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Abstract

If A and B are sets such that A is a subset of B, generalisation may be understood as the inference from A of a hypothesis

sufficient to construct B. One might infer any number of hypotheses from A, yet only some of those may generalise to B. How

can one know which are likely to generalise? One strategy is to choose the shortest, equating the ability to compress information

with the ability to generalise (a “proxy for intelligence”). We examine this in the context of a mathematical formalism of enactive

cognition. We show that compression is neither necessary nor sufficient to maximise performance (measured in terms of the

probability of a hypothesis generalising). We formulate a proxy unrelated to length or simplicity, called weakness. We show

that if tasks are uniformly distributed, then there is no choice of proxy that performs at least as well as weakness maximisation

in all tasks while performing strictly better in at least one. In other words, weakness is the pareto optimal choice of proxy. In

experiments comparing maximum weakness and minimum description length in the context of binary arithmetic, the former

generalised at between 1.1 and 5 times the rate of the latter. We argue this demonstrates that weakness is a far better proxy,

and explains why Deepmind’s Apperception Engine is able to generalise effectively.
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Abstract. If A and B are sets such that A ⊂ B, generalisation may
be understood as the inference from A of a hypothesis sufficient to con-
struct B. One might infer any number of hypotheses from A, yet only
some of those may generalise to B. How can one know which are likely
to generalise? One strategy is to choose the shortest, equating the ability
to compress information with the ability to generalise (a “proxy for intel-
ligence”). We examine this in the context of a mathematical formalism
of enactive cognition. We show that compression is neither necessary nor
sufficient to maximise performance (measured in terms of the probability
of a hypothesis generalising). We formulate a proxy unrelated to length
or simplicity, called weakness. We show that if tasks are uniformly dis-
tributed, then there is no choice of proxy that performs at least as well
as weakness maximisation in all tasks while performing strictly better
in at least one. In other words, weakness is the pareto optimal choice
of proxy. In experiments comparing maximum weakness and minimum
description length in the context of binary arithmetic, the former gen-
eralised at between 1.1 and 5 times the rate of the latter. We argue
this demonstrates that weakness is a far better proxy, and explains why
Deepmind’s Apperception Engine is able to generalise effectively.

Keywords: simplicity · inference · general intelligence.

1 Introduction

If A and B are sets such that A ⊂ B, generalisation may be understood as the
inference from A of a hypothesis sufficient to construct B. One might infer any
number of hypotheses from A, yet only some of those may generalise to B. How
can one know which are likely to generalise? According to Ockham’s Razor,
the simpler of two explanations is the more likely [1]. Simplicity is not itself
a measurable property, so the minimum description length principle [2] relates
simplicity to length. Shorter representations are considered to be simpler, and do
tend to generalise more effectively. This is often applied in the context of logical
inference by measuring the length of a declarative program that explains what is
observed. The ability to identify shorter representations is compression, and the
ability to generalise is arguably intelligence [3]. Hence the ability to compress
information is often portrayed as a proxy for intelligence [4], even serving as the
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foundation [5, 6, 7] of the theoretical super-intelligence AIXI [8]. That the ability
to compress information is a proxy for intelligence has gone largely unchallenged.
The optimal choice of hypothesis is widely considered to be the shortest. We
prove that it is not1. We present an alternative, unrelated to description length,
called weakness. We prove that to maximise the probability of one’s hypothesis
generalising to unforeseen situations, it is necessary and sufficient to choose the
weakest2. This serves to explain why The Apperception Engine [9] is able to
form hypotheses that generalise.

2 Background definitions

To do so, we employ a formalism [10, 11, 12] of enactive cognition [13] in which
sets of declarative programs are related to one another in such a way as to form a
lattice. This unusual representation is necessary to ensure that both the weakness
and description length of a hypothesis are well defined3. This formalism can be
understood in three steps.

1. Reality is represented as a set of declarative programs.
2. A finite subset of reality is used to define a language with which to write statements

that behave as logical formulae.
3. Finally, induction is formalised in terms of tasks made up of these statements.

Definition 1 (states of reality). A set H, where:

– We assume a set Φ whose elements we call states, one of which we single out as
the present state of reality4).

– A declarative program is a function f : Φ → {true, false}, and we write P for
the set of all programs. By objective truth about a state ϕ, we mean a declarative
program f such that f(ϕ) = true.

– Given a state ϕ ∈ Φ, the objective totality of ϕ is the set of all objective truths
hϕ = {f ∈ P : f(ϕ) = true}.

– H = {hϕ : ϕ ∈ Φ}

Definition 2 (implementable language). A triple L = ⟨H,V, L⟩, where:

– H is reality, the set containing all objective totalities.
– V ⊂

⋃
h∈H

h is a finite set, named the vocabulary.

1 This proof is conditional upon certain assumptions regarding the nature of cognition
as enactive, and a formalism thereof.

2 Assuming tasks are uniformly distributed, and weakness is well defined.
3 An example of how one might translate propositional logic into this representation

is given at the end of this paper. It is worth noting that this representation of
logical formulae addresses the symbol grounding problem [14], and was specifically
constructed to address subjective performance claims in the context of AIXI [15].

4 Each state is just reality from the perspective of a point along one or more dimen-
sions. States of reality must be separated by something, or there would be only one
state of reality. For example two different states of reality may be reality from the
perspective of two different points in time, or in space and so on.
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– L = {l ∈ 2V : ∃h ∈ H (l ⊆ h)}, the elements of which are statements5.

(Extensions) The extension of a statement a ∈ L is Za = {b ∈ L : a ⊆ b},
while the extension of a set of statements A ⊆ L is ZA =

⋃
a∈A

Za.

(Notation) Lower case letters s, d,m, z, c represent statements, and upper case
S,D,M,Z represent sets of statements. The capital letter Z with a subscript
indicates the extension of whatever is in the subscript. For example the extension
of a statement a is Za, and the extension of a set of statements A is ZA.

Definition 3 (task). Given a language ⟨H,V, L⟩, a task6 is a triple T = ⟨S,D,M⟩
where:

– S ⊂ L is a set of statements called situations, where the extension ZS of S is the
set of all possible decisions which can be made in those situations.

– D ⊂ ZS is the set of correct decisions for this task. 7

– M ⊂ L is the set of all valid models for the task, where

M = {m ∈ L : ZS ∩ Zm ≡ D,∀z ∈ Zm (z ⊆
⋃
d∈D

d)}

(How a task is completed) Assume we have a hypothesis h ∈ L:

1. we are then presented with a situation s ∈ S, and
2. we must select a decision z ∈ Zs ∩ Zh.
3. If z ∈ D, then the decisions is correct and the task will be completed. This will

occur if h ∈ M .

Note that ∀m ∈ M : D ≡ ZS ∩ Zm, which means any m ∈ M can be used to
obtain D from S, because D = {z ∈ Zm : ∃s ∈ S (s ⊂ z)}.

3 Formalising induction

Definition 4 (probability of a task). Let Γ be the set of all tasks given an
implementable language L. There exists a uniform distribution over Γ .

Definition 5 (generalisation). Given two tasks α = ⟨Sα, Dα,Mα⟩ and ω =
⟨Sω, Dω,Mω⟩, a model m ∈ Mα generalises to task ω if m ∈ Mω.
5 Statements are the logical formulae about which we will reason. If the totality of

the present state of reality is h ∈ H, then a statement l is true iff l ⊂ h. 2V is the
powerset of V .

6 For example, this could represent chess as a supervised learning problem where s ∈ S
is the state of a chessboard, z ∈ Zs is a sequence of moves by two players that begins
in s, and d ∈ D ∩ Zs is such a sequence of moves that resulted in victory for one
player in particular (the one undertaking the task).

7 Note that each d ∈ D is a superset of a member of S. S may be understood as a set
of inputs, and D as the set of all unions of input and output which are correct.
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Definition 6 (child-task and parent-task). A task α = ⟨Sα, Dα,Mα⟩ is a
child-task of ω = ⟨Sω, Dω,Mω⟩ if Sα ⊂ Sω and Dα ⊆ Dω. This is written as
α ⊏ ω. If α ⊏ ω then ω is then a parent of α, and α is a child of ω.

A proxy is meant to estimate one thing by measuring another. In this case,
if intelligence is the ability to generalise [10, 12, 3], then a greater proxy value is
meant to indicate that a statement is more likely to generalise. Not all proxies
are effective (most will be useless). We focus on two in particular.

Definition 7 (proxy for intelligence). A proxy is a function q : L → N. The
set of all proxies is Q.

(Weakness) The weakness of a statement m is the cardinality of its extension
|Zm|. There exists q ∈ Q such that q(m) = |Zm|.

(Description Length) The description length of a statement m is its cardinality
|m|. Longer logical formulae are considered less likely to generalise [2], and a
proxy is something to be maximised, so description length as a proxy is q ∈ Q
such that q(m) = 1

|m| .

A child task may serve as an ostensive definition of its parent, meaning one
can generalise from child to parent.

Definition 8 (induction). α = ⟨Sα, Dα,Mα⟩ and ω = ⟨Sω, Dω,Mω⟩ are tasks
such that α ⊏ ω. Assume we are given a proxy q ∈ Q, the complete definition
of α and the knowledge that α ⊏ ω. We are not given the definition of ω. The
process of induction would proceed as follows:

1. Obtain a hypothesis by computing a model h ∈ argmax
m∈Mα

q(m).

2. If h ∈ Mω, then we have generalised from α to ω.

4 Results

Proposition 1 (sufficiency). Weakness is a proxy sufficient to maximise the
probability that induction results in generalisation from α to ω.

Proof: You’re given the definition of α = ⟨Sα, Dα,Mα⟩ and a hypothesis h ∈
Mα. Let ω = ⟨Sω, Dω,Mω⟩ be the parent to which we wish to generalise:

1. The set of statements which might be decisions addressing situations in Sω and
not Sα, is ZSα = {l ∈ L : l /∈ ZSα}.

2. For any given h ∈ Mα, the set of decisions h implies which fall outside the scope
of what is required for the known task α is ZSα ∩ Zh.

3. |ZSα ∩ Zh| increases monotonically with |Zh|, because ∀z ∈ Zm : z /∈ ZSα → z ∈
ZSα .

4. 2|ZSα | is the number of tasks which fall outside of what it is necessary for a model
of α to generalise to, and 2|ZSα∩Zh| is the number of those tasks to which a given
h ∈ Mα does generalise.
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5. Therefore the probability that a given model h ∈ Mα generalises to the unknown
parent task ω is

p(h ∈ Mω | h ∈ Mα, α ⊏ ω) =
2|ZSα∩Zh|

2|ZSα |

p(h ∈ Mω | h ∈ Mα, α ⊏ ω) is maximised when |Zh| is maximised.

Proposition 2 (necessity). To maximise the probability that induction results
in generalisation from α to ω, it is necessary to weakness as a proxy, or a function
thereof8.

Proof: Let α and ω be defined exactly as they were in the proof of prop. 1.

1. If h ∈ Mα and ZSω ∩ Zh = Dω, then it must be he case that Dω ⊆ Zh.
2. If |Zh| < |Dω| then generalisation cannot occur, because that would mean that

Dω ̸⊆ Zh.
3. Therefore generalisation is only possible if |Zm| ≥ |Dω|, meaning a sufficiently

weak hypothesis is necessary to generalise from child to parent.
4. The probability that |Zm| ≥ |Dω| is maximised when |Zm| is maximised. Therefore

to maximise the probability induction results in generalisation, it is necessary to
select the weakest hypothesis.

To select the weaknest hypothesis, it is necessary to use weakness (or a function
thereof) as a proxy.

Remark 1 (prior). The above describes inference from a child to a parent. How-
ever, it follows trivially increasing the weakness of a statement increases the
probability that it will generalise to any task. As tasks are uniformly distributed,
every statement in L is a model to one or more tasks, and the number of tasks
to which each statement l ∈ L generalises is 2|Zl|. Hence the probability of gen-
eralisation9 to ⟨S,D,M⟩ is p(h ∈ M | h ∈ L) = 2|Zh|

2|L| . This assigns a probability
to every statement l ∈ L given an implementable language. It is a probability
distribution in the sense that the probability of mutually exclusive statements
sums to one10. This prior may be considered universal in the very limited sense
that it assigns a probability to every conceivable hypothesis (where what is con-
ceivable depends upon the implementable language) absent any parameters or
specific assumptions about the task as with AIXI’s intelligence order relation
[8, def. 5.14 pp. 147]11. As the vocabulary of the implementable language V is
finite, L must also be finite, and so p is computable.
8 For example we might use weakness multiplied by a constant to the same effect.
9 2|Zh|

2|L| is maximised when h = ∅, because the optimal hypothesis given no information
is to assume nothing (you’ve no sequence to predict, so why make assertions that
might contradict reality?).

10 Two statements a and b are mutually exclusive if a ̸∈ Zb and b ̸∈ Za, which we’ll write
as µ(a, b). Given x ∈ L, the set of all mutually exclusive statements is a set Kx ⊂ L
such that x ∈ Kx and ∀a, b ∈ Kx : µ(a, b). It follows that ∀x ∈ L,

∑
b∈Kx

p(b) = 1.
11 We acknowledge that some may object to the use of the term universal, because V

is finite.
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We have shown that, if tasks are uniformly distributed, then weakness is a
necessary and sufficient proxy to maximise the probability that induction results
in generalisation. It is important to note that another proxy may perform better
given cherry-picked combinations of child and parent task for which that proxy
is suitable. However, such a proxy would necessarily perform worse given the
uniform distribution of all tasks (because weakness is necessary and sufficient to
maximise the probability of generalisation in that case). Can the same be said
of description length?

Proposition 3. Description length is neither a necessary nor sufficient proxy
for the purposes of maximising the probability that induction results in generali-
sation.12.

Proof: In propositions 1 and 2 we proved that weakness is a necessary and
sufficient proxy. It follows that either maximising 1

|m| (minimising description
length) maximises |Zm| (weakness), or minimisation of description length is un-
necessary to maximise the probability of generalisation. Assume the former,
and we’ll construct a counterexample with an implementable language ⟨H,V, L⟩
where L = {{a, b, c, d, j, k, z}, {e, b, c, d, k}, {a, f, c, d, j},
{e, b, g, d, j, k, z}, {a, f, c, h, j, k}, {e, f, g, h, j, k}} and a task ⟨S,D,M⟩ where

– S = {{a, b}, {e, b}}
– D = {{a, b, c, d, j, k, z}, {e, b, g, d, j, k, z}}
– M = {{z}, {j, k}}

Weakness as a proxy selects {j, k}, while description length as a proxy selects
{z}. This demonstrates the minimising description length does not necessarily
maximise weakness, and maximising weakness does not minimise description
length. As weakness is necessary and sufficient to maximise the probability of
generalisation, it follows that minimising description length is neither13.

4.1 Experiments

Included with this paper is a Python script to perform experiments using Py-
Torch with CUDA, SymPy and A∗ [16, 17, 18, 19] (see commented code and
appendix for details). In these experiments, a toy program computes models to
8-bit string prediction tasks. The purpose of this experiment was to compare the
performance of weakness and description length as proxies.

Implementable language: To specify tasks with which the experiments would
be conducted, we needed an implementable language to describe simple 8-bit
string prediction problems. Hence there were 256 states, one for every possible 8-
bit string. The possible statements were then all the expressions regarding those
8 bits that could be written in propositional logic (the simple connectives ¬, ∧
12 In plain English, we are saying description length is a worse proxy than weakness.
13 Hence weakness is a better proxy than description length.
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and ∨ needed to perform binary arithmetic – a written example of how propo-
sitional logic can be used in an implementable language is also included in the
appendix). To re-iterate, the implementable language used was a representation
of propositional logic as it pertained to these 8 bits, meaning for each statement
there exists an equivalent expression in propositional logic. For efficiency, these
statements were implemented as either PyTorch tensors or SymPy expressions in
different parts of the program, and converted back and forth depending on what
was convenient (basic set and logical operations on these propositional tensor
representations were implemented for the same reason).

Task: A task was specified by choosing D ⊂ L such that all d ∈ D conformed to
the rules of either binary addition or multiplication with 4-bits of input, followed
by 4-bits of output. The experiments were made up of trials. The parameters of
each trial were “operation" (a function), and an even integer “number_of_trials"
between 4 and 14 which determined the cardinality of the set Dk (defined below).
Each trial was divided into training and testing phases. The training phase
proceeded as follows:

1. A task Tn was generated:
(a) First, every possible 4-bit input for the chosen binary operation was used to

generate an 8-bit string. These 16 strings then formed Dn.
(b) A bit between 0 and 7 was then chosen, and Sn created by cloning Dn and

deleting the chosen bit from every string (meaning Sn was composed of 16
different 7-bit strings, each of which could be found in an 8-bit string in Dn).

2. A child-task Tk = ⟨Sk, Dk,Mk⟩ was sampled from the parent task Tn. Recall, |Dk|
was determined as a parameter of the trial.

3. From Tk two models (rulesets) were then generated; a weakest cw, and a MDL
cmdl.

For each model c ∈ {cw, cmdl}, the testing phase was as follows:

1. The extension Zc of c was then generated.
2. A prediction Drecon was then constructed s.t. Drecon = {z ∈ Zc : ∃s ∈ Sn (s ⊂ z)}.
3. Drecon was then compared to the ground truth Dn, and results recorded.

Between 75 and 256 trials were run for each value of the parameter |Dk|. Fewer
trials were run for larger values of |Dk| as these took longer to process. The
results of these trails were then averaged for each value of |Dk|.

Rate at which models generalised completely: Generalisation was deemed
to have occurred where Drecon = Dn. The number of trials in which generalisa-
tion occurred was measured, and divided by n to obtain the rate of generalisation
for cw and cmdl. Error was computed as a Wald 95% confidence interval.

Average extent to which models generalised: Even where Drecon ̸= Dn,
the extent to which models generalised could be ascertained. |Drecon∩Dn|

|Dn| was
measured and averaged for each value of |Dk|, and the standard error computed.
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Experimental results: These results (displayed in tables 1 and 2) demonstrate
that weakness is a significantly better proxy for intelligence than compression
(meaning the minimisation of description length). The generalisation rate for
cw was between 110 − 500% of cmdl, and the extent of generalisation between
103 − 156%. The difference varied with the problem type (multiplication or
addition) and the value of |Dk|.

Table 1. Results for Binary Addition

cw cmdl

|Dk| Rate ±95% AvgExt StdErr Rate ±95% AvgExt StdErr

6 .11 .039 .75 .008 .10 .037 .48 .012
10 .27 .064 .91 .006 .13 .048 .69 .009
14 .68 .106 .98 .005 .24 .097 .91 .006

Table 2. Results for Binary Multiplication

cw cmdl

|Dk| Rate ±95% AvgExt StdErr Rate ±95% AvgExt StdErr

6 .05 .026 .74 .009 .01 .011 .58 .011
10 .16 .045 .86 .006 .08 .034 .78 .008
14 .46 .061 .96 .003 .21 .050 .93 .003

5 Concluding remarks

We have shown that, if tasks are uniformly distributed, then weakness max-
imisation is necessary and sufficient to maximise the probability that induction
will produce a hypothesis that generalises. It follows that there is no choice of
proxy that performs at least as well as weakness maximisation across all possible
combinations of child and parent task while performing strictly better in at least
one. We’ve also shown that the minimisation of description length is neither nec-
essary nor sufficient. This calls into question the supposed relationship between
compression and intelligence [4, 20, 21]. This is supported by our experimental
results, which demonstrate that weakness is a far better predictor of whether a
hypothesis will generalise, than description length. Weakness should not be con-
flated with simplicity or Ockham’s Razor. A simple statement need not be weak,
for example “all things are blue crabs". Likewise, complex nonsense can assert
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nothing in particular. If this result is to be understood as an epistemological
razor, it is this:

Explanations should be no more specific than necessary.14

The Apperception Engine: The Apperception Engine [9, 22, 23] (Evans et.
al. of Deepmind) is an inference engine that generates hypotheses that generalise
often. To achieve this, Evans formalised Kant’s philosophy to give the engine a
“strong inductive bias”. The engine forms hypotheses from only very general as-
sertions, meaning logical formulae which are universally quantified. That is pos-
sible because the engine uses language specifically tailored to efficiently represent
the sort of sequences to which it is applied. Our results suggest a simpler and
more general explanation of why the engine’s hypotheses generalise so well. The
tailoring of logical formulae to represent certain sequences amounts to a choice
of implementable language ⟨H,V, L⟩, and the use of only universally quantified
logical formulae maximises the weakness of the resulting hypothesis. To apply
this approach to induction from child task α to parent ω would mean we only
entertain a model m ∈ Mα if p(m ∈ Mω | m ∈ Mα) = 1. Obviously this can
work well, but only for the subset of possible tasks that the vocabulary is able
to describe in this way (anything else will not be able to be represented as a uni-
versally quantified rule, and so will not be represented at all [24]). This serves to
illustrate how future research [25, 26] may investigate implementable languages
to facilitate more efficient induction in particular categories of task.

Neural networks: How might a task be represented in the context of a func-
tion? Though we use continuous real values in base 10 to formalise neural net-
works, all computation still takes place in a discrete, finite and binary system. A
finite composition of imperative programs may be represented as a finite num-
ber of declarative programs [27]. As such, activations within a network given an
input can be represented as a finite set of declarative programs, expressing a deci-
sion. The choice of architecture specifies the vocabulary in which this is written,
determining what sort of relations can be described according to the Chomsky
Hierarchy [28]. The reason LLMs are so prone to fabrication and inconsistency
may be because they are optimised only to minimise loss, rather than maximise
weakness [10]. Future research should investigate means by which the weakness
of a network can be maximised.
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6 Appendices

6.1 Example of an implementable language

– There exist 4 bits bit1, bit2, bit3 and bit4, to which each h ∈ H assigns a value.
– V = {a, b, c, d, e, f, g, h, i, j, k, l} is a subset of all logical tests which might be

applied to these 4 bits:

• a : bit1 = 1
• b : bit2 = 1
• c : bit3 = 1

• d : bit4 = 1
• e : bit1 = 0
• f : bit2 = 0

• g : bit3 = 0
• h : bit4 = 0
• i : j ∧ k

• j : bit1 = bit3
• k : bit2 = bit4
• l : i ∨ bit2 = 1

– L = {{a, b, c, d, i, j, k, l}, {e, b, c, d, k, l}, {a, f, c, d, j}, {e, f, c, d}, {a, b, g, d, k, l},
{e, b, g, d, i, j, k, l}, {a, f, g, d}, {e, f, g, d, j}, {a, b, c, h, j, l}, {a, b, g, h, l}, {e, b, c, h, l},
{a, f, c, h, i, j, k, l}, {e, f, c, h, k}, {e, b, g, h, j}, {a, f, g, h, k}, {e, f, g, h, i, j, k, l}}

6.2 Example of a task ω

– S = {{a, b}, {e, b}, {a, f}, {e, f}}
– D = {{a, b, c, d, i, j, k, l}, {e, b, g, d, i, j, k, l}, {a, f, c, h, i, j, k, l}, {e, f, g, h, i, j, k, l}}
– M = {{i}, {j, k}, {i, j, k}, {i, l}...}

6.3 Example of a child-task α of ω

– S = {{a, b}, {e, b}}
– D = {{a, b, c, d, i, j, k, l}, {e, b, g, d, i, j, k, l}}
– M = {{i, j, k, l}, {b, d, j}, ...}

• Weakest model m = {i, j, k, l}
• Strongest model e = {b, d, j}
• Zm = {{a, b, c, d, i, j, k, l}, {e, b, g, d, i, j, k, l}, {a, f, c, h, i, j, k, l}, {e, f, g, h, i, j, k, l}}
• Ze = {{a, b, c, d, i, j, k, l}, {e, b, g, d, i, j, k, l}}


