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Abstract

We provide two methodologies in the area of computation theory to solve optimal strategies for games such as Watermelon chess

and Go. From experimental results, we find relevance to graph theory, group representation, and mathematical consciousness.

We prove that the decision strategy of movement for Watermelon chess and Chinese checker games belongs to a matrix that

is a noncommutative ring or an abelian group over set Y={-1,0,1}. Additionally, the movement for any chess game with two

players belongs to a noncommutative ring or an abelian group from Occam’s razor principle. We derive the closed form of

the transition matrix for any chess game with two players and discover that the element of the transition matrix belongs to a

rational number. We propose a different methodology based on abstract algebra to analyze the complexity of chess games in

their entirety, instead of being limited solely to endgame results. It is probable that similar decision processes of people may

also belong to a noncommutative ring or an abelian group.
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Computation and Information Theory of
Chess Games

Chun-Kai Hwang , John Reuben Gilbert, Tsung-Ren Huang, Chen-An Tsai, and Yen-Jen Oyang

Abstract—We provide two methodologies in the area of com-
putation theory to solve optimal strategies for games such as
Watermelon chess and Go. From experimental results, we find
relevance to graph theory, group representation, and mathe-
matical consciousness. We prove that the decision strategy of
movement for Watermelon chess and Chinese checker games
belongs to a matrix that is a noncommutative ring or an abelian
group over set Y={-1,0,1}. Additionally, the movement for any
chess game with two players belongs to a noncommutative ring
or an abelian group from Occam’s razor principle. We derive
the closed form of the transition matrix for any chess game
with two players and discover that the element of the transition
matrix belongs to a rational number. We propose a different
methodology based on abstract algebra to analyze the complexity
of chess games in their entirety, instead of being limited solely to
endgame results. It is probable that similar decision processes of
people may also belong to a noncommutative ring or an abelian
group.

Index Terms—relational game, group representation, mathe-
matical consciousness.

I. INTRODUCTION

PEBBLE games [1] [2] and relational games [3] are first
order logic [1] [4]. In this paper, we use a traditional

chess game, Watermelon chess, to discuss the phenomena
about mathematics and computation theory. The playing rules
of Watermelon chess are similar to the game Go, such that
when an opponent’s pieces are blocked, they become captured,
and the endgame result has three possible states of a win, loss,
or draw.

Go and Watermelon chess are tri-valued logic, differing
from Chinese checkers which is fourth-valued logic. We
proposed two methods that can used to solve games such as
Watermelon chess and Go.

In addition, we demonstrate that the movement of pieces
for any chess game with two players such as the Chinese
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chess, chess, or Go belongs to a noncommutative ring or
an abelian group, in which the group representation matrix
is only with different dimensions of complexity over Q, the
rational numbers. We apply group representation theory in
abstract algebra, the noncommutative ring and abelian group,
to analyze the complexity of the chess games as a novel
methodology to analyze the complexity of whole chess games.

In graph theory, graphs can be categorized as being directed
acyclic graphs (DAG) and cyclic graphs (CG). We found that
the Watermelon chess can be represented as either a DAG or
CG.

A graph G can be represented as a tuple of its set of vertices
V and edges E. The simple graph topology model of the initial
playing state of Watermelon chess in Figure 1 can be presented
as G = (V,E), where

V = {x | 0 ≤ x ≤ 20, x ∈ N}, (1)

E = {(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 0), (1, 4), (1, 5), (2, 0),
(2, 1), (2, 3), (2, 6), (3, 0), (3, 7), (3, 4), (4, 0), (4, 1), (4, 3),

(4, 8), (5, 1), (5, 10), (5, 9), (5, 20), (6, 2), (6, 11), (6, 12),

(6, 13), (7, 3), (7, 14), (7, 15), (7, 16), (8, 4), (8, 17), (8, 18),

(8, 19), (9, 5), (9, 10), (9, 20), (10, 5), (10, 9), (10, 11), (11, 6),

(11, 12), (11, 10), (12, 6), (12, 13), (12, 11), (13, 6), (13, 12),

(13, 14), (14, 7), (14, 13), (14, 15), (15, 7), (15, 14), (15, 16),

(16, 7), (16, 15), (16, 17), (17, 8), (17, 16), (17, 18), (18, 8),

(18, 17), (18, 19), (19, 8), (19, 18), (19, 20), (20, 5), (20, 9),

(20, 19)}.
(2)

Here, we consider the whole game as a higher ordered
complex graph. If we view each snapshot of the chess board as
a vector point, it can be represented as the vertex of a graph.
Each snapshot of the chess board is a ∈ A = X21, where
X = {1, 2, 3}, in which the indices 1 and 2 represent the two
possible colors of chess pieces, and 3 represents the blanket.
Every chess movement is represented by an edge of the graph,
thereby allowing the whole game to be composed of a graph.
Each edge is a functional operator (a matrix) or a function
mapping f , f : A 7→ A, where A = X21, X = {1, 2, 3}.

In computational spin networks, chapter 2 of [5], every
eigenstate can be represented as a vector, and the matrix
operator is the edge for dual Hilbert space [5] [6]. We apply
this idea to the high ordered whole game graph. From Theorem
3, we found that the chess movement is a function mapping
f that belongs to Mn(Q), a n×n matrix over Q, the rational

https://orcid.org/0000-0003-3844-7353
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TABLE I
COMPARISON OF GAME STRATEGY ANALYSIS APPROACHES.

Presenter Method Concept Game type
Ours Algebra Graph, Group representation A whole game

Marton Morse and Gustav A. Hedlund [7] Algebra Semigroups Chess endgames
Lewis Stiller [8] Algebra Multilinear algebra Chess endgames

Julian Schrittwieser et al. [13] AI Reinforcement learning Game strategy
Fenil Mehta1 et al. [14] AI Multilayer perceptron Game strategy

David Noever1 et al. [15] AI Natural language transformer Game strategy
Shengyu Zhang [16] Game theory Quantum game theory Game strategy

Fig. 1. The initial playing state of Watermelon chess.

numbers. Additionally, Mn(Q) is a noncommutative ring or
an abelian group under addition.

II. RELATED WORKS

Table I is a summary of different approaches to analyse
chess games. Marton Morse and Gustav A. Hedlund [7]
discussed the symbolic dynamics and the semigroups based
on the unending chess. Lewis Stiller [8] applied multilinear
algebra to construct the model to analyze chess endgames [9]
[10] from humans and computers. Chess endgames can be
analyzed with Kronecker tensor product and direct sums. They
discussed the work of Friedrich Amelung and Theodor Molien,
the founder of group representation, and the first person that
analyzed a pawnless endgame [11] [12]. High-performance
parallel computing can be solved from the endgame analysis.

Chess endgames have been studied for over a century. It has
been applied to improve the prediction accuracy and efficiency
of reinforcement learning, data compression [17], and two-
level logic minimization [17]. The related algorithms for the
logic minimization are MINI [18], ESPRESSO [19] [20],
and Pupik [21]. It can also be applied to electronic design
automation (EDA).

Julian Schrittwieser et al. [13] developed a reinforcement
learning algorithm to solve for strategies for Atari, Go,
chess and shogi games, while requiring approximately a
million training steps. They compared different agents, or

algorithms, including Ape-X, R2D2, MuZero, IMPALA, Rain-
bow, UNREAL, LASER, MuZero Reanalyze. Among these
agents, MuZero Reanalyze achieved the best performance.
Fenil Mehta1 et al. [14] predicted chess moevement by using
the multilayer perceptron model. They used a chess board
evaluation function that could be applied to evaluate the board
without deep lookahead search algorithms. They developed a
chess engine, thereby avoiding the use of state space search
to find the next optimal movement. David Noever1 et al. [15]
applied natural language transformers to support more generic
strategic modeling, especially for text-archived games. Their
approach focused on the breath search of millions of games
that would allow a language model to define a game’s rules and
strategy by itself. Shengyu Zhang [16] presented a simple but
complete model to extend the quantum strategic game theory.

III. SIMULATION ALGORITHMS: WATERMELON CHESS

Watermelon chess is one kind of pebble game with two
players. The initial state of the chess table is presented in
Figure 1, with yellow and red representing the pieces of the
two players.

A. Method 1: Game Tree

We constructed an objective function that optimized the
degree of freedom (DoF), i.e., the number of chess pieces that
are not captured by the opponent. The optimization objective
value for a player is to maximize its DoF while minimizing its
opponent’s DoF. It is a general algorithm that can be applied
with a min-max game tree [22], and it is applicable to both
Watermelon chess and Go. In order to determine that the
opponent’s chess pieces are captured, we can derive a mutable
tree presented in Figure 2. If the leaf nodes are comprised
entirely of a single player’s colors, then the opponent’s chess
pieces have all been catpured.

B. Method 2: Probabilistic NN Rule Models

We proposed PBCR1 and PBCR2 algorithms [23] to extract
probabilistic Boolean rule models from Deep Neural Networks
(DNN), which can also be applied to predict chess movement.
It basically can be applied to auto-inference [23].

We recorded the 100 playing games of chess movements,
and among these games, the win ratio of red color to yellow
color is 50 to 50, and as a result we regarded it as a binary
classification problem. There were a total of 4985 chess piece
movements, with 2519 win (positive) cases and 2466 loss
(negative) cases. The training features of this problem were
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Fig. 2. The Graph of chess table during playing state.

Fig. 3. The mutable tree for the chess pieces of red color blocked by the
opponent’s yellow color pieces that corresponds to Figure 2.

the movement of chess pieces. The input was the current chess
state, the next state, and the current playing color. The current
state was composed of 21 nodes. Each chess piece used a triple
value to denote it, red, yellow, and the blanket chess pieces
respectively. We use 2 bits to store the triple value. The current
and the next state needed 42 nodes, and they were composed
of 42×2=84 bits, with 1 bit also used to denote the current
playing color. As a result, there were a total of 85 inputs and
1 binary output (win or loss).

IV. RESULTS

Table II presents the performance metrics of DNN, PBCR1,
PBCR2 and decision tree (DT) methods. In general, the
performance of the DNN on each metric was better than

DT, PBCR1, and PBCR2. The comparison was based on
the same sensitivity on training fold to be 80% statistically
equivalent, such that the confidence intervals of the sensitivity
with different algorithms were overlapped.

V. DISCUSSION

We found some interesting phenomena during different
kinds of chess games. If we regard each snapshot of the chess
board as a vector point, it can be regarded as the vertex of a
graph. Every chess movement is the edge of the graph, The
edge is a function mapping or the transition matrix f : A 7→ A,
where A = X21, X = {1, 2, 3}, in which 1 and 2 represent
the different colors of the chess pieces, and 3 represents the
blanket, such that the whole game composed a graph. The
win or loss can be either a directed acyclic graph (DAG) or
a cyclic graph (CG), such that if there were no duplicated
vertices of the graph, it would be a DAG, and a CG otherwise.
However, the drawn game is a CG. The cardinality of the
vertex would be infinite but with a finite element of the vertex
set. Therefore, the graph composed from a drawn game must
contain duplicate vertices. As a result, it is a CG.

Theorem 1. Noncommutative Ring: If we view the snap-
shot of the chess board as a vertex of a graph, the edge of
this graph represents a chess movement, and the edge is an
operator (a matrix) or a function mapping f, f : A 7→ A,
where A = X21, X = {1, 2, 3}, 1, and 2 are the different
colors of the chess pieces, and 3 represents the blanket, then
the following properties hold:

1) There exists a function mapping f belonging to M21(Y ),
a 21× 21 matrix over Y , where Y = {−1, 0, 1}.

2) M21(Y ) is a noncommutative ring in abstract algebra.
3) M21(Y ) is an abelian group under addition.
Proof:
1) For a vertex a = [ai], where i = 0, . . . , 20, if we move

the chess piece from p to q, then either ap = 1 or ap = 2.
Furthermore, aq = 3 as q is a blanket. The function
mapping f is a 21× 21 matrix M21.
First, consider the case that ap = 1. Suppose that after
the chess movement from p to q, we will get a vertex
b = [bi] = M21a, with the properties that for chess
pieces bp = 3 and bq = 1. Pieces with indices k ∈
K are captured with this movement, resulting in bk =
3. Similarly, if the movement does not cause the chess
pieces to be captured, then bi = ai for ∀i ̸= p, q, and
i /∈ K.
Next, we show how to construct the matrix M21 = [σij ]
with Occam’s razor principle. Suppose that the chess
piece s belongs to the opponent, i.e., as = 2, for the p-
th row vector rp of M21, we can set σpp = 1, σps = 1,
and σpj = 0,∀j ̸= p, s. Thus, we can construct the
transformation that bp = 3.
For the q-th row vector rq of M21, we can set σqq =
1, σqs = −1, and σqj = 0,∀q ̸= p, s. Hence, we can
construct the transformation where bq = 1.
For the chess pieces k ∈ K that are captured, which
can be obtained from the tree from Method 1, the k-th
row vector rk of M21 is of the form σkk = 1, σkp = 1,
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TABLE II
PERFORMANCE METRICS OF DNN, PBCR1, PBCR2, AND DT.

Metrics(mean±SD) DNN PBCR1 PBCR2 DT
AUC 0.971±0.003 0.814±0.018 0.798±0.020 0.855±0.017

Accuracy 88.435%±0.385% 75.486%±2.212% 75.236%±2.089% 76.239%±1.723%
Sensitivity 80.051%±0.046% 79.866%±0.315% 79.959%±0.368% 80.172%±0.239%

PPV 95.504%±0.910% 72.715%±3.057% 72.324%±2.856% 74.164%±2.341%
NPV 83.556%±0.107% 78.790%±1.010% 78.736%±0.957% 78.700%±0.846%

Specificity 96.409%±0.757% 71.321%±4.367% 70.744%±4.123% 72.361%±3.381%
Odds ratio 113.404±29.428 10.187±2.243 9.928±2.145 10.796±1.806

F1 0.871±0.004 0.761±0.016 0.759±0.016 0.770±0.013

and σkj = 0,∀j ̸= k. Therefore, we can construct the
transformation in which bk = 3.
For the chess pieces i that are not captured and do not
equal p, q, and do not belong to K, the i-th row vector
ri of M21 is of the form σii = 1, σij = 0,∀j ̸= i,∀i ̸=
p, q, and i /∈ K.
Hence, we construct the transformation that bi = ai
for ∀i ̸= p, q, and i /∈ K. Similarly, we can construct
the matrix M21 for the case that ap = 2. Finally, we
observed that the element of the matrix M21, σij ∈
{−1, 0, 1}.

2) Since Y = {−1, 0, 1} is isomorphic to the set Z3 =
{0, 1, 2}. The set Z3 is a ring, the operator f is equiv-
alent to a 21 × 21 matrix defined on Z3. M21(Z3) of
all 21× 21 matrices over Z3 is a noncommutative ring
with identity In from Theorem F.1 [24]. It is stated as
follows, “If R is a ring with identity, then the set Mn(R)
of all n× n matrices over R is a noncommutative ring
with identity In”. Thus, M21(Y ) is a noncommutative
ring.

3) From Theorem 7.1 [24], every ring is an abelian group
under addition and the statement of (2) that M21(Y ) is
a noncommutative ring, it is trivial that M21(Y ) is an
abelian group under addition.

Theorem 2. Noncommutative Ring for Chinese Check-
ers: If we view the snapshot of the chess board as a vertex of
a graph, in which the edge of this graph is a chess movement,
the edge is an operator (a matrix) or a function mapping f ,
f : A 7→ A, where A = Xn, X = {1, 2, 3, 4}, and where 1,2,3
denote different categories of chess pieces, and 4 denotes the
blanket, and n is the number of the chess board lattices, then
the following properties hold:

1) There exists a function mapping f belonging to Mn(Y ),
an n× n matrix over Y , where Y = {−1, 0, 1}.

2) Mn(Y ) is a noncommutative ring in abstract algebra.
3) Mn(Y ) is an abelian group under addition.

Proof: For a vertex a = [ai], where i = 0, . . . , n. If we
move the chess piece from p to q, then either ap = 1, 2, or3.
Additionally, aq = 4 since q is blanket. The function mapping
f is an n× n matrix Mn.

First, we consider the case that ap = 1. Suppose that after
the chess movement from p to q, we get a vertex b = [bi] =
Mna, with the properties that for chess pieces bp = 4 and
bq = 1. For other lattices on the chess board, we would have
bi = ai for ∀i ̸= p, q.

Now, we show how to construct the matrix Mn = [σij ]
with Occam’s razor principle. Suppose that the chess piece s
belongs to other opponents, i.e., as = 3, for the p-th row vector
rp of Mn, we can set σpp = 1, σps = 1, and σpj = 0,∀j ̸=
p, s. Hence, we construct the transformation that bp = 4.

For the q-th row vector rq of Mn, we can set σqq =
1, σqs = −1, and σqj = 0,∀q ̸= p, s. Thus, we construct
the transformation that bq = 1.

For other lattices i that does not equal p, q, the i-th row
vector ri of Mn is of the form σii = 1, σij = 0,∀j ̸= i,∀i ̸=
p, q. Hence, we construct the transformation that bi = ai for
∀i ̸= p, q.

Similarly, we can construct the matrix Mn for the case that
ap = 2, 3. Finally, we observed that the element of the matrix
Mn, σij ∈ {−1, 0, 1}. (2) and (3) are proved in a similar
procedure as Theorem 1.

Theorem 3. Noncommutative Ring for Any Chess Game
with Two Players: If we view the snapshot of the chess
board as a vertex of a graph, in which the edges of the
graph are chess movements, the edge is an operator (a ma-
trix) or a function mapping f , f : A 7→ A, where A =
Xn, X = {1, 2, 3, ..t, t + 1, ..., d, d + 1}, where 1, 2, 3, . . . , t,
denotes t different categories of chess pieces for player Alice,
t+1, . . . , d denotes (d−t) different categories of chess pieces
for player Bob, and d + 1 denotes the blanket, and n is
the number of the chess board lattices, then the following
properties hold:

1) There exists a function mapping f belongs to Mn(Q),
an n× n matrix over Q, the rational numbers.

2) Mn(Q) is a noncommutative ring in abstract algebra.
3) Mn(Q) is an abelian group under addition.
Proof:
1) Similar to the proof of Theorem 1, since any x ∈

X = {1, 2, 3, ..., d+1} can be composed from an inner
product of row vector y ∈ Qn and any vectora ∈ Xn,
we can construct an n×n matrix over R, Mn ∈ Mn(Q),
such that b = Mna ∈ Xn, i.e., Mn is composed of
different row vector y ∈ Qn.
For a vertex a = [ai], where i = 0, . . . , n. If we
move the chess piece from p to q, then we have
ap = 1, 2, . . . , t, , t+1, . . . , d. In addition, aq = d+1 as
q is blanket. The function mapping f is an n×n matrix
Mn.
First, we consider the case that ap = x ∈ X . Suppose
that after the chess movement from p to q, we will get a
vertex b = [bi] = Mna, with the properties that for chess
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pieces bp = d+1 and bq = x. Pieces with indices k ∈ K
are captured with this movement, resulting in bk = d+1.
In addition, if the movement does not cause the chess
pieces to be captured, then bi = ai for ∀i ̸= p, q, and
i /∈ K.
Here, we give an intuitive simple construction of Mn =
[σij ] with Occam’s razor principle. Suppose that the
opponent chess piece s with the properties, as = u, t+
1 ≤ u ≤ d. We want to derive the σps such that
σppx + σpsu = d + 1. Therefore, if σpp = 1, we have
σps = (1/u)(d+ 1− x) ∈ Q .
For the p-th row vector rp of Mn, we can set σpp = 1,
and σps = (1/u)(d+1−x) ∈ Q, and σpj = 0,∀j ̸= p, s.
Hence, we construct the transformation that bp = d+1.
For the q-th row vector rq of Mn, we want to derive the
σps such that σqq(d+1)+σqsu = x. Therefore, if σqq =
1, we have σqs = (1/u)(x − d − 1) ∈ Q, and σqj =
0,∀q ̸= p, s. Hence, we construct the transformation that
bq = x.
For the chess pieces k ∈ K that are captured, as
determined by the rules of chess, let the captured
chess piece be denoted with value v. For the k-th row
vector rk of Mn, we want to derive the σkp such
that σkkv + σkpx = d + 1. We can construct Mn of
the form σkk = 1, σkp = (1/x)(d + 1 − v) ∈ Q,
and σkj = 0,∀j ̸= k. Therefore, we construct the
transformation that bk = d+ 1.
For the chess pieces i that are not captured, do not equal
p, q, and do not belong to K, the i-th row vector ri
of Mn is of the form σii = 1, σij = 0,∀j ̸= i,∀i ̸=
p, q, and i /∈ K. Hence, we construct the transformation
that bi = ai for ∀i ̸= p, q, and i /∈ K. Consequently,
we observed that the element of the matrix belongs to
rational numbers, that is, Mn = [σij ], σij ∈ Q.

2) Since Q is a ring with identity, from Theorem F.1 [24].
Mn(Q) is a noncommutative ring.

3) It is trivial and similar to the proof (3) of Theorem 1.

VI. CONCLUSIONS AND FUTURE WORKS

We can discuss the complexity of different chess games
from Theorem 1, 2, and 3. From Theorem 1, we found that the
movements in Watermelon chess belong to M21(Y ), a 21×21
matrix over Y , where Y = {−1, 0, 1}. From Theorem 2, we
found that the chess movements of Chinese checker belong to
Mn(Y ), a n × n matrix over Y , where Y = {−1, 0, 1} and
n is the number of the chess board lattices. From Theorem
3, we found that the movements of any chess game with two
players belong to Mn(Q), a n × n matrix over Q, where Q
represents the rational numbers and n is the numbers of the
chess board lattices.

In Theorem 1, we presented a proof that the set of the
function mapping f is a noncommutative ring or an abelian
group. It is an interesting topic about the algebraic structure
of the operator f , for example, whether it is a group similar
to SU(2) [5] [25]. We found the group representation matrix
is composed of the element form set Y = {−1, 0, 1}, and it
is a sparse matrix. Chess games might be related to reductive

groups [26], compact groups [27], Lie groups [28] [29] and
random walks on groups and random transformations [30] in
abstract algebra.

In quantum theory, we know that the quantum is in essence
the tensor operation on the dual space Figure 2.1 [5]. We may
develop a quantum game theory method [16] [31] [32] [33]
via an approach that is similar to computational spin networks
[5]. Every state corresponds to a vector. It is probable that the
human decision-making process for other strategies not limited
to playing chess can be represented as a matrix operator
that belongs to a noncommutative ring or an abelian group,
Mn(R), or Mn(C), where R represents the real numbers, and
C represents the complex numbers.
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