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Abstract

Software’s effect upon the world hinges upon the hardware that interprets it. This tends not to be an issue, because we
standardise hardware. AI is typically conceived of as a software mind running on such interchangeable hardware. The hardware
interacts with an environment, and the software interacts with the hardware. This formalises mind-body dualism, in that a
software mind can be run on any number of standardised bodies. While this works well for simple applications, we argue that
this approach is less than ideal for the purposes of formalising artificial general intelligence (AGI) or artificial super-intelligence
(ASI).

The general reinforcement learning agent AIXI is pareto optimal. However, this claim regarding AIXI’s performance is highly

subjective, because that performance depends upon the choice of interpreter. We examine this problem and formulate an

approach based upon enactive cognition and pancomputationalism to address the issue. Weakness is a measure of simplicity, a

“proxy for intelligence” unrelated to compression. If hypotheses are evaluated in terms of weakness, rather than length, we are

able to make objective claims regarding performance. Subsequently, we propose objectively optimal notions of AGI and ASI

such that the former is computable and the latter anytime computable (though impractical).
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Abstract. Software’s effect upon the world hinges upon the hardware
that interprets it. This tends not to be an issue, because we standardise
hardware. AI is typically conceived of as a software mind running on such
interchangeable hardware. The hardware interacts with an environment,
and the software interacts with the hardware. This formalises mind-body
dualism, in that a software mind can be run on any number of standard-
ised bodies. While this works well for simple applications, we argue that
this approach is less than ideal for the purposes of formalising artifi-
cial general intelligence (AGI) or artificial super-intelligence (ASI). The
general reinforcement learning agent AIXI is pareto optimal. However,
this claim regarding AIXI’s performance is highly subjective, because
that performance depends upon the choice of interpreter. We examine
this problem and formulate an approach based upon enactive cognition
and pancomputationalism to address the issue. Weakness is a measure
of simplicity, a “proxy for intelligence” unrelated to compression. If hy-
potheses are evaluated in terms of weakness, rather than length, we are
able to make objective claims regarding performance. Subsequently, we
propose objectively optimal notions of AGI and ASI such that the former
is computable and the latter anytime computable (though impractical).

Keywords: enactivism · dualism · artificial general intelligence.

1 Introduction

AIXI [1] provides us with a mathematically precise notion of AGI. Its perfor-
mance is measured according to Legg-Hutter intelligence [2], a proxy for “the
ability to satisfy goals in a wide range of environments” [3]. It employs Solomonoff
Induction [4, 5] to make accurate inferences from minimal data. Because of this
it is pareto optimal, meaning there is no agent which outperforms AIXI in one
environment and equals its performance in all others. Unfortunately, this claim
is highly subjective, because it depends upon the choice of Universal Turing
Machine (UTM) [6]. We explore this problem, and formulate an approach that
combines enactive cognition [7], pancomputationalism [8] and weakness as a
proxy for intelligence [9].
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1.1 An informal explanation of AIXI

Our purpose is to explain the aforementioned subjectivity and how it might be
addressed, rather than every detail of how AIXI functions. This paper is more
philosophical than mathematical in nature (a companion to this paper [9] focuses
on the mathematical aspects of this research). As such, the following explanation
of AIXI is informal and involves some abuse of notation.

Models: A model can be understood as a program [1, 10] or set of rules [11, 12]
describing how aspects of the world relate to one another. A model can be used
as a hypothesis, to explain aspects of the present by pointing out which aspects
of the past caused the present [13]. Likewise, the more distant past can explain
the more recent past, and the present can explain the future. Of course, a model
of the world is not the world itself. Some models will more accurately represent
the world than others. To satisfy goals, AIXI must predict1 the consequences
of its actions. To make predictions, an agent requires a model. If a model ap-
proximates the environment well enough, then the agent can accurately predict
the consequences of its actions, and so form a plan that will cause its goals to
become satisfied. The more accurate a model is, the more likely an agent will be
able to satisfy its goals. AIXI is able to satisfy goals because it has a means of
discerning which models will be most accurate [13].

Universal priors: How AIXI obtains an accurate representation of the world
can be informally understood in two parts2. First, AIXI considers only models
that explain the past and present precisely (by which we mean that each model is
a lossless archive of past and present). Any model that would predict a different
outcome to past events than what actually took place is discarded, leaving AIXI
only with models consistent with what it knows to be true. While these models
are equivalent with respect to the past, they may differ in what future they
predict. AIXI must identify which of those models are most likely to predict the
future most accurately. For this purpose it is assumed that simpler models are
more plausible representations of the world (in line with Ockham’s Razor [14]).
Simplicity is measured in terms of Kolmogorov Complexity (KC) [15]. The KC
of an object is the length of the shortest self extracting archive of that object.
To give some intuition as to what this means, there may exist many models
that behave in exactly the same manner in all circumstances. Those models are
really the same model represented in different ways. The KC of that model is the
length of its shortest representation in a language. Models with smaller KC tend
to make more accurate predictions, formalising Ockham’s Razor. This is why
some believe that compression and intelligence are closely related [16], because
compression can be used to measure simplicity and so identify explanations that
1 To accurately predict the future means to infer which future among possible futures

has the highest probability of occurring.
2 Again, must be emphasised that this explanation is very informal - the point is just

to provide some context to explain the problem of subjectivity.
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are more likely to be true. AIXI prefers models that have smaller KC, and in
doing so maximises the accuracy of its predictions3. AIXI estimates one thing
(model accuracy), by measuring another seemingly unrelated thing (KC). In
other words, it uses compression as a proxy to estimate intelligence. This proxy
for intelligence gives AIXI what is called “a universal prior” [4, 5], a means of
deciding which among valid models are best. This is also why AIXI is also called a
universal artificial intelligence [17]. So to reiterate, AIXI’s intelligent behaviour
stems from an accurate model. How AIXI obtains an accurate model can be
understood (informally) in two steps:

1. Discard any models which “predict” a different the past from the one that
actually happened.

2. Use a proxy for intelligence (compression, or more specifically Kolmogorov
Complexity) to decide which among the remaining models will most accu-
rately predict the future.

1.2 Subjectivity

KC is measured in the context of a UTM [6]. By itself, changing the UTM would
not meaningfully affect performance. When used in a universal prior to predict
deterministic binary sequences, the number of incorrect predictions a model will
make is bounded by a multiple of the KC of that model [18]. If the UTM is
changed the number of errors only changes by a constant [19, pp. 2.1.1 & 3.1.1],
so changing the UTM doesn’t change which model is considered most plausible.
However, when AIXI employs this prior in an interactive setting, a problem
occurs [6]. To explain in simplified terms (with some abuse of notation), assume
a program f1 is software, f2 is an interpreter and f3 is the reality (physical body
and environment) within which goals are pursued. Intelligence is a measure of
the performance of f3(f2(f1)). AIXI is the optimal choice of f1 to maximise the
performance of f3(f2(f1)). However, in an interactive setting the perception of
success may not match reality.

“Legg-Hutter intelligence [2] is measured with respect to a fixed UTM.
AIXI is the most intelligent policy if it uses the same UTM.” [6, p.10]

If intelligence is measured with respect to one UTM while AIXI runs on another,
then this is like AIXI being engaged in one reality, while success is determined by
another, entirely different reality. f3(f2(f1)) depends upon f2(f1), not f1 alone.
Thus the performance of f1 alone is considered to be subjective.

“This undermines all existing optimality properties for AIXI.” [6, p.1]

3 This is a simplification. More formally, if the model which generated past data is
indeed computable, then the simplest model will dominate the Bayesian posterior
as more and more data is observed. Eventually, you will have identified the correct
model and can use that model to generate the next sample (predict the future).
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A UTM is an interpreter. As Leike and Hutter pointed out, Legg-Hutter intelli-
gence is measured with respect to a fixed interpreter, and the problem disappears
if AIXI uses that same interpreter. The problem is that there is no way to know
what the correct interpreter is. This paper explores how we might formalise cog-
nition in a different manner, so that performance is indepenedent of the choice
of interpreter. To do so we need to formalise the mind as part of reality, and
reality as software. Using the informal notation from earlier, this would give
us f2(f3(f1)) instead of f3(f2(f1)). In that case, performance would then be
measured in terms of f3(f1), and would be unaffected by interpreter f2.

2 Formalising Enactivism

AI is typically conceived of as a software mind running on an interchangeable
hardware body. The hardware interacts with an environment, and the software
interacts with the hardware. This formalises mind-body dualism, in that we could
take the software mind and run it on any number of different bodies. However,
this portrayal of cognition is flawed. What computer code does still depends
on the hardware interprets it, we just tend to standardise system architectures.
An alternative to dualism is enactivism [7] which holds that mind and body
are inseparable, embedded in time and place. Cognitive activity extends into
the environment, and is enacted through what the organism does. For example,
if someone uses pen and paper to compute the solution to a math problem,
then their cognition is extending into and enacted within the environment [20].
Formalising enactivism can address problems associated with dualism. However
it is unclear how enactive cognition might work computationally, because it
blurs the boundary between the agent and environment. To address this, we
look to pancomputationalism [8]. Pancomputationalism holds that everything
is a computational system. It follows that we may regard the interpreter f2
as the universe, and reality f3 as software that runs on f2. Consequently we
have f2(f3...) rather than f3(f2...). The distinction between mental (software)
and physical (hardware) can be discarded. This means we need to represent the
model f1 as a part of reality f3. We do so by merging agent and environment
into a task [13], in a sense formalising snapshots of Heidegger’s Dasein (being-
in-the-world and bound by context) [21].

2.1 A model of reality within reality

There exists an isomorphism between declarative and imperative programs (the
Curry-Howard isomorphism [22]). As such, we may treat both the model f1 and
reality f3 as declarative programs. Assume a set of declarative programs repre-
sents the logical conjunction of its members. Then, for every set of declarative
programs there exists a declarative program which is equivalent. If f1 and f3
are sets, we can define f1 as a subset of f3 to represent the model as part of
reality. Because f1 ⊂ f3, the ability to satisfy goals is now measured in terms of
f2(f3), we can now reason about the model in objective terms. Going forward
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we’ll discard f3, f2 and f1 in favour of more formal notation, and will refer to
the UTM f2 as the pancomputationalist’s universe.

Definition 1 (states of reality). A set H, where:

– We assume a set Φ whose elements we call states, one of which we single out as
the present state of reality4).

– A declarative program is a function f : Φ → {true, false}, and we write P for
the set of all programs. By objective truth about a state ϕ, we mean a declarative
program f such that f(ϕ) = true.

– Given a state ϕ ∈ Φ, the objective totality of ϕ is the set of all objective truths
hϕ = {f ∈ P : f(ϕ) = true}.

– H = {hϕ : ϕ ∈ Φ}

2.2 We need only model the task, not all of reality

Enactivism blurs the line between agent and environment, making the distinction
unclear. As such, we abandon these separate notions entirely. The distinction is
a convenient but unnecessary abstraction [11]. As Heidegger maintained, being
is bound by context [21]. There is no need to define an agent that has no en-
vironment, and so there seems to be little point in preserving the distinction.
Furthermore, “the ability to satisfy goals in a wide range of environments” sug-
gests goals are represented separately from the model of the environment. This
too is an unnecessary complication. As Hubert Dreyfus pointed out, creating
stored representations for everything is a mistake. After all

“The best model of the world is the world itself.” - Rodney Brooks [23]

The only aspects of the environment that we might actually need model are those
necessary to satisfy goals [24]. What is needed is not a model of the environment
but a model describing how to satisfy a goal while embodied and embedded in a
particular local environment. Rather than the environment, we model a task. It
is the instantiation of intent - a snapshot of Heidegger’s being, bound by context
[21]. Because of this we will refer to “the mechanism” instead of “the agent” going
forward. Where a model of an environment may include details needed to predict
the environment but not satisfy goals, a model of a task can ignore anything
which is not necessary to satisfy the goal. As a result, a separate description of
a goal is unnecessary because it is implied by which aspects of the environment
are modelled. If we only need to model those aspects of reality necessary to
complete a task, then we are dealing with the necessarily finite physical circuitry
with which cognition is enacted. We can represent that circuitry using a finite
subset of P . This finite circuitry is a language, albeit one whose meanings are
implemented in the pancomputationalist’s universe rather than interpreted by a
human mind. This language will then be used to formally describe tasks.
4 Each state is just reality from the perspective of a point along one or more dimen-

sions. States of reality must be separated by something, or there would be only one
state of reality. For example two different states of reality may be reality from the
perspective of two different points in time, or in space and so on.
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Definition 2 (implementable language). A triple L = ⟨H,V, L⟩, where:

– H is reality, the set containing all objective totalities.
– V ⊂

⋃
h∈H

h is a finite set, named the vocabulary.

– L = {l ∈ 2V : ∃h ∈ H (l ⊆ h)}, the elements of which are statements.

(Truth) If we have a statement l ∈ L expressed using an implementable language,
and the totality of the present state of reality is h ∈ H, then l is true if l ⊂ h.
(Extensions) The extension of a statement a ∈ L is Za = {b ∈ L : a ⊆ b},
while the extension of a set of statements A ⊆ L is ZA =

⋃
a∈A

Za.5

The programs in V are the circuitry with which cognition is enacted. Only pro-
grams included in V can directly impact decision making. We assume cognition
always takes place in the context of a physical machine or sensorimotor system
– an implementable language. Subsequently, the reader can now safely assume
mathematical symbols refer to members or subsets of L unless indicated other-
wise. With these, we can define a task.

Definition 3 (task). A task6 is a triple T = ⟨S,D,M⟩ where:

– S ⊂ L is a set of statements called situations, where ZS is the set of all possible
decisions which can be made in those situations.

– D ⊂ ZS is the set of correct decisions for this task.
– M ⊂ L is the set of all valid models (models) for the task, where

M = {v ∈ L : ZS ∩ Zv ≡ D,∀z ∈ Zv (z ⊆
⋃
d∈D

d)}

(How a task is completed) The mechanism is:

1. presented with a situation s ∈ S, then
2. selects z ∈ Zs, called a decision.
3. If z ∈ D, then the agent has made a correct decision and the task will be completed.

From an ostensive definition of a task (a subset of S and D) a hypothesis h can
be inferred, and a decision z ∈ Zs ∩ Zh selected. If h ∈ M , then z ∈ D.

A single decision instead of sequential decisions: Where AIXI deals in
sequential decisions over time [1], a task is completed with a single decision.
There are several reasons for this:
5 A lower case letter is a statement, and upper case a set of statements. The capital

letter Z with a subscript indicates the extension of whatever is in the subscript. For
example the extension of a statement a is Za, and of a set of statements A is ZA.

6 For example, this could represent chess as a supervised learning problem where s ∈ S
is the state of a chessboard, z ∈ Zs is a sequence of moves by two players that begins
in s, and d ∈ D is a sequence of moves that resulted in victory for one player in
particular (represented by the task).
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1. For every sequence of decisions there exists an equivalent single decision, in
much the same way as any planning problem can be represented as a boolean
satisfiability problem [25]. Not all tasks involve sequences of decisions, but
all must involve at least one. If a single decision will suffice, why complicate
matters by representing sequences?

2. A single decision may set in motion continuous interactions. The preference
for sequences may have been a result of reinforcement learners using discrete,
pre-defined actions (reasoning about symbolic abstractions). However, in the
enactive context such abstractions are not given (thoughts and actions are
both just sensorimotor activity).

3. Whether behaviour is the result of one decision or many does not matter.
What matters is whether the task is completed as a result.

Binary correctness: To further simplify matters, correctness is binary. Given
a task, a decision is considered to be either correct or incorrect. A decision is
correct if it causes the task to become complete to some acceptable degree with
some acceptable probability – what is otherwise known as satisficing [26]. Degrees
of complete or correct just reflect different task definitions. Preferences that
determine what is considered complete, methods of attributing task completion
to past decisions, as well as relative grades thereof, are beyond this paper’s scope.
Preferences are formalised in a companion to this paper [27, 28].

Representing the past to predict the future: Earlier we described how an
accurate model can be obtained in a two step process:

1. Discard any models which “predict” a different the past from the one that
actually happened.

2. Use a proxy for intelligence to determine which among the remaining models
most accurately predict the future.

In the context of a task, with isolated (as opposed to sequential) decisions that
are either correct or not, the past can be represented as the set D of decisions
which were deemed correct, along with the situations S in which they were
made. A model m ∈ M entails D given S in that Zm∩ZS = D, but may imply a
decision d /∈ D if presented with a situation s /∈ S for which no correct decision
is known. In other words, the models in M are equivalent with respect to the
past but may disagree about the future situations, addressing step 1 above.

3 The objectively optimal hypothesis

Having formulated cognition so that both the agent and environment are soft-
ware, we have ensured that any claims regarding performance are now unaffected
by the choice of interpreter. This addresses subjectivity as it pertained to AIXI.
Unfortunately, it introduces other problems we must now address. First, the
vocabulary of an implementable language is finite (optimal performance can be
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attained via rote memorisation), and Legg-Hutter intelligence is not well defined
for a task. Second, we can no longer use Kolmogorov Complexity because every-
thing must be represented in the same implementable language. We could use
minimum description length [29] as it is arguably a special case of Kolmogorov
Complexity based on slightly different assumptions (compressing data written
in a language in an archive written in that same language), however selecting
hypotheses by length would still render any claim regarding performance subjec-
tive. Third, we must now show that not only is an optimal hypothesis objectively
so given a finite vocabulary, but define the objectively optimal choice of vocab-
ulary. To address the former two we require a measure of performance, and an
alternative proxy for intelligence, which are addressed [13, 9] by companion to
this paper concerning optimal hypotheses.

3.1 Performance

Informally, we define performance as the ability to generalise from limited infor-
mation, the justification for which is addressed elsewhere [11, 9, 10].

Definition 4 (generalisation). Given two tasks Tα = ⟨Sα, Dα,Mα⟩ and Tω =
⟨Sω, Dω,Mω⟩, a model m ∈ Mα generalises to task Tω if m ∈ Mω.

Tasks are assumed to be uniformly distributed, and the probability of a state-
ment l ∈ L generalising to a randomly chosen task ⟨S,D,M⟩ written in a
language ⟨H,V, L⟩ is p(l ∈ M | l ∈ L) = 2|Zl|

2|L| . Optimal performance is at-
tained when the probability of generalisation is maximised. p(l ∈ M | l ∈ L)
is maximised when l ∈ argmax

l∈L
|Zl|. Assume there exists a ground truth task

ω = ⟨Sω, Dω,Mω⟩ written in ⟨H,V, L⟩ to which we wish to generalise. The
mechanism’s knowledge is represented by a task α = ⟨Sα, Dα,Mα⟩ such that
Sα ⊂ Sω, Dα ⊂ Dω and Mα ∩Mω ̸= ∅7. The mechanism selects a hypothesis m.
The performance of the mechanism is a consequence of p(m ∈ Mω | m ∈ Mα).
Optimal performance is attained by m ∈ argmax

m∈Mα

p(m ∈ Mω | m ∈ Mα).

3.2 Weakness as a proxy for intelligence

First, we must explain why description length is an unsuitable proxy. The de-
scription length of m is the cardinality |m| of m itself. For every conceivable
task α there exists a program u ∈ P such that Z{u} = Dα. If u ∈ V then the
minimum description length model is {u} and p(m ∈ Mω | m ∈ Mα) = 0. Hence,
minimising description length does not guarantee optimal performance [9]. Any
claim regarding the performance of a mechanism using length as a proxy would
be subjective. Optimal performance, in the context of a language ⟨H,V, L⟩, is
given by argmax

m∈Mα

p(m ∈ Mω | m ∈ Mα) = argmax
m∈Mα

|Zm| (the relevant proofs, as

well as experimental evidence and code supporting those proofs, can be found
7 In the absence of knowledge, |Zl| is maximised when l = ∅.
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in [13, 9]). The cardinality of the extension |Zm| is called the “weakness” of m.
Regardless of the language employed, the weakest model remains the optimal
hypothesis. This is because the weakest m is necessary and sufficient [9, prop. 1,
2] to maximise 2|Zm|

2|L| . m ∈ argmax
m∈Mα

|Zm| is the objectively optimal hypothesis,

in the sense that it is optimal given any choice of language or task.

3.3 Objectively optimal AGI and ASI

If the cited proof [9] that the weakest hypothesis is optimal holds, then we would
suggest well defined notions of AGI and ASI. An AGI is an agent that selects the
optimal hypothesis for any given task. An ASI is an AGI that selects the optimal
vocabulary to maximise the utility of intelligence for that task. If h represents
our AGI mechanism’s hypothesis then

h ∈ argmax
m∈Mα

|Zm|

given knowledge α. The weakest model is computable via search [13], but such
an approach is computationally complex. For an ASI we need to represent a task
independently of an implementable language. The powerset 2P is the set of all
possible vocabularies that can be used to specify an implementable language.
Let TV be the set of all tasks that can be written in a vocabulary V , and
T∀ =

⋃
V ∈2P

TV be the union of all such sets. Let λ be a function λ : 2P → T∀

that takes a vocabulary and returns a particular task in that vocabulary (Λ
the set of all such functions). λ represents a task independently of any one
implementable language. Assume λ is the task for which we need the ASI. The
quantity argmax

m∈M
(|Zm| − |D|) expresses the utility of a intelligence given a task

[13]. If ϵ : Λ → N is a function such that ϵ(⟨S,D,M⟩) = argmax
m∈M

(|Zm| − |D|),

then an ASI is a mechanism that searches through possible vocabularies to find
V such that the utility of intelligence is maximised, and then builds an AGI with
that vocabulary. More formally, if h represents our ASI mechanism’s hypothesis,
then

V ∈ argmax
V ∈2P

ϵ (λ(V )) and λ(V ) = ⟨S,D,M⟩ ⇒ h ∈ argmax
m∈M

|Zm|

An anytime computable alternative is V ∈ argmax
V ∈K

ϵ(λ(V )), where K ⊆ 2P is

the set of vocabularies for which ϵ has been computed so far.
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