetic operation may pass a variable type’s
maximum or minimum value. However, the arithmetic
operation is performed without using SafeMath.

4.3.4 DelegateCall (DC)

The function address.delegatecall allows a smart contract to
dynamically load code from the target contract (address) at
runtime. The code executed at the targeted address run in
the context of the calling contract. Calling into untrusted
contracts can be dangerous. The code at the target address
can change storage values of the calling contract, e.g., to
change the caller’s contract balance [47], [48], because state-
preserving of delegatecall refers to the storage slots rather
than the variable name.

Listing 1 shows a smart contract Dele with the DC vul-
nerability and the AttackContract that can exploit it. When a
user calls the Dele contract’s function withdraw() to withdraw
ether, it will execute the delegatecall in line 20 and calls the
external function set(), which is in the AttackContract. The
set() function assigns the variable attack storageSlot1 with the
value new storageSlot1, which points to the storage slot[1].
Consequently, the storage slot[1] in the calling contract Dele
will be modified by attack storageSlot1, meaning the value
of dele storageSlot1 is overwritten to be new storageSlot1.
Thus, the Dele contract’s function withdraw() may transfer
extra ether to the attacker who controls the input parameter
new storageSlot1. According to [47], [48], [49], a contract
vulnerable to the DC attack usually has the following char-
acteristics.

1 contract AttackContract{
2 uint storageSlot0;//corresponds to deleLibrary in Dele
3 uint attack_storageSlot1;//corresponds to storageSlot1
4 address payable attacker_address;
5 function set(uint new_storageSlot1) public{
6 attack_storageSlot1=new_storageSlot1;
7 attacker_address.transfer(address(this).balance);
8 }
9 }

10 contract Dele{
11 address public deleLibrary;
12 uint public dele_storageSlot1=1; //modified by the

attack_storageSlot1
13 constructor(address _deleLibrary) public payable{
14 deleLibrary=_deleLibrary;
15 }
16 function changeLibrary(address _deleLibrary) public

payable{
17 deleLibrary=_deleLibrary;
18 }
19 function withdraw() payable public{
20 deleLibrary.delegatecall(abi.encodePacked(bytes4(

keccak256("set(uint)"))));
21 msg.sender.transfer(dele_storageSlot1*1 ether);
22 }
23 }

Listing 1: An Example of DC Contract

1) A function containing the delegatecall function.
2) No access control on the function prevents the attacker
from specifying the calldata or changing the target con-
tract address.

4.3.5 Unchecked Call (UcC)
If a smart contract does not check the return value of a
message call and assumes that the call is always successful,
the failing of the call may lead to inconsistency between the
logic of the program and the system state [22], [44], [50].
The functions address.call() and address.send() are often used
to transfer ether, and they return a Boolean value indicating
whether the call succeeds. The transaction that executes
these functions may return a false value but will not revert
if the external call fails. So, a smart contract with the UcC
vulnerability has the following characteristic [22], [44], [50].

1) The functions address.call() or address.send() is used
without result checking.

4.3.6 Reentrancy (RE)
In Ethereum, insecure use of call() function can lead to
reentrancy attacks. In the reentrancy attack, a malicious
contract calls back into the vulnerable contract before the
first invocation of the vulnerable function is finished. If the
state variable change is after the call() function, the unex-
pected reentrancy into the vulnerable contract will result in
program execution and state variable change inconsistency.
Figure 3 shows an attack process exploiting the RE vul-
nerability. An attacker creates the AttackContract to call the
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VulnerableContract to transfer ether the attacker. In the At-
tackContract, there is a fallback function. Once AttackContract
receives the ether, the fallback function will be triggered to
call back into the VulnerableContract to perform the attacks,
e.g., transfer more ether to the attacker’s account before
changing the account’s balance.

1) A function transfers ether to another contract using the
call() function.
2) The state variable change is after the call() function.

Fig. 3: An Attack Exploiting RE

4.3.7 Frozen Ether (FE)

A contract vulnerable to FE can receive ether but does not
contain any functionalities to transfer ether. It relies on
other contracts to transfer ether. However, if the contracts
to be called to transfer ether are accidentally or intentionally
terminated, the ether cannot be transferred from the contract
and will be frozen. A contact with FE vulnerability has the
following characteristic.

1) The contract can receive ether but cannot transfer ether
by itself.

4.3.8 Nested Call (NC)

If a loop contains the gas-costly instruction but does not
limit the loop iterations, the function containing the loop
has a high risk of exceeding its gas limitation and causing an
out-of-gas error [7]. An example of the gas-costly instruction
is a non-zero value transfer as part of the CALL operation,
which costs 900 gas [7]. According to [7], a contract vulner-
able to NC attack has the following characteristics.

1) In the contract, dynamic data structures (e.g., array or
mapping) or variables in the loop condition control the
number of loop iterations.
2) The loop body contains gas-costly instructions, e.g.,
CALL operation.
3) No access control prevents an attacker from controlling
the dynamic data structures or variables in the loop
condition.

4.3.9 Timestamp Dependency (TD)

When mining a block, a miner has to set the timestamp for
the block with the miner’s local system time. The miner
can vary this timestamp value by roughly 900 seconds
while still having other miners accept the block [2]. Suppose
the timestamp is used as a triggering condition to execute
some critical operations [2], e.g., sending ether. In that case,
miners can be incentivized to choose a timestamp that
favors themselves. Thus, a contract vulnerable to TD has
the following characteristic [2].

1) The contract uses the timestamp as the deciding factor
for some critical operations, e.g., sending ether.

4.3.10 Transaction Order Dependency (TOD)
Miners decide the transaction order because transactions
in the blockchain need to be packaged by miners before
they are finally recorded on the chain. Malicious contract
owners or attackers can exploit such order dependency. For
example, if the contract is a game [19], which gives partic-
ipants who submit a correct solution to a puzzle reward, a
malicious contract owner could reduce the reward amount
after the solution transaction is submitted. An attacker can
watch the transaction pool and steal the correct answer.
Then, he creates a transaction with the correct answer and
gives a higher gas to get his answer packed in a block
before the transaction of the answer provider is packed
[45]. As there are many variations of TOD attacks, finding a
precise characteristic of smart contracts vulnerable to TOD
is challenging. According to [45], a high-level characteristic
is as follows.

1) The contract may send out ether differently according
to different values of a global state variable or different
balance values of the contract.

4.4 Vulnerability Reported by Chosen Detectors

The results of analyzing the 136,969 smart contracts focusing
on the ten vulnerability types are shown in Table 4. The data
in the Overlap column of Table 4 show the contracts flagged
as vulnerable by multiple tools. Results in Table 4 show
that the tools reported a large number of IOU and FE-type
vulnerabilities. As we plan to use Strauss’ grounded theory
approach to manually analyze each reported vulnerability,
analyzing all the reported IOU and FE-type vulnerabilities
will take an enormous time. Hence, we randomly select 100
contracts for the IOU and FE-type vulnerabilities to analyze,
as shown in the Selected Contracts column in Table 4. In total,
we analyzed 4,364 contracts reported as vulnerable.

TABLE 4: Detection Results of Each Defect Type
Oyente SmartCheck Slither SolDetector Overlap Selected Contracts

UpS - - 218 1,046 137 137
TO - 2,292 1,807 45 45 45
IOU 65,829 - - 80,121 28,457 100
DC - - 1,186 24,227 924 924
UcC 940 2,0361 1,683 1,316 219 219
RE 314 - 31,287 2,031 97 97
FE - 27,882 10,240 17,901 2,934 100
NC - 807 15,702 33,393 473 473

TOD 4,298 - - 8,814 913 913
TD 4,298 - 29,941 28,365 1,356 1,356

4.5 Results of Analyzing the Reported Vulnerabilities

After analyzing the 4,364 contracts, we identify eleven rea-
sons for the vulnerability detectors to report false positives
and show them in Figure 4.

Some of the reasons can be coded to scheme one, i.e.,
weaknesses of the detector in adapting approaches to ana-
lyze OO-based applications, which report vulnerabilities
that are not reachable and triggerable.

4.5.1 Missing path feasibility analysis
SolDetector [24], Slither [14], and DefectChecker [7] overlook
the path feasibility analysis and assume all code paths are
reachable. Three false positives are caused by the fact the
vulnerable function selfdestruct locates in an infeasible path
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Fig. 4: The Reasons for False Positives

and will never be executed. The condition to execute the
vulnerable selfdestruct is require(cancel == 1). However, the
initial value of cancel is 0, and no arithmetic operation
changes this state variable value to be one.

4.5.2 Overlooking preventive execution condition

Vulnerability detection tools may report false positives be-
cause they do not check conditions that prevent attackers
from triggering the vulnerability. For instance, in Listing 2,
balances[ from] is greater than value is checked before the
arithmetic operation balances[ from] -= value to avoid un-
derflow changes of the storage value of balances[ from]. The
sum of balances[ to] and value is greater than balances[ to] is
also checked before the arithmetic operation balances[ to] +=
value to avoid the overflow changes of the storage value of

balances[ to].

1 function transferFrom(address _from, address _to, uint256
_value) returns (bool success) {

2 if (balances[_from] >= _value
3 && allowed[_from][msg.sender] >= _value
4 && balances[_to] + _value > balances[_to]) {
5 balances[_to] += _value;
6 balances[_from] -= _value;
7 allowed[_from][msg.sender] -= _value;
8 Transfer(_from, _to, _value);
9 return true;

10 } else { return false; }
11 }

Listing 2: A False Positive of IOU (Code from Contract:
0x98ca85c59dee34dbc26667eac04f13e39f5f765a)

4.5.3 Insufficient data flow analysis

Data flow analysis is essential to detect variable-related
vulnerabilities, such as IOU and NC. By analyzing the 100
smarts reported as vulnerable to IOU, we found cases where
variables involved in the arithmetic operation are fixed
values or have a fixed range. The arithmetic operations on
these variables will not lead to overflow or underflow.

The IOU false positives can be caused by insufficient
data flow analysis within a function or across functions.
Listing 3 shows an example of IOU false positives caused
by insufficient data flow analysis within one function. In
Listing 3, the arithmetic operation in line 2 is labeled as
vulnerable to IOU. However, line 1 shows that the variable
allCards has at least one element. Therefore, the length
of allCards is always bigger than 1, which will not cause
arithmetic underflow.

1 allCards.push(Card(ids[i],0,CardStatus.Tradable,upIndex));
2 idToCardIndex[ids[i]] = allCards.length - 1;
3 cardToOwer[ids[i]] = _address;
4 ownerCardCount[_address] = ownerCardCount[_address].add(1);

Listing 3: A False Positive of IOU (Code from Contract:
0x2919336f7a427de135dc515fc5004b083d171ba4)

In addition, specific operation relationships between dif-
ferent variables could also make the arithmetic operation
secure. In Listing 4, jackRewards=0.5*tournament is always
smaller than tournament. The arithmetic operation in line 16
is tournament minus jackRewards, which will not result in
arithmetic underflow.
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1 uint public winPercent = 55;
2 uint public losePercent = 35;
3 uint public jackWinPercent = 50;
4 function setJackWinPercent(uint _newJackWinPercent)

onlyOwner external {
5 jackWinPercent = _newJackWinPercent;
6 }
7 function startTournament() onlyOwner external {
8 uint winRewards = Rewards * winPercent / 100;
9 uint loserRewards = Rewards * losePercent / 100;

10 uint addToJack = Rewards - winRewards - loserRewards;
11 uint jackRewards;
12 uint winCount = playerToWinCounts[winner];
13 if (winCount == jackpotWinCount) {
14 playerToWinCounts[winner] = 0;
15 jackRewards = tournament*jackWinPercent/100;
16 tournament -= jackRewards;
17 //jackRewards=0.5*tournament<tournament
18 winner.transfer(jackRewards);
19 }
20 }

Listing 4: A False Positive of IOU (Code from Contract:
0x95be22039da3114d17a38b9e7cd9b3576de83924)

1 //Base contract
2 contract ERC20Mintable is IERC20 {
3 uint8 private _decimals;
4 constructor(uint8 decimals) public {
5 _decimals = decimals;
6 }
7 function decimals() public view returns(uint8) {
8 return _decimals;
9 }

10 }
11 //Derived contract
12 contract Zion is ERC20Mintable, ERC20Detailed, Pausable {
13 uint256 public constant INITIAL_SUPPLY = 1000000000 *

(10 ** uint256(decimals()));
14 }

Listing 5: A False Positive of IOU (Code from Contract:
0x01ad3c7da8364d3f73d8ba6deb88c2add26a7837)

1 uint public maxSACTx = 1;
2 function setMaxSACTx(uint256 newMaxSACTx) public

onlyAuthorized {
3 maxSACTx = newMaxSACTx;
4 }
5 function mintSAC(uint numberTokens) public payable {
6 require(numberTokens > 0 && numberTokens <= maxSACTx);
7 for(uint i = 0; i < numberTokens; i++) {
8 ... ...
9 payable(msg.sender).transfer(amount);

10 }
11 }

Listing 6: A False Positive of NC (Code from Contract:
0x984f7b398d577c0adde08293a53ae9d3b6b7a5c5)

Some IOU false positives are caused by data flow anal-
ysis that overlooks smart contract inheritance. For example,
in Listing 5, the arithmetic operation in line 13 is reported as
vulnerable to IOU. However, the variable value comes from
the function decimals(), which is initialized in base contract
constructor (line 4) with the type of uint8. The maximum
value of uint8 is 255. Therefore, the arithmetic operation in
line 13 is secure because INITIAL SUPPLY cannot reach the
maximum of uint256.

An example of insufficient data flow analysis that leads
to NC false positives is in Listing 6, in which the maximum
number of iterations equals the value of the variable num-
berTokens. The value of the variable numberTokens is smaller
than maxSACTx, according to the require condition in line
6. The initial value of the variable maxSACTx is 1, and the
value can be updated in the function setMaxSACTx, which
is modified by the modifier onlyAuthorized. The variables
in the setMaxSACTx cannot be maliciously incremented to
exceed the block gas limit.

Other examples of NC false positives due to data flow
analysis weaknesses are in Listings 7 and 8. In Listing 7,
the number of loop iterations in line 7 will not be more
than 79 according to lines 3 and 4 in the reset function and
the resetSend function invoked in line 5. Thus, reporting this
contact as vulnerable to NC is a false positive. Listing 8
shows an example that the maximum value of a variable
is pre-defined even though the attacker can update the
variable value. In the contract shown in Listing 8, the session
is a struct which has multiple properties, including investor,
investorCount, and amountInvest. An attacker can add a
new element into the session by calling the function invest.
However, the value of the property investorCount cannot be
greater than the value of the global variable MaxInvestor,
which is pre-defined as 20.

1 uint256 private InvsetIndex = 10000;
2 function reset() public {
3 uint256 startIndex = InvsetIndex-79;
4 uint256 endIndex = InvsetIndex;
5 resetSend(startIndex,endIndex);
6 }
7 function resetSend(uint startIndex,uint endIndex) private{
8 for(uint256 sendUser = startIndex;sendUser<=endIndex;

sendUse = sendUser+1){
9 ... ...

10 address.transfer(amount);
11 }
12 }

Listing 7: A False Positive of NC (Code from Contract:
0x123ba66d42ae85f7e9c911b375ed3dba078e94b7)

1 uint public constant MaxInvestor = 20;
2 function closeSession (uint _priceClose) public onlyEscrow{
3 for (uint i = 0; i < session.investorCount; i++) {...}
4 session.investorCount = 0;
5 }
6 function invest (bool _choose) public payable{
7 require(msg.value >= minimunEth && session.investOpen);
8 require(session.investorCount < MaxInvestor);
9 session.investor[session.investorCount]=msg.sender;

10 session.amountInvest[session.investorCount]=msg.value;
11 session.investorCount+= 1;
12 }

Listing 8: A False Positive of NC (Code from Contract:
0xe9a3217b3e9c7384dd62c0159ab05ea00ab4093a)

A few reasons can be coded to scheme two, i.e.,
overlooking the characteristics of the Solidity program-
ming language. Gavin Wood designed Solidity to sup-
port condition-oriented programming [51], which is a
subdomain of contract-orientated programming and has
the principle to “Never mix transitions with conditions.”
When developing smart contracts, it is common to set
complicated conditions to be satisfied to allow the execu-
tion of the transitions. Without a lot more comprehensive
analyses of smart contract conditions, the detectors will
report the transitions as vulnerable, even if the conditions
can prevent executing them.

4.5.4 Overlooking access control
Vulnerability detection tools report false positives because
they overlook the access control mechanisms that prevent
the contract from being attacked. The false positives caused
by overlooking access control happen in detecting eight
vulnerability types, including UpS, TO, DC, UcC, RE, NC,
TD, and TOD. Example of scenarios in that extra access
control checks the identities of critical functions’ caller or
controls a critical variable are as follows.

1⃝ The if/require condition is set, such as re-
quire(msg.sender == owner), before critical operations are
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called. For example, the access control on the function
containing the UpS vulnerability prevents the attacker from
exploiting it. In Listing 9, the function closeStableCoin checks
the caller’s identity using the require condition in line 2
before executing selfdestruct.

1 function closeStableCoin() public {
2 require(whitelist.isSuperAdmin(msg.sender), "Only

SuperAdmin can destroy Contract");
3 selfdestruct(msg.sender); // admin is the admin address
4 }

Listing 9: A False Positive of UpS (Code from Contract:
0xb8836928b5b2431c89646dce0bda19508cf9c2d5)

Another false-positive example is a smart contract la-
beled vulnerable to TO if tx.origin is used for authorization.
The false alarm comes from the fact that multiple-level ac-
cess control can protect the contract. The developer not only
uses tx.origin for authorization but also checks the identity of
the msg.sender and recipient, such as require(owner == tx.origin
&& msg.sender == tx.origin, “Not token owner”), which can
prevent external contracts from calling the current contract
and defend against the TO attack.

2⃝ In Solidity, modifiers are used to modify the behavior
of a function. A modifier usually contains code, e.g., code
to check the user’s identity, and a special symbol ” ”.
When executing the function claimed using the modifier, the
functions’ code will be inserted at the location of the symbol
” ” in the modifier. If the modifier’s code to check the user’s
identity is located before ” ”, the functions’ code inserted
will be protected by the identity checking. Otherwise, the
functions’ code can be called by any user.

As shown in Listing 10, even though tx.origin is used
for authorization, the modifier onlyMain checks the identity
of msg.sender before executing the function addBrick, which
prevents intermediate contracts from being used to call the
current contract [45]. In 13 false positive results of the RE
type vulnerability, the code of the modifier checks whether
the msg.sender is tx.origin or owner, which makes the recur-
sive call from another contract impossible.

1 modifier onlyMain() { require(msg.sender == main); _;}
2 function addBrick(uint _value) external onlyMain returns (

bool success){
3 require(_value >= 10 ** 16);
4 require(owner == tx.origin);
5 return true;
6 }

Listing 10: A False Positive of TO (Code from Contract:
0x65e871cd0e132e14b3bd9569199dcb436c752b2f)

3⃝ The visibility attributes, such as private and internal,
of critical function restrict external functions from calling it.
In Listing 11, the contract BZxProxy is a derived from the
contract Proxiable. The function replaceContract contains a
DC vulnerability in line 9, of which the visibility is internal.
In Solidity, internal functions or variables can only be used
internally or by derived contracts. Therefore, it is secure for
the function replaceContract in the derived contract BZxProxy
to use the function replaceContract with the modifier on-
lyOwner. In this study, we assume that the data from an
authenticated caller are always authentic. Thus, the attacker
cannot exploit the DC vulnerabilities if the external contract
address and calldata used to call the external contract are
controlled by the authenticated caller.

1 contract Ownable {
2 modifier onlyOwner() {require(msg.sender == owner); _;}
3 }
4 contract BZxStorage is Ownable {... ...}
5 contract Proxiable {
6 mapping (bytes4 => address) public targets
7 function initialize(address _target) public;
8 function _replaceContract(address _target) internal {
9 require(_target.delegatecall(0xc4d66de8, _target),

"Proxiable::_replaceContract: failed");
10 }
11 }
12 contract BZxProxy is BZxStorage, Proxiable {
13 function replaceContract(address _target) public

onlyOwner{
14 _replaceContract(_target);
15 }
16 }

Listing 11: A False Positive of DC (Code from Contract:
0x86343be63c60ce182d8b5ac6a84f0722d8d61ae5)

Listing 12 shows a false positive case of the NC vul-
nerability, in which the loop iterations is determined by
the input parameters tos of the function transferETH. Here,
the modifier onlyOwner requires the function to be called
only by authenticated users. As we believe the contract
owner will not input a large array to disable the function
maliciously, we label this case as a false positive.

1 function transferETH(address[] _tos) public onlyOwner
returns (bool) {

2 require(tos.length > 0);
3 require(address(this).balance > 0);
4 for(uint32 i=0;i<_tos.length;i++){
5 _tos[i].transfer(address(this).balance/_tos.length);
6 }
7 return true;
8 }

Listing 12: A False Positive of NC (Code from Contract:
0xe62e6e6c3b808faad3a54b226379466544d76ea4)

4⃝ Across control is performed across-functions. For NC,
some false positives are caused by access control across mul-
tiple functions or modifiers. In Listing 13, the loop in line 7
is labeled with the NC vulnerability, and the max number of
loop iteration is equal to the length of variable landmarks that
the function totalSupply can access. The variable landmarks
is global and can be modified through the function create-
Landmark. However, the function createLandmark is modified
by the modifier onlyCOO, which requires that the caller is
the authenticated user coo. Therefore, the attacker cannot
arbitrarily increase the elements in the variable landmarks to
exploit the function buy.

1 uint256[] private landmarks;
2 function totalSupply() public view returns (uint256) {
3 return landmarks.length;
4 }
5 function buy(uint256 _tokenId) public payable {
6 require(msg.sender != address(0));
7 for (uint i = 0; i < totalSupply(); i++) {
8 uint id = landmarks[i];
9 landmarkToOwner[id].transfer(feeGroupMember);

10 }
11 }
12 modifier onlyCOO() { require(msg.sender == coo); _; }
13 function createLandmark(uint256 _tokenId) public onlyCOO {
14 ... ...
15 landmarks.push(_tokenId);
16 }

Listing 13: A False Positive of NC (Code from Contract:
0xeb35a696af4cf2e18203781db1c7607adbabc251)
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4.5.5 Assuming critical operations after authorization
One main characteristic of TO is having critical operations,
e.g., sending ether, after successful authorization. If there
is no critical operation following successful authentication,
we label the contracts reported vulnerable to TO as false
positives. We labeled seven TO false positives because
successfully bypassing the authentication will not bring
critical risks. The example codes are : if(tx.origin != owner())
require(block.timestamp <mintTimestamp, “You’re early”), and
if (tx.origin == owner()) return false; .

Although Solidity supports a few OO programming
language principles, such as inheritance, its implemen-
tation of the OO features can be different. Two of the
reasons explained in Sections 4.5.6 and 4.5.7 can also be
coded to scheme two, i.e., overlooking the characteristics
of the Solidity programming language.

4.5.6 Neglecting the constraints caused by factory patterns
Factory pattern is one of the most used design patterns in
Java. “In the factory pattern, instead of directly creating
instances of objects, a single object (the factory) does it for
you” [52]. Solidity supports the factory pattern, and smart
contracts are the objects. A factory in Solidity is a contract
(called main contract) that can deploy multiple instances of
other contracts (called template contracts in this paper) at
runtime.

When using the factor pattern, the selfdestruct in the
instances created from the template contract cannot destruct
the main contract. The vulnerability detection tools report
six UpS false positives because they do not consider such
a constraint. For example, in Listing 14, SwapperFactory is a
main contract that creates the template contract objects mul-
tiple times and destruct the objects by calling the function
destroy. Therefore, the selfdestruct in the template contract
cannot be exploited by attackers.

1 contract SwapperFactory {//Main contract
2 function performSwap(address payable user){
3 Swapper swapper = createClone(user, srcToken, dstToken

, uniqueId);
4 swapper.destroy(user);
5 }
6 function createClone( address user, address srcToken,

address dstToken, string memory uniqueId) private
onlyAdmin() returns (Swapper) {

7 bytes32 salt = computeCloneSalt(user, srcToken,
dstToken, uniqueId);

8 bytes memory bytecode = getCloneBytecode();
9 address payable cloneAddress = computeAddress(salt);

10 if (!isContract(cloneAddress)) {
11 assembly {
12 cloneAddress := create2(0, add(bytecode, 0x20),

mload(bytecode), salt)
13 }
14 }
15 return Swapper(cloneAddress);
16 }
17 }
18 contract Swapper { //Template contract
19 function destroy(address payable user) external {
20 selfdestruct(user);
21 }
22 }

Listing 14: A False Positive of UpS (Code from Contract:
0xaa548618371d95cb0cb211bbbf37b26be3c744cc)

4.5.7 Neglecting constraints caused by contract inheri-
tance
Solidity supports inheritance between smart contracts. A
contract can inherit multiple contracts. The contract from

which other contracts inherit is known as a base contract,
while the contract which inherits the features of the base
contracts is called a derived contract. “With the inheritance
construct, the derived contract inherits all the methods,
functionality, and variables of the base contract and can
extend a base contract with additional functionality” [45].

In 14 false positive FE cases, the contracts tagged as
vulnerable to FE are base contracts containing no trans-
fer operation. However, the contract inherits these base
contracts implemented ether transferring. Thus, these base
contracts are not vulnerable to FE attacks. In addition, these
base contracts do not have an account on Ethereum’s main
network and own no ether. Therefore, these base contracts
will not lock the ether, meaning the FE attack will not
negatively impact these base contracts.

The application scenarios of smart contract applica-
tions are to transfer assets or ether between suppliers
and clients. Without being able to manipulate or sabotage
the asset transfer maliciously, the likelihood of security
compromise or giving benefits to attackers by executing
the code, which seems to be vulnerable from the OO
programming analysis perspective, is low. The reasons for
false positives presented from Sections 4.5.8 to 4.5.11 can
also be coded to the second theme, i.e., overlooking smart
contract application scenarios.

4.5.8 Insufficient analysis of the values of the target con-
tracts’ addresses

Calling an external contract or transferring ether to an ad-
dress can be dangerous if the attacker controls the contract
or the target address. However, in some cases, the target
contracts’ addresses are hard-coded, fixed, or under the
complete control of the contract owner. Weak analysis of the
target contracts’ values resulted in RE, TD, and TOD false
positives.

In 12 contracts that are reported as vulnerable to RE,
the target contracts’ addresses are hard-coded. The hard-
coded address may be a global variable used in multiple
functions. Defining the target address as immutable can also
freeze the value of the addresses. Therefore, an unexpected
call from the fallback function in the target contract will not
happen. For TD and TOD, if the recipient address is fixed
or fully controlled by the contract owner, the attack will not
get profit by attacking the vulnerability even if an attacker
can manipulate the timestamp or determine the order of
function calls and transactions. As shown in Listing 15, the
contract creator initialized the fundRaiser in the constructor
as the receiver of the ether, and no function can modify
this variable. The attackers cannot get benefits even if they
can manipulate the timestamp. Thus, we label the code in
Listing 15 as a TD false positive case.

1 function Crowdsale(address fundRaiserAccount){//Constructor
2 fundRaiser = fundRaiserAccount;
3 }
4 modifier afterIcoDeadline() { if (now >= icoDeadline) _; }
5 function withdrawFunds() afterIcoDeadline public{
6 require(fundRaiser == msg.sender);
7 fundRaiser.transfer(address(this).balance);
8 emit FundTransfer(fundRaiser, address(this).balance);
9 }

Listing 15: A False Positive of TD (Code from Contract:
0xd75ee6c853ce690668c923e7ba7b8411ca81db46)
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4.5.9 Assuming status inconsistency when function call re-
sults are not checked
If there is no status change after calling the functions send()
and call(), it is not risky even though the result of the mes-
sage call is not checked. There is no status change following
the message call in 14 UcC false positives. The detection
tools tag them as vulnerable to UcC because they assume
that function calls without result checking will always lead
to status inconsistency. Listing 16 shows an example of such
a false positive. The function executeCall() transfers ether by
the call() function in line 4. The variable underExecution is
set to avoid the recursive calling from the target. The initial
value of underExecution is false (line 2). It will change to be
true (line 3) before executing transferring by call() and turn
back to false after transferring (line 5). Therefore, no status
change follows the execution of the function call() because
the value of underExecution is always false regardless the
function call call() fails or not.

1 function executeCall()external onlyAllowedManager(){
2 require(underExecution == false);
3 underExecution = true; // Avoid recursive calling
4 _target.call.gas(_suppliedGas).value(_ethValue)(

_transactionBytecode);
5 underExecution = false;
6 }

Listing 16: A False Positive of UcC (Code from Contract:
0xa5fd1a791c4dfcaacc963d4f73c6ae5824149ea7)

4.5.10 Assuming all fallback functions receive ether
If the contract can receive ether but cannot transfer it by
itself, the vulnerability detectors tag it vulnerable to FE.
The detectors assume that all contracts shall host ether and,
therefore, shall be able to transfer ether. However, 66 of the
100 contracts tagged as vulnerable to FE will never lock
ether because their fallback functions cannot or refuse to
accept ether. A contract usually has one fallback function.
The fallback function is executed on a call to the contract
if none of the other functions match the given function
signature or if no data was supplied at all and there is
no receive ether function [53]. The fallback function can be
declared using function(), fallback(), or receive() in different
Solidity versions. In order to receive ether, the fallback
function must be marked payable, as shown in line 1 in
Listing 17. The contract cannot receive ether if it does not
contain the fallback function or if the fallback function is
not marked as payable, as shown in line 2 in Listing 17.
The approach to refuse ether is to insert the revert() into
the fallback function as shown in lines 3 and 4 in Listing
17. Once the contract receives the ether, this transaction will
revert. Therefore, any transaction transferring ether to these
contracts will fail, and these contracts will not receive any
ether.

1 function() payable public{ }//Accept ETH
2 function() public{ }//Don’t accept ETH
3 function () payable public{ revert(); }//Don’t accept ETH
4 receive() external payable { revert(); }//Don’t accept ETH

Listing 17: Fallback Functions

4.5.11 Mixing ether transfer initiator
To detect TOD vulnerability, Oyente and SolDetector focus
on the ether flow because TOD may lead to undesirable
outcomes when dealing with ether [2]. Oyente labels a con-
tract as vulnerable to TOD if it sends out ether differently

when the order of transactions changes. Oyente, Slither, and
SolDetector label the contract as vulnerable to TD if the block
timestamp is used as the condition to send ether. However,
Oyente, Slither, and SolDetector all ignore the scenario that
the ethers transferred to a user after the timestamp check-
ing may come from the user himself. For example, many
contracts vulnerable to TD or TOD are wallet contracts that
support users to purchase or withdraw tokens within the
specified time range. If the time range passes, the ether to
purchase the token will be returned to the user. Such ether
transfer after the timestamp checking is not harmful because
the ether is returned to its initial owner. Listing 18 shows an
example, which is contract OpportyPresale for token transac-
tion. Users can send a message with msg.value to the contract
OpportyPresale to purchase token. OpportyPresale contains
a fallback function labeled as vulnerable to TD, and the
vulnerability is in line 6. Once this contract receives ether,
the fallback function will be triggered to verify whether the
transaction meets the conditions regarding timestamp (now
>endDate) and amount of ether (msg.value >= 0.3 ether). The
contract will return the ether to the token purchaser if the
transaction is not within the valid time.

1 contract OpportyPresale is Pausable {
2 function() whenNotPaused public payable {
3 require(state == SaleState.SALE);
4 require(msg.value >= 0.3 ether);
5 require(whiteList[msg.sender].isActive);
6 if (now > endDate) {
7 state = SaleState.ENDED;
8 msg.sender.transfer(msg.value);
9 return ;

10 }
11 }
12 }

Listing 18: A False Positive of TD (Code from Contract:
0xca67e92833c2de6bf3a444127fa0c60092255bf4)

Our identified reasons for false positives illustrate that
the existing characteristics of smart contract vulnerabilities
in state-of-the-art literature are insufficient. Based on the
results of RQ1, we extend the characteristics of the ten
types of vulnerabilities and show the extensions in Figure 5.
We hope the extended characteristics can help vulnerability
detector developers design and implement better tools.

5 RESULTS OF RQ2
As mentioned in Section 3.2, we collect the transaction
logs of the contracts that are reported as vulnerable and
analyze them. Figure 6 shows a fragment of an example
transaction log containing two log blocks. Each block reflects
the running state of EVM, in which:

• pc is the program counter.
• op represents a low-level machine language consist-

ing of a series of instructions, each of them represent-
ing an operation.

• gas represents the remaining gas.
• gasCost refers to the gas consumption of the current

opcode.
• depth of call stack indicates the depth of nested calls,

which has a maximum value 1024.
• stack is an internal place where temporary variables,

such as local variables, intermediate calculation re-
sults, and return addresses, are stored.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Fig. 5: Extended Characteristics of Smart Contract Vulnerabilities

• memory is a temporary place to store data, of which
a contract obtains a freshly cleared instance for each
message call [53].

• storage is a key-value store. Data in storage are stored
permanently between function calls and transactions.
For instance, the global variables declared in the
smart contract are stored in the storage.

Figure 6 contains two log blocks. Code in the first block
compares whether A (line 2047) and B ((line 2048) are equal,
and the comparison result is pushed onto the stack of the
second log block (line 2065).

5.1 Analyzed Transaction Logs
In the analysis, we excluded transaction logs of TD and
TOD vulnerabilities because these two types of vulnera-
bilities exploit the mining process. Therefore, information
in the transaction log cannot reflect the exploitation. The
219 contracts vulnerable to UcC has 5,450,975 transactions,
which is too many for us to replay all of them and perform
the ground theory analysis. We randomly selected 100 UcC
contracts reported as vulnerable, which have 145,469 trans-
actions. The numbers of transactions analyzed for the eight
vulnerability types are shown in Table 5.

We designed analysis rules as shown in Figure 7 to
analyze vulnerability exploitation. The analysis rules con-
tain opcode, information to search in stack or storage, and
additional constraints. Each of the rules is explained as
follows.

5.1.1 Unprotected Suicide (UpS)
The EVM opcode SELFDESTRUCT destroys contracts. The
SLEFDESTRUCT opcode used to be called SUICIDE, but

Fig. 6: A Fragment of of Transaction Log
SUICIDE was deprecated due to the negative associations
of the word [45]. It is insecure if the attacker exploits SELF-
DESTRUCT. However, it is challenging to identify whether
a user is malicious. In this study, we define the contract’s
creator as benign and assume any other users who destroy
the contract they do not own are malicious.

5.1.2 TxOrigin (TO)

Attacks exploiting the TO vulnerability usually follow the
attack process shown in Figure 2. We designed the TO
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TABLE 5: Number of Transactions analyzed

Vulnerabilities UpS TO IOU DC UcC RE FE NC Total
Number of Analyzed Transactions 33,920 77,934 131,643 1,683,694 145,469 5,362 396,127 1,631,985 4,106,134

Fig. 7: Analysis Rules of Transaction Logs

analysis rule according to that attack process. To find a
call from the fallback function in the attacker’s contracts,
we search the CALL instruction 1⃝, in which the target
address is the vulnerable contract address (1). Then, we look
for the ORIGIN instruction 2⃝, in which the origin address
(2) is usually used for authorization. Finally, we identify
the EQ instruction 3⃝ for the authorization and expect the
authorization result to succeed (3).

5.1.3 Arithmetic Overflow and Underflow (IOU)
The arithmetic overflow is usually caused by arithmetic in-
structions ADD or MUL, and the arithmetic underflow may
happen when executing the SUB instruction. We first find
the log block containing the arithmetic instruction ADD,
MUL, or SUB 1⃝ and get two operands from the stack to
calculate the expected result (1) of the arithmetic operation.
Then we compare the actual value (2) with the expected
value. If the actual value that has been pushed onto the
stack is not equivalent to the expected value, it means that
the arithmetic overflow or underflow has occurred. Torres et
al. point out that not every overflow is considered harmful
because the compiler may also introduce it for optimiza-
tion purposes [54]. Thus, we only trace the overflow or
underflow that has updated the blockchain state. If the error
result flows into a SSTORE instruction 2⃝, we will label the
transaction as IOU exploitation.

5.1.4 DelegateCall (DC)
The delegetacall is insecure if the state of the called contract
affects the calling contract. At the transaction log level, we
recognize DC exploitation according to the storage state
caused by the delegatecall. If a DELEGATECALL 1⃝ causes a
storage variable modification by SSTORE 2⃝ when executing
an external contract, and this storage variable is used in
the calling contract by SLOAD 3⃝, we label the transac-
tion as DC exploitation. When conducting an external call,
e.g., CALL or DELEGATECALL, depth increases by one. To
distinguish the external and the current contract call, we
check if the depth value (depth1) of SSTORE (2) is exact one
bigger than depth value (depth2) of SLOAD (3). When the
delegatecall call ends, the depth turns back to the value it has
had when DELEGATECALL is executed [19]. To identify the
storage variable used in the calling contract but modified in
the external contract, we check if the two storage variables

share the same key and value at different depths. It is
worth noting that the external call should be secure if the
external contract address and the calldata are specified by
the contracts’ owners. Therefore, we must manually check if
the initiator of the identified DC exploitation is the contract’s
owner to exclude false positive exploitation.

5.1.5 Unchecked Call (UcC)
The send() and call() functions are used to send ether and
are compiled into the EVM CALL instructions. The CALL
instruction results are pushed onto the stack, where 0 means
failure and 1 means success. The CALL result is stored in
the log block where the depth of the trace turns back to the
value it has had when the CALL instruction is executed [19].
If CALL 1⃝ results in value 0 (1) and the SSTORE changes
the storage status 3⃝ without executing an opcode to check
the CALL result 2⃝, we will flag the transaction as an UcC
exploitation.

5.1.6 Reentrancy (RE)
As shown in Figure 3, a reentrancy attack usually calls ether
transferring functions in the vulnerable contract to trigger
the malicious fallback function in the malicious contract.
Therefore, an RE exploitation has at least two CALL instruc-
tions 1⃝ 2⃝ in one transaction. The target address of the first
CALL is the attack’s contract address (1), and the target
address of the second CALL is the vulnerable contract’s
address (2). The state in the contract is updated by executing
the SSTORE 3⃝ instruction.

5.1.7 Frozen Ether (FE)
There are several reasons for funds being locked in a con-
tract. Perez et al. [19] focus on the case that the contract relies
on an external contract to transfer ether, but the external con-
tract does not exist any longer. In this study, the vulnerable
contracts are labeled by static analysis tools, which cannot
know whether the contract being relied on to transfer ether
is destroyed. Therefore, if the contract balance is not 0 and
the contract’s transaction logs do not contain any instruction
supporting transferring 1⃝, we flag the contract as a FE
exploitation. A potential issue of our analysis rule is that
no ether transfer in the contract’s transaction does not mean
the contract cannot transfer ether. Thus, the analysis rule
may report false positives of FE exploitation.
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5.1.8 Nested Call (NC)
In Ethereum, when transactions fail due to gas shortage,
the transaction log will contain error messages, such as
“error”:“out of gas”. To search NC exploitation, we first look
for the transaction log containing an error tag, and the
reason is “out of gas.” Gas shortage can also be caused by
other failed transfer transactions irrelevant to NC. These
unrelated transactions usually do not call any function,
and their transaction logs contain mostly only one PUSH1
instruction. To exclude unrelated transactions and reduce
false positives, we manually check if the nested call is the
reason for the transaction failures.

5.2 Identified Vulnerability Exploitation

If at least one contract’s transaction on Ethereum’s main
network is identified as executed by our analysis rules, we
count the contract as exploited. The numbers of identified
exploitations are shown in Table 6. We do not find any
exploitation of contracts we labeled as false positives, which
confirms our conclusions on the false positives in answering
RQ1. For the identified true positive vulnerable contracts,
their exploitations are explained below.

Unprotected Suicide (UpS). We found 19 contracts
vulnerable to UpS that have been exploited, meaning 19
contracts were destructed but not by their owner. Listing 19
shows an example of the exploited contracts. The contract
is related to a game, and the function takeAGuess() of the
contract is to let users take a guess after transferring 0.0001
ether. If the number a user inputs equals the winningNumber,
the function will transfer 90% of the contract’s balance to
the user, then kill the contract and return the remaining
balance to the contract owner. The transaction details of the
exploited UpS are shown in Figure 8 in Appendix A, which
shows that an attacker input the number nine that satisfied
the if condition in line 3 and then executed the selfdestruct()
function successfully and got 0.0468 ether from the contract.

1 function takeAGuess(uint _myGuess) public payable {
2 require(msg.value == 0.0001 ether);
3 if (_myGuess == winningNumber) {
4 msg.sender.transfer((this.balance*9)/10);
5 selfdestruct(owner);
6 }
7 }

Listing 19: contract Vulnerable to UpS that was exploited
(Code from Contract:
0x3ac0d29eaf16eb423e07387274a05a1e16a8472b

An interesting finding is that some contracts still
have balances even though the contracts have been self-
destructed. The reason is that the contract account will not
disappear even if the contract is destroyed. The contract
account can receive ether but does not support transferring
ether, leading to the locked ether. An example in Figure 9 in
Appendix A shows that the transactions of a self-destructed
contract, in which 0.033 ether are locked.

TxOrigin (TO). The transaction log analysis does not
reveal exploitation of the TO vulnerabilities.

Arithmetic Overflow and Underflow (IOU). We found
15 occurrences of arithmetic overflows. Listing 20 shows the
source code of an example contract that is exploited. The
transaction has an invocation of the function transport(), in
which an arithmetic operation was conducted based on the

function addDungeonRewards(), which calculated the reward
for different originDungeonId in the dungeons without using
SafeMath.

1 DungeonToken public dungeonTokenContract;
2 function transport() external payable {
3 // ** STORAGE UPDATE **
4 // Increment the accumulated rewards for the dungeon.
5 dungeonTokenContract.addDungeonRewards(originDungeonId,

requiredFee);
6 ......
7 }
8 contract DungeonToken {
9 function addDungeonRewards(uint _id, uint _Rewards) {

10 dungeons[_id].rewards += uint128(_Rewards);
11 }
12 }

Listing 20:
A Contract Containing Arithmetic Overflow (Code from
Contract: 0x141766882733cafa9033e8707548fdcac908db22).
The contract is destroyed in Ethereum.

DelegateCall (DC). We did not find any exploitation of
the 924 contracts with DC vulnerabilities.

Unchecked Call (UcC). We found three UcC exploita-
tions, which contained failed calls and storage status
changes after the call failures. An example of the exploited
contracts is shown in Listing 21. In the contract’s transaction,
at a certain point in time, there was insufficient ether in the
contract supporting the transfer in line 7. Therefore, the log
shows that a transaction calling the function sendTokensMan-
ager did not call the send() function in line 7 successfully.
However, the contract, e.g., Exxcoin, calling the function
sendTokensManager still changed the storage variable balances
in line 8 after the invocation of the send() function failed.

1 contract ExxStandart is ERC20 {
2 mapping (address => uint) balances;
3 }
4 contract Exxcoin is owned, ExxStandart {
5 function sendTokensManager(address _to, uint _tokens)

onlyManager public{
6 require(manager != 0x0);
7 _to.send(_tokens);
8 balances[_to] = _tokens;
9 Transfer(msg.sender, _to, _tokens);

10 }
11 }

Listing 21:
An example contract contains failed functions (Code from
Contract: 0x11e44037a60da9b76bf928b33d3d6ded0a6730ab)

Reentrancy (RE). We found no exploitations of the 72
contracts with RE vulnerabilities.

Frozen Ether (FE) Among the 100 FE vulnerable con-
tracts we choose to analyze, four of them have ether. We
analyzed the transaction logs of these four contracts and
found two contracts had never transferred ether to other
accounts. Thus, we label these two contracts as exploited.

Nested Call (NC). 28 out of the 184 contracts with NC
vulnerabilities were exploited when executing the functions
containing a for loop. Listing 22 shows an example of the
exploited contract, in which the for loop in the function
distribute iterates over the input parameter addresses of the
function. The total size of addresses in this transaction is 202
and the gas limit of this transaction is 2,417,107 as shown in
Figure 10 in Appendix A. This transaction used up all the
given gas and failed due to the gas shortage.

Another possible exploitation of NC is to set the trans-
action gas to be bigger than the block gas limit. The pre-
requisite of transaction execution is that the maximum gas
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TABLE 6: Information about Vulnerability Exploitation
UpS TO IOU DC UcC RE FE NC TD TOD Total

Number of Contracts Reported as Vulnerable 137 45 100 924 219 97 100 473 1,356 913 4,364
False Positives 25 21 37 802 178 26 86 291 1,106 717 3,289

Number of True Positives 112 24 63 122 41 71 14 182 250 196 1,075
Number of True Positives that are Exploited 19 0 15 0 2 0 2 28 - - 67

limit for a transaction cannot exceed the gas limit for the
block that packages the transaction [45]. The transaction will
never succeed if the estimated gas consumption exceeds
the block’s gas limit. However, we did not find such an
exploitation in our analyzed transactions.

1 function distribute(address[] calldata addresses, uint256[]
calldata amounts) payable external {

2 require(addresses.length > 0);
3 require(amounts.length == addresses.length);
4 for (uint256 i; i < addresses.length; i++) {
5 uint256 value = amounts[i];
6 address _to = addresses[i];
7 address(uint160(_to)).transfer(value);
8 }
9 }

Listing 22: An Example Contract
Related to Out-of-Gas Transactions (Code from Contract:
0x469503159ddf6bfd0a9ec8eba8e97a84fd3eae5b)

5.3 Results of Analyzing Vulnerability Exploitation
As shown in Table 6, only 6% (67 out of 1,092) contracts truly
vulnerable to various attacks were exploited. We have the
following findings using Strauss’ grounded theory approach
to analyze the vulnerable contracts and their exploitation
and non-exploitation.

By performing the selective coding of the grounded
theory analysis, we coded the reasons presented in the
following Sections 5.3.1 and 5.3.2 for non-exploitation to
the second theme, i.e., the smart contracts’ application
scenario and the execution environment and cost on
blockchain demotivate or prevent the vulnerable contracts
from being exploited.

5.3.1 Low motivation to exploit the vulnerabilities
We found that attackers may not be motivated to exploit the
vulnerability because their gains or the attacks’ impact are
trivial.

Very little or no financial benefits. By exploiting the
UpS, TO, RE, TD, and TOD vulnerabilities, the attacker may
get profit. However, many vulnerable contracts contain no
or very little ether. For example, 52 out of 57 contracts
vulnerable to UpS and 71 out of 72 contracts vulnerable
to RE have no ether, and only one contract vulnerable to
RE holds 0.001307 ether. Many smart contracts vulnerable
to TD are wallet contracts supporting users to purchase or
withdraw tokens within a limited time. Users must deposit
ether into the contract and exchange it for other digital
assets. There are four game contracts from which users
may win some rewards. However, three of them contain no
balance, and the fourth one contains only 0.03 ether.

Insignificant impacts. Attackers may cause contract
function failure or user losses by exploiting FE vulnera-
bilities to freeze ether or exploiting NC vulnerabilities to
use up gas. Very few of the contracts vulnerable to FE
have ether. Thus, locking a limited amount of ether will not
bring significant impacts. Although the 28 NC vulnerability
exploitations, few of them bring severe impacts. Similar to

the example contact shown in Listing 22, the for loops in 27
contracts iterate over function input parameters, meaning
the size of for iteration is controlled by the function caller. If
the caller sets a small number for iterations or gives enough
gas, the function will execute successfully. Therefore, most
reported NC vulnerabilities will not lead to the permanent
failure of the functions, and the failure of transfer functions
caused by NC will lock ether in contracts.

5.3.2 Blockchain mechanisms provide extra defense

Some characteristics of Solidity language and Ethereum
mechanisms demand attackers to putting in extra effort and
investment and be lucky to exploit the vulnerabilities, which
may demotivate their exploitation.

Needing to develop attack contracts. To exploit some
vulnerabilities, e.g., RE, DC, UcC and, TO, attackers must
develop attack contracts, which should be customized ac-
cording to different vulnerabilities. For instance, designing
an attacking contract containing a specified fallback func-
tion is vital to trigger the contracts vulnerable to RE. To
exploit the contracts vulnerable to DC, the attacker needs
an attacking contract that controls different global variables
and modifies the storage values in vulnerable contracts.

Depositing ether is a prerequisite. Some vulnerable
contracts are used for bidding, games, or wallets. These
contracts usually require users to send ether to contracts first
to get an authenticated identity. Therefore, sending ether
is a prerequisite for an attacker to call the contract. In the
example contract in Listing 23, line 11 has a TD vulnerability.
Suppose an attacker wants to exploit the vulnerability and
get all ether of this contract. In that case, the attacker must
meet the condition in line 12, i.e., sending more than 0.001
ether (line 3) and getting a correct randomNumber (line 4) to
start the exploitation.

Being lucky in random number competition. We found
that setting a puzzle as a deciding condition for some critical
operations is a popular defense method in our studied con-
tracts. An attacker cannot get permission to run critical op-
erations or get benefits unless the attacker is lucky enough
to solve the puzzle successfully. As shown in Listing 23, the
randomNumber is calculated by the keccak256 function in line
4 based on the block.number, which cannot be controlled by
the attacker.

Being mining winner. If attackers want to exploit TD
and TOD vulnerabilities, they must monitor the transaction
pool to capture critical transaction information, such as a
puzzle answer. After that, the attacker can initiate a new
transaction to compete with the old transaction. The attack
will not succeed unless the attacker is a mining winner and
the attacker’s transaction is successfully packaged.
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1 function () public payable {
2 require(msg.sender == tx.origin);
3 require(msg.value >= 0.001 ether);
4 uint256 randomNumber = uint256(keccak256(blockhash(

block.number - 1)));
5 if (randomNumber > highScore) {
6 currentWinner = msg.sender;
7 lastTimestamp = now;
8 }
9 }

10 function claimWinnings() public {
11 require(now > lastTimestamp + 1 days);
12 require(msg.sender == currentWinner)
13 msg.sender.transfer(address(this).balance);
14 }

Listing 23: A Contract Containing a Puzzle (Code from
Contract: 0x954791f9a0f0ff7841cffea32c556ac71168eff8)

6 DISCUSSION

Results of RQ1 and RQ2 bring novel insights to vulnerability
detector development and evaluation.

6.1 Implication to Vulnerability Detector Development
Although we did not investigate all existing smart contract
vulnerability detection approaches due to the selection cri-
teria explained in Section 4.2, our study covered several of
them, including pattern matching, symbolic execution, and
data flow analysis.

Our analyses using the grounded theory approach re-
vealed weaknesses of state-of-the-art smart contract vulner-
ability detectors, which usually customize classical static
and dynamic approach to analyze OO applications to check
smart contracts. The pattern-matching tool SmartCheck [13]
identifies vulnerability mainly based on known vulnerabil-
ity characteristics and search for vulnerability in small local
code snippets. Although SolDetector [24] covers global rela-
tionships better, it overlooks several defense mechanisms,
such as access control and benign target addresses. Tools
adopt the symbolic execution, e.g., Oyente [2], stimulate the
contract execution, and assume that attackers can execute all
dangerous paths. Our results show that several implemen-
tations, such as extra access control or execution condition
checking, can prevent attackers from reaching dangerous
paths. Therefore, these tools can be improved with more
path analysis to reduce false positives. Tools focus on data
flow analysis, such as Slither [14], deal with false positives
related to access control and complex relationships between
functions and contracts better than other tools. To further
reduce their false positives, the tools could be enhanced
with semantic analysis to address issues like overlooking
preventative execution conditions.

More importantly, beyond the general static and dy-
namic code analysis approaches, our results show that smart
contract vulnerability detectors need to consider better the
unique characteristics of blockchain and smart contract
programming languages. Several issues that cause false
positives, such as overlooking access control, neglecting
the constraint caused by contract factory pattern, assuming
critical operation after authorization, assuming status incon-
sistency when function calls are not checked, assuming all
fallback functions receive ether, and mixing ether transfer
initiator, are blockchain specific and require novel or unique
detection technologies.

Results of RQ2 show that several factors could influence
vulnerability exploitation possibilities and vulnerability crit-
icality. When reporting and ranking the vulnerabilities, vul-
nerable contracts with no ether can be lower ranked. The
extra effort and investments needed from attackers and the
attackers’ chance to execute the attack shall be considered in
vulnerability criticality evaluation.

6.2 Implication to Vulnerability Detector Evaluation
Existing studies, e.g., [10], [11], [16], [19], applied three
main methods to construct evaluation benchmarks, namely,
collecting vulnerable contracts with manual labels, crawl-
ing real-world contracts, and injecting vulnerabilities into
contracts. Durieux et al. [16] and Ren et al. [10] collected
vulnerable contracts with clear labels to evaluate different
tools. However, the number of vulnerable contracts is small,
e.g., 69 contracts in [16] and 214 contracts in [10]. These
vulnerable contracts are often short and have no complex
business logic. Ghaleb et al. [11] constructed a dataset
containing 50 contracts with 9,369 injected vulnerabilities.
However, the vulnerability injection is limited to known
characteristics of vulnerabilities. SolidiFi [11] provides 50
vulnerability patterns for each vulnerability, many of which
share the same code logic and only differ in function or
variable names. Although studies [10], [16], [19] construct
the dataset using real-world contracts, the type and amount
of vulnerabilities in these contracts are unknown. Durieux
et al. [16] hypothesize that the tools they evaluate report a
considerable number of false positives because the percent
of vulnerable contracts (44,589/47,518, 93%) is high. How-
ever, the studies [10], [16], [19] do not further analyze the
reasons for false positives. This study collected unique real-
world smart contracts and labeled 4,364 of them. To our
knowledge, our dataset is the largest one that can be used
to evaluate smart contract vulnerability detectors.

6.3 Threats to Validity
In this study, we only focus on the types of vulnerabilities
covered by at least two tools to avoid biases caused by a
single tool. Such filtering excluded several types of vulner-
abilities, which may reveal other reasons for false positives
than we have discovered. The results of RQ1 and RQ2 are
based on the vulnerability reported by the four analyzed
tools. The tools filtered may already address the issues that
cause false positives.

When answering RQ1, we found that more than one
reason caused some false positives of a contract. We give
only one reason for a false positive to each smart contract
because we focus on understanding the reasons rather than
counting their numbers. The percentage numbers in Figure
4 are calculated based on this strategy. However, such a
strategy will not impact the main findings of RQ1, i.e., the
eleven reasons. For RQ2, there are probably false negatives
due to unknown attacks and exploitations because our log
analysis is limited to the rules presented in Table 7.

7 CONCLUSION AND FUTURE WORK

As smart contracts’ security is critical, many vulnerability
detection tools have been proposed. Several empirical stud-
ies show that the tools report many vulnerabilities and,
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therefore, hypothesize many reported vulnerabilities are
false positives. In this study, we have analyzed the real-
world smart contracts reported as vulnerable by four tools
and confirm the hypothesis that there is a significant gap
between the number of contracts reported as vulnerable and
the number of exploited contracts. Our analysis also reveals
eleven reasons causing false positives. In addition, we dis-
cover six aspects that may demotivate attackers to exploit
vulnerable contracts. The results of this study delight the
need to consider more the characteristics of smart contract
programming languages and smart contract application sce-
narios and execution environments to analyze, report, and
rank the smart contract vulnerabilities.

Besides minimizing false positives, another critical as-
pect of improving vulnerability detectors is reducing false
negatives. Our future work will focus on analyzing the false
negative results of the vulnerability detectors and give more
suggestions to improve the detectors.
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APPENDIX

TABLE 7: Reasons for excluding Vulnerability Detection
Tools

Year and ref. Tool Name SCI SV VL Eff Availability
Pattern Matching
2018 [13] Smartcheck
2021 [24] SolDetector
Symbolic Execution
2016 [2] Oyente
2018 [20] ZEUS •
2018 [12] Mythril •
2018 [3] Securify •
2018 [21] TEETHER •
2018 [17] MAIAN •
2019 [9] HONEYBADGER •
2021 [7] DefectChecker •
2022 [8] EXGEN •
Data Flow Analysis
2018 [18] Osiris •
2018 [22] MadMax •
2019 [14] Slither
2020 [26] Clairvoyance •
2020 [27] Ethainter •
Machine Learning
2019 [28] GNN-based •
2020 [29] ContractWard •
2021 [30] VSCL • •
Fuzzing
2018 [5] ContractFuzzer •
2018 [31] Reguard •
2020 [4] sFuzz •
2020 [32] Ethploit •
2021 [54] ConFuzzius

Note: • means that the tool does no meet the criterion.

TABLE 8: Experiment information of existing tools

Year and ref. Tool Name Dataset FDR=FP/(TP+FP)
2016 [2] Oyente 175 real-world contracts [2] 6.4%
2018 [13] SmartCheck 3 real-world contracts [13] 68.9%
2019 [14] Slither 1000 real-world contracts [14] 10.9%

2021 [24] SolDetector 179 curated contracts [24] 3.1%
1,562 real-world contracts [24] 17.4%

Results for RQ2.

TABLE 9: Results of Mythril and ConFuzzius on overlap-
ping contracts

Vulnerability Total Number Mythril ConFuzzius
Reported P(%) FDR(%) Reported P(%) FDR(%)

RE exploitable 71 54 96.43 3.57 22 95.65 30.99unexploitable 26 2 0

UcC exploitable 41 15 25.86 74.14 21 25.30 51.22unexploitable 178 43 62

TO exploitable 24 8 72.72 27.27 - - -
unexploitable 21 3 - - -

TD ...
... ...
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Fig. 8: The Transaction Details of the Exploited UpS

Fig. 9: Locked Ether in a Self-Destructed Contract (Contract Address: 0x11fC42Be8B14aEeCfc371Af217c4648e6423fA60)

Fig. 10: Transaction Information on Etherscan (Hash:0xfa6a69844564031d7a4e0b0f5dfed8e1e1b0c696d880631524b21f7df519bb89)


