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Abstract

In recent years, Physics-informed neural networks(PINNs) have be-
came one of the most popular methods for solving partial differential equa-
tions(PDEs). PINNs have many advantages, such as not facing the curse
of dimensionality, low data requirements, and easy inverse problem solv-
ing. Introducing collocation points and PDE loss is the key to the PINNs
while the distribution of collocation points has a significant impact on
the training efficiency of the PINNs. Uniformly distributed collocation
points may not capture the different scale features of the solution. To
address this problem, we propose an adaptive method of sampling collo-
cation points with modified Markov chain Monte Carlo method(MCMC).
The MCMC-based adaptive collocation point sampling method(MCMC-
PINNs) is divided into two steps, constructing distribution of collocation
points and sampling in it effctively. Using residual as an indicator for
collocation points distribution has been validated and residual of PDE
converge to 0 as training progrosses, so we choose a monotone increasing
function of residual as the unnomalized probability distribution of the col-
location points and use MCMC to sample the collocation points. MCMC-
PINNs can improve accuracy of PINNs and we prove a error bound of it.
Finally, several numerical examples are used to illustrate the performance
of MCMC-PINNs.
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1 Introduction

Partial differential equations(PDEs) are an important model for describing laws
and systems in the real world, and the study of numerical algorithms for PDEs
has a very well-developed framework[16, 19]. Limited by the grid discretization,
inevitably, the traditional numerical algorithms will face the curse of dimension-
ality, while it is difficult to apply to the inverse problems. With the improvement
of computer performance and the increase of data, data-driven machine learn-
ing methods have been greatly developed[5, 17, 23, 26]. However, there are
significant limitations in solving PDEs using data-driven methods due to the
difficulty in obtaining data from complex PDEs. To solve the problems above,
PINNs was proposed[18]. Combined with PDEs, PINNs could give 0-label data
at any location in the computation domain by introducing colocation point.
The 0-label data greatly expands the data sources for the model, which removes
the limitation of solving PDEs by data-driven methods[8, 9]. In recent years,
PINNs methods have recieved more and more attention and be widely used to
solve forward and inverse problems for PDEs[3, 15, 12, 11].

Since the collocation points can be placed anywhere in the computation do-
main, we can choose as many collocation points as we want, theoretically. But
the number of collocation points affects the efficiency of solving PINNs method,
so how to choose collocation points affects the efficiency of the PINNs. The
traditional PINNs method apply uniform distribution to sample the collocation
points, which is obviously not an optimal choice and has been confirmed by
many works. First of all when the computation domain is unbounded, it is not
possible to distribute collocation points using uniform distribution. When there
is a lack of knowledge about the structure of the solution, it is difficult to choose
a bounded region and solve PDEs accurately only by the collocation points in
it. On the other hand, for problems with bounded computation domain, the
structure of the PDEs solutions may be very complex, with multi-scale features.
It is difficult to capture the structural features of the solution at all scales with
high efficiency by sampling collocation points uniformly. Too few collocation
points will cause the model to ignore small-scale features of the solution[22,
13], and too many collocation points will be computationally wasteful for other
regions. Referring to the idea of adaptive encryption in traditional numerical
methods, the development of adaptive collocation points sampling methods is
an effective exploration for improving the efficiency of the method[24, 14, 10,
7, 4, 20]. The earliest proposed adaptive collocation points sampling method
is residual-based refinement method (RAR)[14]. RAR improves PINNs by col-
lecting a large number of collocation point candidates and selecting those with
the largest residuals to join the training set. But when the dimension is high
or the small-scale feature regions of solution are small, it is difficult for the
candidate points to fall into the regions with large residuals, which affects the
efficiency of the algorithm. In [6], the idea of using p-th power of the absolute
residuals as the unnormalized probability distribution has been proposd. Using
Metropolis-Hastings method or self-normalized sampling method to sample col-
location points is another highlight of this paper. But how to choose the number
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of power of the the absolute residuals and the adaptivity iterations are still prob-
lems. In [21], instead of sampling the collocation points, the generated model is
used to approximate the distribution of the residuals through an additional de-
signed network. But the additional network will increase the complexity of the
model and the training time. In [25], the authors provide a broader overview of
methods for adaptive collocation point sampling, extending the coverage of the
methods by adding a constant c to the unnormalized probability distribution.

Based on the discussions above, we propose an adaptive collocation point
sampling method based on a modified MCMC[2] method for PINNs(MCMC-
PINNs). In this paper, to achieve the purpose of sample more collocation points
with larger absolute residuals, the absolute residuals are regarded as the kinetic
energy at the locations, and the probability distribution of the collocation points
can be constructed by canonical distribution based on the energy. In order to
improve the efficiency of sampling method, we modify the standard MCMC
method to sample the collocation points. With the MCMC-PINNs strategy,
PINNs can achieve more accurate result. This work can give three contributions
as below:

• Consider the absolute residuals from the energy perspective and con-
struct the probability distribution of the collocation points using the
canonical distribution based on the energy.

• Use the above probability distribution sample collocation points adap-
tively, give an adaptive stopping criterion corresponding to it and anal-
ysis the convergence of the method.

• Improve the MH method by a given anisotropy proposal distribution
based on the computational region and a map from outside the compu-
tation domain to inside without changing the stationary distribution.

The remainder of the paper is organized as follows. In Section 2, we briefly
introduce the knowledge of PINNs and MCMC. After that, we give the ooverall
MCMC-PINNs algorithm. In Section 4, we present the convergence analysis of
MCMC-PINNs. In Section 5, we illustrate the proformance of MCMC-PINNs
by several numerical experimentes and we conclude this work in Section 6.

2 Preliminaries of PINNs and MCMC

For the proposed MCMC-PINNs method, there are two main parts of prelim-
inary knowledges, which are PINNs and MCMC, and in this section we will
introduce them briefly

2.1 Physics-Informed neural networks

Let Ω ∈ Rd be the spatial domain and [0, T ] be the calculation time interval. A
general PDE can be represented as:

N (x, t;u(x, t)) = 0, x ∈ Ω t ∈ [0, T ] (2.1)
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where N [·] is a differential operator and u(x, t) is the solution. If the PDE is
time-independent, we can also use 2.1 to represent it with omitting t from it.
Then the initial condition and boundary condition can be expressed as{

u(x, 0) = u0(x), x ∈ Ω

B(x, t;u(x, t)) = 0, x ∈ ∂Ω t ∈ [0, T ]
(2.2)

where u0 : Ω → R is the initial operator and B : R d+1 → R represents the
boundary operator. To approximate the solution u(x, t) with û(x, t), three
errors can be introduced to measure the difference between û and u.

εini =

∫
Ω

|û(x, 0)−u0(x)|2dx, εbou =

∫
∂Ω×[0,T ]

|B(x, t; û(x, t))|2dxdt,

εPDE =

∫
Ω×[0,T ]

|N (x, t, û(x, t))|2dxdt

(2.3)
represent the difference between û and u in terms of initial condition, boundary
condition and PDE respectively. Obviously, if we can solve the PDE problem
2.1, 2.2 exactly, i.e. û(x, t) = u(x, t), then εini, εbou, and εPDE are exact 0, so
a good approximation û(x, t) should minimize the generalization error:

ε(û) = εini + εbou + εPDE (2.4)

For PINNs, deep neural network(DNN) is usd to approximate the solution
u(x, t). Assume the parameters of the DNN is θ, the approximation solution is
û(x, t; θ). Then PINNs is essentially designed to solve the following optimization
problem:

min
θ∈Θ

ε(û(x, t; θ)) = min
θ∈Θ

εini + εbou + εPDE (2.5)

Because the generalization error cannot be optimized directly during training,
three pointwise residuals are applied to approximate the generalization error of
DNN.

Lini(θ) =
1

Nini

Nini∑
i=1

|û(xini
i , 0; θ)− u0(x

ini
i )|2 Lbou(θ) =

1

Nbou

Nbou∑
i=1

|B(xbou
i , tboui ; û(xbou

i , tboui ; θ))|2

LPDE(θ) =
1

NPDE

NPDE∑
i=1

|N (xi, ti; û(xi, ti; θ))|2

(2.6)
where {xini

i }Nini
i=1 ∈ Ω, {(xbou

i , tboui )}Nbou
i=1 ∈ ∂Ω×[0, T ], (xi, ti) ∈ Ω×[0, T ] are all

uniformly distributed and Nini, Nbou, NPDE are the numbers of points used to
calculate the residuals of initial condition, boundary condition and PDE. Then
the optimization problem 2.5 can be transformed into:

min
θ∈Θ

L(û(x, t; θ)) = min
θ∈Θ

Lini(θ) + Lbou(θ) + LPDE(θ) (2.7)

For the initial condition and Direchlet boundary conditions, the correspond-
ing term of the loss function L(û) is the standard supervised learing loss, so the
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initial and boundary training data should be label-data, i.e {(xini
i , tinii ), uini

i }Nini
i=1

and {(xbou
i , tboui ), ubou

i }Nbou
i=1 . For PDE and the other types of boundary condi-

tion, the location of the collocation points and boundary point is the only thing
we should know. Moreover the PDE loss can be regarded as a kind of regular-
ization.

2.2 Markov chain Monte Carlo method

Given an unnormalized probability distribution, there are difficulties in sam-
pling from it, because the normalization constant is unknown, so Markov chain
Monte Carlo method can be used. MCMC is an advanced sampling method that
generates samples in the target distribution with the help of Markov chains.
Consider an unnormalized probability distribution π(x), whose state space is
X , the MCMC method aims to construct a Markov chain on X with π(x) as its
stationary distribution. A sufficient condition of it called reversibility condition,
is to find a transition kernel K(x,y) satisfies that∫

x∈X
π(dx)K(x, dy) = π(dy). (2.8)

Detailed balance condition is an equivalence condition of the reversibility con-
dition. It can be described as blow:

Definition 2.1. A markov chain with transition kernel K satisfies the detailed
balance condition if there exists a function π(x) satisfying

K(y,x)π(y) = K(x,y)π(x) (2.9)

for every (x,y)

Then if the Markov chain can be simulated for a long enough time, we
can say that the state of the Markov chain is the samples from the stationary
distribution.

Metropolis-Hasting method is one of the most widely used MCMC algorithm
and it provides a simple method for constructing transition distributions that
satisfy the reversibility condition. It splits the transition probability into two
terms. One of them is proposal distribution which is a probability distribution
for generating new state. The other one is acceptance probability, used to de-
termine whether to accept the new state. Assuming that q(y|x) is the proposal
distribution from x to y, then it can be proved that

α(x,y) = min{1, π(x)q(y|x)
π(y)q(x|y)

} (2.10)

is the optimal acceptance probability satisfying the reversibility condition. The
MH method is shown in 2.2.
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Algorithm 1 Metropolis-Hasting algorithm

Require: Initial state x0, proposal distribution q(·|x), number of samples N .
1: for i = 1 : N do
2: Sample u from a uniform distribution, u ∼ U[0, 1].
3: Sample new state y from proposal distribution, y ∼ q(y|x(i−1)).
4: Calculate the acceptance probability of the new state,

α(x(i−1),y) = min{1, π(x
(i−1))q(y|x(i−1))

π(y)q(x(i−1)|y)
}

5: if u < α(x(i−1), y) then
6: Accept the new state, x(i) = y
7: Reject the new state, x(i) = x(i−1)

8: end if
9: end for

Ensure: Samples {x(1),x(2), ...,x(N)}

3 PINNs with modified MCMC collocation point
sampling method(MCMC-PINNs)

In this section, we will introduce the MCMC-PINNs method in detail. MCMC-
PINNs updates the distribution of collocation points based on residuals at every
adaptivity iterations and use modified MCMC algorithm to sample them, which
can improve the result numerical accuracy and reduce the need of the number
of collocation points. The MCMC-PINNs can be devided into two mainly steps.

• Construct the probability distribution of collocation points.
The collocation points are related to LPDE in loss function and εPDE

in generalization error and updating the collocation points aims to min-
imize the PDE reisdual directly. So the distribution can be represented
as:

π(x, t) ∝ p(x, t) = Fp(r(x, t)) (3.1)

where Fp : R → R and r(xt) = |N (x, t;u(x, t))| is the absolute residuals
of PDE.

• Sample collocation points from the probability distribution.
According to 3.1, only an unnormalized probability density function
based on residuals can be obtained. Since the normalization constant
is unknown, it is not possible to sample directly from it, so the MCMC
method needs to be used.

In the rest of this section, We will specify the workflow of the above two steps
of MCMC-PINNs
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3.1 Construct the probability distribution of collocation
points

To minimize the generalization error, the PDE error term of it should be min-
imized over Ω × [0, T ]; at the same time, the PDE residual will significantly
decrease in neibourhoods of the collocation points. For the above two reasons,
more collocation points should be distributed in the area with larger residuals.
As mentioned above, the unnormalized probability distribution has the following
form

p(x, t) = Fp(r(x, t)) (3.2)

It follows that Fp should be monotone increasing functions. Moreover, when the
PDE error term of generalization is 0, the collocation points should be uniformly
distributed.

For functions with lower bound f(x), we can take it as the potential en-
ergy, the corresponding probability distribution can be constructed using the
canonical distribution:

πc(x) =
1

Z
exp(−f(x)

T
). (3.3)

where T is the temperature of the system and Z is the normalizing constant.
It is obvious that π(x) is a monotone decreasing function with respect to f(x).
However, we can construct a monotone increasing probability distribution with
respect to f(x) in the same way. Assume that the total energy of the system is
Emax and treat f(x) as the kinetic energy of the system. Then we have

Fp(x) =
1

Z
exp(

f(x)− Emax

T
). (3.4)

When the computation domain is a compact set, the absolute PDE residual
r(x, t) is bounded. Now, we can construct the distribution as

π(x, t) ∝ p(x, t) = exp(
r(x, t)− Emax

T
). (3.5)

For each adaptivity iteration, we can take Emax = max
x,t∈Ω×[0,T ]

r(x, t). When the

generalization error is 0, π(x, t) ∝ exp( r(x,t)−Emax

T ) = 1, which is the uniform
distribution over the computation domain.

On the other hand, for any 0 < c < T , the probability distribution mentioned
above can be transformed into the following form,

π(x, t) ∝ p(x, t) = exp(
r(x, t)− Emax

T
)

= exp(
−Emax

T
) exp(

r(x, t)

T
)

=
1

T
exp(

−Emax

T
)(T exp(

r(x, t)

T
)− c) +

c

T
exp(

−Emax

T
)

(3.6)
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Let Z be the normalization constant of 3.6, which can be splited into two terms
Z = Z1 + Z2, where

Z1 =

∫
Ω×[0,T ]

T exp(
r(x, t)

T
)− cdxdt Z2 =

∫
Ω×[0,T ]

cdxdt (3.7)

The probability distribution π(x, t) can represented as:

p(x, t) =
1

T
exp(

−Emax

T
)(

1

Z
(T exp

r(x, t)

T
− c) + c)

=
1

T
exp(

−Emax

T
)(
Z1

Z

T exp r(x,t)
T − c

Z1
+

Z2

Z

Tc

Z2
)

π(x, t) =
Z1

Z

T exp r(x,t)
T − c

Z1
+

Z2

Z

c

Z2
.

(3.8)

It can be seen as a combination of two distributions, one of which is proportional

to T exp( r(x,t)T )−c and the other is a uniform distribution over the computation
domain. For each adaptivity iteration, sample collocation points from π(x, t)
is equivalent to selecting Z1

Z of collocation points from the distribution propor-

tional to T exp( r(x,t)T )− c and Z2

Z collocation points uniformly distributed over
the computation domain. This can also be seen as a strategy for adaptively
adjusting the ratio of the two distributions, and c controls the maximum pro-
portion of collocation points sampled from uniform distribution. The closer c is
to T , the greater the maximum proportion of collocation points generated from
uniform distribution and vice versa.

3.2 Sample collocation points from the probability distri-
bution

As mentioned above, MCMC method is applied to sample collocation points
from an unnormalized probability distribution. MH method is one of the most
popular MCMC method, which is used in this paper. For the MH method,
the choice of the proposal distribution significantly affects the efficiency of the
method.

First of all, for many PDEs, the scales of various dimensions of the computa-
tion domain cannot keep consistent. The standard proposal distribution of MH
method is an isotropic normal or uniform distribution. It is difficult to choose a
good stepsize ϵ, and number of steps NMCMC , such that each collocation point
can efficiently explore the entire computation domain. So, in this case, changing
the proposal distribution is an effective way to improve the efficiency of the MH
method to explore the computation domain. For the general sampling problem,
the adaptive MCMC[1] uses the covariance matrix of collocation points as the
covariance matrix of the normal proposal distribution, so that all collocation
points on a Markov chain can be distributed more often in the high probability
region. But when we apply it to sample collocation points for PINNs, how to
make all collocation points explore the whole computation domain efficiently is
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the key problem. So, here we choose a diagonal matrix as the covariance matrix
of the normal proposal distribution, and each element of the matrix is the square
of the length of the computation domain in the corresponding dimension, i.e.
q(y|x) = N (x,Σ), Σ = diag(σ1, ..., σd+1) and σi = ∆2

i , i = 1, ..., d + 1, where
∆i is the length of the computation domain in the i-th dimension.

On the other hand, the computation domain of PDE is often bounded, if
the candidate colllocation point falls outside the computation domain, then it
will be rejected. In general, the higher the acceptance probability, the higher
the sampling efficiency for the same ϵ and the same NMCMC . So how to reduce
the cases where the collocation points are rejected because of falling outside the
computation domain is another idea to improve the MH method.

To achieve this goal, we want to construct a function g : R d+1 → Ω ×
[0, T ] which maps the candidate collocation point oustside the computation
domain into it to avoid too many rejections. As mentioned above, detailed
balance condition 2.1 can ensure that the stationary distribution is the target
distribution. Assume that the MH transition kernel of π(x, t) is:

K(x, t; ·) = q(·|x, t)α(x, t; ·) (3.9)

and we have:

π(x, t)q(x′, t′|x, t)α(x, t;x′, t′) = π(x′, t′)q(x, t|x′, t′)α(x′, t′;x, t) (3.10)

for any (x′, t′) ∈ Ω × [0, T ]. q(x′, t′|x, t) is the proposal distribution and
α(x, t;x′, t′) is the acceptance. When the proposal distribution is symmetric
over R d+1, i.e. q(x′, t′|x, t) = q(x, t|x′, t′) for any (x, t), (x′, t′) ∈ R d+1, the ac-

ceptance probability has very simple form, α(x, t;x′, t′) = min(1, π(x′,t′)
π(x,t) ), which

is very helpful for sampling. So we want the new proposal distribution can en-
sure that the stationary distribution is π(x, t) without changing the acceptance
probability.

Theorem 3.1. Assume that q(·|x, t) is a symmetric proposal distribution and
the transition kernel q(·|x, t)α(x, t; ·) satisfies the detailed balance condition 2.1
for π(x, t). For any function g : R d+1 → Ω×[0, T ] satisfying g(x1, t1) = (x1, t1)
inside the computation domain and any point (x′, t′) ∈ Ω × [0, T ]\R d+1, if
there exists a one-to-one correspondence of (x′, t′) with (x′′, t′′) satisfying the
following conditions:

1. g(x′′, t′′) = (x1, t1) and g(x′, t′) = (x2, t2);

2. q(x′, t′|x1, t1) = q(x′′, t′′|x2, t2).

Then the proposal distribution

q∗(·|x1, t1) =

∫
R d+1

q(x′, t′|x1, t1)Ig(x′,t′)(·)dx′dt′ (3.11)

can avoid rejections caused by candidate collocation points falling outside the
computation domain and ensure that the stationary distribution is π(x, t) with-
out changing the acceptance probability. Ig(x′,t′)(x, t) is an indicator function
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with respect to (x, t):

Ig(x′,t′)(x, t) =

{
1 (x, t) = g(x′, t′)

0 otherwise
(3.12)

The details of the proof can be seen in Appendix.
Now we can propose the modified MH method as below, For two-dimensional

problems, when the computation domain is a rectangle, g can be choosen as the
bounce function with respect to all the boundaries:

g(x) = Ub− |∆− (x− Lb)%2∆| (3.13)

where Ub is the upper bound of the computation domain and Lb is the lower
bound of the computation domain. Finally, we can propose the MCMC-PINNs
method 3.2

For MCMC-PINNs we should note four points below:

• For MCMC-PINNs, when Max(r(x, t)) > ρmax, we choose r(x, t) as
the unnormalized distribution of collocation points. This is because
when r(x, t) is very large, exp(r(x, t)) may not be computed and make
it more difficult for collocation points to move away the local maxima
of r(x, t).

• Because Z1 and Z2 are defined by integration, it may be difficult to
calculate in practice, so we can choose c = ρuZ1. Then the proportion
of collocation points equals to ρu

1+ρu
.

• In practice we can also take π(x, t) = r(x, t) for simplicy, because if we

take T = c, T exp r(x,t)
T − c is an equivalent infinitesimal quantity of

r(x, t). As training proceeds, for r(x, t) closed to zero, they are similiar
to each other.

4 Convergence Analysis

In this section, we will give the convergence analysis of MCMC-PINNs. To this
end, two assumption need to be given. Generally, the initial condition can be
considered as part of the boundary condition.

Assumption 4.1. Consider the general PDE with the following form

L(x;u(x)) = 0, x ∈ Ω

B(x;u(x)) = 0, x ∈ ∂Ω
(4.1)

where L is a linear operator and L : H → H , where H is a Hilbert space on Ω.
Assume that there exists positive constants C1, C2 indepedent of ν satisfy:

C1||ν||2,Ω ≤ ||Lν||2,Ω + ||bν||2,∂Ω ≤ C2||ν||2,Ω (4.2)
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Algorithm 2 Computation domain based modified Metroplis-Hasting algo-
rithm for PDE

Require: Initial points {(x(0)
j , t

(0)
j )}NPDE

j=1 , computation domain upper bound
Ub, computation domain lower bound Lb, number of samples N , function
g, stepsize ϵ, number of steps Nmcmc.

1: for i = 1 : N do
2: for j = 1 : Nmcmc do
3: Generate a number from the uniform distribution, u ∼ U[0, 1].
4: Sample new intermediate state (x′, t′) from proposal distribution,

(x′, t′) ∼ N ((x
(i−1)
j , t

(i−1)
j ),Σ), where

Σ = diag(σ2
1 , ..., σ

2
d+1), ∆ = Ub− Lb, ϵσi = ∆i, i = 1, ...d+ 1.

5: Map the intermediate state to the new proposal state,

(x∗, t∗) = g(x′, t′).

6: Calculate the acceptance probability of the new state,

α(x
(i−1)
j , t

(i−1)
j ;x∗, t∗) = min{1,

π(x
(i−1)
j , t

(i−1)
j )N (x∗, t∗; (x

(i−1)
j , t

(i−1)
j ),Σ)

π(x∗, t∗)N (x
(i−1)
j , t

(i−1)
j ; (x∗, t∗),Σ)

}.

7: if u < α(x
(i−1)
j , t

(i−1)
j ;x∗, t∗) then

8: Accept the new state, (x
(i)
j , t

(i)
j ) = (x∗, t∗);

9: else
10: Reject the new state, (x

(i)
j , t

(i)
j ) = (x

(i−1)
j , t

(i−1)
j ).

11: end if
12: end for
13: Let (x(j), t(j)) = (x

(Nmcmc)
j , t

(Nmcmc)
j )

14: end for
Ensure: Samples {(x(1), t(1)), ..., (x(N), t(N))}
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Algorithm 3 MCMC-PINNs

Require: Parameters of neural networks θ, initial condition training data
Xini = {(xini

i , tinii )}Nini
i=1 , boundary condition training data Xbou =

{(xbou
i , tboui )}Nbou

i=1 , threshold for the mean of absolute PDE residuals, ρ,
threshold for the maximum of absolute PDE residuals, ρmax, maximum
adaptivity iteration Maxiter, the temperature of the canonical distribution,
T , c.

1: Sample the collocation points XPDE = {(xPDE
i , tPDE

i )}NPDE
i=1 from a uni-

form distribution over the computation domain.
2: Apply algorithm 3.2 to update the collocation points XPDE =

{(xPDE
i , tPDE

i )}NPDE
i=1

3: while Mean(r(x, t)) > ρ and Niter < Maxiter do
4: Train θ by minimizing the loss function with Xini, Xbou and XPDE .
5: if Max(r(x, t)) > ρmax then
6: Let π(x, t) ∝ r(x, t);
7: else
8: Let π(x, t) ∝ exp( r(x,t)T ).
9: end if

10: for i = 1 : NPDE do
11: Apply algorithm 3.2 to generate new points (x∗

i , t
∗
i ) from π(x, t).

12: end for
13: Update collocation points XPDE = {(x∗

i , t
∗
i )}

NPDE
i=1

14: end while
Ensure: Parameters of neural network θ∗
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The above condition is called the stability bound, which is essential to the
existence and uniqueness of problem4.1.

Assumption 4.2. The solution of neural network û(x; θ) can be trained suffi-
ciently to satisfy the condition, i.e. for any ϵb:

||B(u(x)− û(x; θ))||2,∂Ω ≤ ϵb (4.3)

Theorem 4.1. Assume the computation domain Ω is bounded, and let û(x; θ)
be the MCMC-PINNNs solution of 2.1. For a monotone increasing function
f(x), if we can find a positiv constant M such that Mf(r(x)) > r(x). Take
π(x) ∝ Mf(r(x)) as the probability distribution of collocation points, and for
any ϵr, if

Eπ(x)[r(x)] < ϵ, (4.4)

we have

||u(x)− û(x, θ)||2,Ω ≤
√
2C−1

1 (Mf(rmax)SΩϵr + ϵ2b)
1/2 (4.5)

where
rmax = max

x∈Ω
|r(x)|, (4.6)

SΩ is the area of Ω.

Proof. Let ν(x) = u(x)− û(x; θ). According to Assumption 4.1, we have

||u(x)− û(x; θ)||2,Ω
≤C−1

1 (||L(x, u(x)− û(x, θ))||2,Ω + ||B(u(x)− û(x; θ))||2,∂Ω)
=C−1

1 (||r(x)||2,Ω + ||B(u(x)− û(x; θ))||2,∂Ω)

≤
√
2C−1

1 (||r(x)||22,Ω + ||B(u(x)− u(x; θ))||22,∂Ω)
1
2

(4.7)

From Assumption 4.2,

||u(x)− u(x; θ)||2,Ω ≤
√
2C−1

1 (||r(x; θ)||22,Ω + ϵ2b)
1
2 (4.8)

Because the computation domain is bounded and neural network is a smooth
function, there exists rmax = max

x∈Ω
|r(x)|. It follows that:∫

Ω

f(r(x))dx ≤ f(rmax)SΩ. (4.9)

Moreover,
Eπ(X)[r(x)] < ϵr∫

Ω
r(x)f(r(x))dx∫
Ω
f(r(x))dx

< ϵr∫
Ω

r(x)Mf(r(x))dx < Mf(rmax)SΩϵr∫
Ω

r(x)2dx < Mf(rmax)SΩϵr

(4.10)
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Finnally we have

||u(X)− u(X; θ∗)||2,Ω ≤
√
2C−1

1 (Mf(rmax)SΩϵ+ ϵ2b)
1
2 . (4.11)

Clearly f(x) = x satisfies the conditions in Theorem 4.1. Moreover, we
can prove that the unnormalized canonical distribution exp( x

T ) satisfies the

conditions. If we take M = T , we have T exp( r(x)T ) > r(x), when r(x) = 0 and
dT exp(

r(x)
T )

dx = exp( r(x)T )r′(x) > r′(x), for any x > 0, then we have T exp( r(x)T ) >
r(x) for any r(x) > 0. It follows that no matter we choose π(x) ∝ r(x) or

π(x) ∝ exp( r(x)T ), if Eπ(x)[r(x)] < ϵr, the error between u(x) and û(x, t) can be
bounded, i.e. MCMC-PINNs convergences.

5 Numerical Examples

In this section, we use three time-independent and two time-dependent PDEs
to illustrate the performance of MCMC-PINNs algorithm.

5.1 Experimental Setup

Firstly, we give the basic settings of the three methods used for comparison in
this paper.

• PINNs: The baseline PINNs method, updating collocation points with
uniform distribution at every iterations.

• MH&PINNs: The method proposed in [6], updating collocation points
by baseline MH methods.

• MCMC-PINNs: The method we proposed in this paper, updating col-
location points by 3.2

Unless special mentioned, we will use the parameters below. NPDE =
5000, Nbou = 5000, Nini = 2000. And the network we used is a fully con-
nected network with 6 hidden layers, 32 neurons in each layer and tanh as the
activition function. The main optimizer of network is ADAM with learning
rate lr = 1e − 4 and iteration nepoch = 10000. The maximum we update the
parameter of network is M = 10. Because most numerical examples we test is
zeor in most region of the computation domain, so we choose the mean square
error(MSE) to illustrate the performance of each method.

MSE =
1

Nt

Nt∑
i=1

(u(x, t)− û((x, t); θ))2 (5.1)

where Nt is the number of test data.
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For MCMC we often choose stepsize ϵ = 0.1, the number of steps nMCMC =
400 and the proposal distribution as multidimensional independent distribution.
For rectangle computation domain we take the rebounce function 3.13 as g for
MCMC-PINNs. Furthermore, weρmax = 1, Z2 = 0.15Z1 and T = c.

5.2 One peak problem of two-dimensional elliptic equa-
tion

Consider the following two-dimensional elliptic equation:

−∆u(x, y) = f(x, y) (x, y) ∈ Ω

u(x, y) = B(x, y) (x, y) ∈ ∂Ω
(5.2)

where the coputation domain Ω = [−5, 5]×[−1, 1], and the reference solution
is

u(x, y) = exp(−1000[(x− ox)
2 + (y − oy)

2]) (5.3)

Let ox = 0.5, oy = 0.5, f(x, y) and B(x, y) be the right terms of PDE and
boundary condition of 5.2 corresponding to the exact solution 5.3 respectively.
The exact solution is closed to zero in most region of Ω. But, in a small region,
the solution has a peak and large norm of gradient. So 5.3 can be regarde as
a multi-scale solution. According to the norm of gradient, the neighborhood
of (ox, oy), O(ox, oy) can be considered as the small-scale reigion of solution.
We expect to sample more collocation points in the small scale region, which is
helpful for characterizing the small-scale characteristics of the solution.

For this problem the length of computation domain is 10 and 2, respec-
tively. So the covariance matrix of the proposal distribution is choosen as
Σ = diag(25, 1). Finally, 256× 256 uniform meshgrid points over the computa-
tion domain are choosen as the test points, and use the mean square error(MSE)
on the test points as the index to measure the accuracy of algorithms.

From Fig.1 we can see that PINNs cannot find the peak of the solution,
because the small-scale region is too small to use collocation points from a
uniform distribution to capture the small-scale characteristics. MH-PINNs and
MCMC-PINNs both can capture the peak of the solution. But it is obvious
that MCMC-PINNs can obtain a more accuracy prediction than MH-PINNs.
And the mean test error of MCMC-PINNs is 2

3 of the MH-PINNs after training.
At the same time, during training, the test error of MCMC-PINNs is always
smaller than MH-PINNs.

In Fig.2, we illustrate the residual contour and collocation points of MH-
PINNs and MCMC-PINNs respectively. At the first adaptivity iteration, MCMC-
PINNs can move more collocation points to the small-scale region. The reason
is that the MCMC-PINNs gives the diagonal elements of the covariance matrix
of the proposal distribution different values depending on the length of the inter-
val. The anisotropic proposal distribution allows the collocation points to move
farther in the x1-direction. And as the training progrossece, MCMC-PINNs can
reduce the residual over the computation domain faster than MH-PINNs.
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Figure 1: The distribution of collocation points obtained by two methods at
three different iterations

Figure 2: The abosute error and the predicted curves at t = 1obtained two
methods
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5.3 Two peak problem of two-dimensional elliptic equa-
tion

Consider the following two-dimensional elliptic equation:

∇[u(x, y)∇(x2 + y2)] +∇2u(x, y) = f(x, y), (x, y) ∈ Ω

u(x, y) = B(x, u) (x, y) ∈ ∂Ω,
(5.4)

where the computation domain is

Ω = [−5, 5]× [−1, 1]

, the reference solution is

u(x, y) = exp(−1000[(x−ox,1)
2+(y−oy,1)

2])+exp(−1000[(x−ox,2)
2+(y−oy,2)

2])
(5.5)

Let ox,1 = 0.5, oy,1 = 0.5, ox,2 = −0.5, oy,2 = −0.5, f(x, y) and B(x, y) be the
right terms of PDE and boundary condition of 5.4 corresponding to the exact
solution 5.5. Different from 5.3, 5.5 has two peaks far away from the others, it
is more difficult to capture the two peaks of the solution, simultaneously. Same
as the numerical example 5.2, the covariance matraix is diag(25, 1) and we use
the network with 64 neurons in each hidden layer. 256× 256 uniform meshgrid
points over the computation domainare choosen as the test points.

Figure 3: The distribution of collocation points obtained by two methods at
three different iterations

Same as numerical exapmle 5.2, the Fig.3 shows the testerror contoure of
PINNs, MH-PINNs and MCMC-PINNs at the 7-th adaptivity iteration and after
training. We can see that the difference between the testerror of MCMC-PINNs
and MH-PINNs is much greater than numerical example 5.2. MCMC-PINNs
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Figure 4: The abosute error and the predicted curves at t = 1obtained two
methods

can achieve a prediction whose test error is half of MH-PINNs. During the
training, the difference maybe even greater.

In Fig.4, same as Fig.2, the number of collocation points of MCMC-PINNs
distributed in the small-scale region is much larger than MH-PINNs. Moreover,
the residuals decreases much faster in the computation domain for MCMC-
PINNs than for MH-PINNs.

5.4 Two-dimensional unbounded problem of elliptic equa-
tion

Consider the following two-dimensional elliptic equation

∆u(x, y) = f(x, y), (x, y) ∈ R 2\Ω
u(x, y) = B(x, u) (x, y) ∈ ∂Ω,

(5.6)

where the true solution is

u(x, y) = exp(−(x− 4)2 − (y − 4)2) (5.7)

The boundary of Ω is defined as

∂Ω = (cos(t)− cos(5t) cos(t)

4
, sin(t)− sin(5t) sin(t)

4
) (5.8)

We want to solve this problem in a rectangular computation domain. For any
(x, y) ∈ R 2\Ω, We can use the following function h : R 2\Ω → [0, 2π]× [0,+∞)
and its inverse to map (x, y) to polar coordinates or to map (t, r) back to the
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rectangular coordinate system:
t =

π

2
− sign(x)(

π

2
− arctan(

y

x
))

r =

√
x2 + y2 − (cos(t)− cos(5t) cos(t)

4
)2 − (sin(t)− sin(5t) sin(t)

4
)2

x = (r +

√
(cos(t)− cos(5t) cos(t)

4
)2 + (sin(t)− sin(5t) sin(t)

4
)2) cos t

y = (r +

√
(cos(t)− cos(5t) cos(t)

4
)2 + (sin(t)− sin(5t) sin(t)

4
)2) sin t

(5.9)

Figure 5: The distribution of collocation points obtained by two methods at
three different iterations

In the polar coordinate, g : R 2 → [0, 2π]× [0,+∞) can be:

g(x, y) =


(x, y) (x, y) ∈ [0, 2π]× [0,+∞)

g(x,−y) y < 0

g(x%2π, y) x /∈ [0, 2π]

(5.10)

Fig.5 shows the residuals and collocation points sampled by two different
methods in the same adaptivity iteration. Clearly, at the begining of adaptivity
iteration, neither method can explore the peak of the solution due to the distance
between the peak and the location of the initial collocation points. And MCMC-
PINNs can distribute collocation points in a larger region and explore the cal-
culation domain more efficiently. At the forth iteration, MCMC-PINNs has
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Figure 6: The distribution of collocation points obtained by two methods at
three different iterations

already found the peak of the solution and apparently more collocation points
are placed near the peak. Larger residuals attract more collocation points to
the small-scale feature region of the solution. Eventually The collocation points
of MCMC-PINNs tends to be uniformly distributed.

From Fig.6, it is obvious that the prediction error of MCMC − PINNs
is much smaller than the MH&PINNs. In this numerical example, we have
no knowledge about the location of the peak of the solution and the initial
collocation points are far away from the peak, using MCMC − PINNs can
explore the computation domain with high speed as training progrosses without
any human intervension. Finally we can get a better result than MH&PINNs

5.5 Unbounde domain problem for a time-dependent PDE

The last numerical example we take a time-dependent PDE with unbounded
domain into consideration:

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
+ f(x, t) (x, t) ∈ R × [0, 1]

u(x, 0) = u0(x) x ∈ R
(5.11)

The exact solution of this problem is

u(x, t) =
exp− (x−10)2

4t+4√
t+ 1

(5.12)

For this problem, the initial collocation points are uniformly generated in [−6, 0]×
[0, 1], so the covariance matrix of MCMC − PINNs is set to be diag(36, 1).
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Figure 7: The distribution of collocation points obtained by two methods at
three different iterations

And g is

g(x, t) =

{
(x, t) t ∈ [0, 1]

(x, Ubt − |∆t − (t− Lbt)%2∆t|) otherwise
(5.13)

Form Fig.7, we can see that for MH&PINNs with standard Gaussian pro-
posal distribution, the collocation points cannot explore the computation do-
main effectivetly. They are more likely to be trapped in a localized region and
cannot be distributed with π(x, t). On the other hand, MCMC−PINNs with
the modified proposal distribution can help collocation points fully explore the
computational domain along the x-direction

Form Fig.8, we can also notice that the prediction solution of MH&PINNs
cannot not capture the characteristics of the exact solution well, the maximum
prediction error is nearly 1. While the prediction solution of MCMC−PINNs
has a relative small prediction error, the maximum prediction error is less than
1e− 2, and the distribution of collocation points tends to uniform distribution
as training progrosses.

6 Conclution

In this paper, we present a modified Markov chain Monte Carlo method for
sampling collocation points of PINNs adaptively. The main idea of MCMC-
PINNs is regarding the absolute residual error as kinetic energy of system and
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Figure 8: The abosute error and the predicted curves at t = 1obtained two
methods

22



construct the canonical distribution of the potential energy as the probability
distribution of collocation points. According to this distribution, we give a con-
vergence analysis of MCMC-PINNs and modify the standard MCMC method
by the length of each dimension in the computation domain and a function map
points outside the computation domain to inside. We want to apply MCMC-
PINNs to more complex problem ,especially complex time-dependent problem.
To achieve this goal, we will study how to use collocation points describe the
time evolution of PDEs. Also, we want to study constructing probability distri-
bution with more indicators to make samples generated from it minimizing the
generalization error more significantly. Work on these problems will be in our
forthcoming papers.
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A The proof of Theorem 3.1

Proof. Consider 3.11,∫
Ω×[0,T ]

∫
R d+1

q(x′, t′|x1, t1)Ig(x′,t′)(x
′′, t′′)dx′dt′dx′′dt′′

=

∫
R d+1

q(x′, t′|x1, t1)

∫
Ω×[0,T ]

Ig(x′,t′)(x
′′, t′′)dx′′dt′′dx′dt′

=

∫
R d+1

q(x′, t′|x1, t1)dx
′dt′

=1,

(A.1)

where the second equation follows from the fact that the range of g is Ω ×
[0, T ]. Also, it is obvious instead of rejecting the candidate collocation points
outside the computation domain directly, the function g maps them into the
computation domain and decide whether accept them or not.

Since q(·|x, t) is a symmetric proposal distribution and the transition ker-
nel q(·|x, t)α(x, t; ·) satisfies the detailed balance condition for π(x, t), we have

α(x, t;x′, t′) = min(1, π(x′,t′)
π(x,t) ). Now if we want to prove that the proposal dis-

tribution q∗(·|x1, t1) guarantees that π(x, t) is still the stationary distribution of
the Markov chains keeping the acceptance probabilities invariant we only need

prove the transition kernel
∫

R d+1 q(x
′, t′|x1, t1)Ig(x′,t′)(·)dx′dt′ min(1, π(·)

π(x1,t1)
)

holds detailed balance condition. It is obvious that

π(x1, t1)

∫
R d+1

q(x′, t′|x1, t1)Ig(x′,t′)(x2, t2)dx
′dt′ min(1,

π(x2, t2)

π(x1, t1)
)

=π(x1, t1)

∫
Ω×[0,T ]

q(x′, t′|x1, t1)Ig(x′,t′)(x2, t2)dx
′dt′ min(1,

π(x2, t2)

π(x1, t1)
)

+ π(x1, t1)

∫
Ω×[0,T ]\R d+1

q(x′, t′|x1, t1)Ig(x′,t′)(x2, t2)dx
′dt′ min(1,

π(x2, t2)

π(x1, t1)
).

(A.2)
Since g(x1, t1) = (x1, t1), for any (x1, t1) ∈ Ω× [0, T ], then we have

π(x1, t1)

∫
Ω×[0,T ]

q(x′, t′|x1, t1)Ig(x′,t′)(x2, t2)dx
′dt′ min(1,

π(x2, t2)

π(x1, t1)
)

=π(x1, t1)q(x2, t2|x1, t1)min(1,
π(x2, t2)

π(x1, t1)
)

=π(x2, t2)q(x1, t1|x2, t2)min(1,
π(x1, t1)

π(x2, t2)
)

=π(x2, t2)

∫
Ω×[0,T ]

q(x′, t′|x2, t2)Ig(x′,t′)(x1, t1)dx
′dt′ min(1,

π(x1, t1)

π(x2, t2)
)

(A.3)

According to the condition 1 and 2, for any given (x2, t2) ∈ R d × [0, T ] and
any candidate collocate point (x′, t′) outside the computation domain gener-
ated by q, there exists only one point (x′′, t′′) outside the computation domain
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corresponding to (x′, t′) satisfies:

Ig(x′,t′)(x2, t2) = 1 Ig(x′′,t′′)(x1, t1) = 1 q(x′′, t′′|x1, t1) = q(x′, t′|x2, t2)
(A.4)

It follows that

π(x1, t1)

∫
Ω×[0,T ]\R d+1

q(x′, t′|x1, t1)Ig(x′,t′)(x2, t2)dx
′dt′ min(1,

π(x2, t2)

π(x1, t1)
)

=π(x1, t1)

∫
Ω×[0,T ]\R d+1

q(x′′, t′′|x2, t2)Ig(x′′,t′′)(x1, t1)dx
′dt′ min(1,

π(x2, t2)

π(x1, t1)
)

=π(x2, t2)

∫
Ω×[0,T ]\R d+1

q(x′′, t′′|x2, t2)Ig(x′′,t′′)(x1, t1)dx
′dt′ min(1,

π(x1, t1)

π(x2, t2)
)

(A.5)
Combining A.3 and A.5, we prove the detailed balance condition for the transi-
tion kernel q∗ with respect to π
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