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Abstract

Individuals suffering from progressive neuromuscular diseases gradually lose all muscle control and therefore are forced to

repeatedly adapt to new control interface technologies to maintain some level of independence. Accordingly, the ideal interface

technology should adapt to the progression of paralysis. We propose an adaptive tongue-brain hybrid interface framework for

the three-dimensional control of a robotic arm. The interface was tested with able-bodied individuals and individuals with

amyotrophic lateral sclerosis. The experiments demonstrated the importance of flexible frameworks for cooperation between

control modalities as this allows a critical optimization of the control performance relative to the disease stage. The hybrid

framework allowed a 4-34% stepwise decrease in performance rather than a 200% decrease when moving directly from a tongue

to a brain control interface. This hybrid framework is the first step towards a new concept of assistive robotic control with a

higher focus on adapting to the functionality of disabled individuals.
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and Lotte N. S. Andreasen Struijk

Abstract—Individuals suffering from progressive neuromuscu-
lar diseases gradually lose all muscle control and therefore are
forced to repeatedly adapt to new control interface technologies to
maintain some level of independence. Accordingly, the ideal inter-
face technology should adapt to the progression of paralysis. We
propose an adaptive tongue-brain hybrid interface framework
for the three-dimensional control of a robotic arm. The interface
was tested with able-bodied individuals and individuals with
amyotrophic lateral sclerosis. The experiments demonstrated
the importance of flexible frameworks for cooperation between
control modalities as this allows a critical optimization of the
control performance relative to the disease stage. The hybrid
framework allowed a 4-34% stepwise decrease in performance
rather than a 200% decrease when moving directly from a
tongue to a brain control interface. This hybrid framework is
the first step towards a new concept of assistive robotic control
with a higher focus on adapting to the functionality of disabled
individuals.

Index Terms—Human-robot interaction, Neurodegenerative
diseases, Multimodal control, Brain Control, Tongue Control.

I. INTRODUCTION

AMYOTROPHIC LATERAL SCLEROSIS (ALS) is a mo-
tor neuron disease that causes progressive degeneration

and death of both the upper and lower motor neurons [1]. It
is a fatal disease, with the most common cause of death being
respiratory failure. 10-20% of individuals with ALS survive
longer than five years after being diagnosed and only 5-10%
survive more than ten years [1]–[3]. With the knowledge of an
inevitable fatality and while their body progressively declines
to a completely paralyzed state (called the locked-in stage),
individuals with ALS feel an increasing degree of hopelessness
[4]. Similarly, the quality of life (QoL) for individuals with
ALS and their caregivers has also been shown to decrease,
mainly because of the limited time available for oneself [5],
[6].
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Fund Denmark (8022-00234B). (M. Jochumsen and L. N. S. Andreasen Struijk
contributed equally to this work.) (Corresponding authors: R. L. Kæseler.)
The authors R. L. Kæseler, B.Bentsen, K. Dremstrup, M. Jochumsen, and
L. N. S. Andreasen Struijk are with the Center for Rehabilitation Robotics,
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borg, Denmark (e-mail: rlk@hst.aau.dk; brasse@hst.aau.dk; kdn@hst.aau.dk;
mj@hst.aau.dk; naja@hst.aau.dk). The author D. Farina is with the Depart-
ment of Bioengineering, Imperial College London, SW7 2AZ London, United
Kingdom (e-mail: d.farina@imperial.ac.uk). The authors I. Obál and L. Vinge
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Case studies on long-term use of an assistive robotic arm
have shown general user satisfaction and an increase in in-
dependence [7]. Thus, assistive robotic devices may improve
the QoL for both individuals with ALS and possibly family
caregivers. Moreover, questionnaires have shown that indi-
viduals with ALS have a high interest in the availability of
brain-computer interfaces (BCIs), specifically for the control
of robotic arms and motorized wheelchairs [8].

While the robotic technology is mature for assistive ap-
plications, it is still very challenging to achieve sufficient
information transfer in the interfacing technologies for users
with severe motor impairments [9]. To allow full control of
the translation and rotation of objects in the three-dimensional
(3D) space, a robot arm will require at least six-degrees of
freedom (DoF) and one functional end-effector, such as an
open/close functional gripper. We will define such a robot
as a general purpose assistive robotic manipulator (ARM).
Furthermore, we will aim to provide full manual control
of an ARM with a 1DoF end-effector which we define as
time-continuous access to all translational and rotational
manipulations of an object in the 3D space. This will require
an interface with at least 14 time-continuous control actions,
which can be difficult with limited moveability.

A. Single-Modality Control Interfaces

Different interface solutions have been developed and used
for assistive technologies [39]. In the early stages of ALS
in which the patients may still control some movements of
hand or finger muscles, the control may be achieved through
a hand-controlled joystick or physiological signals generated
through muscle contraction and/or activation (such as elec-
tromyography). However, the motor capacity declines with the
progress of the disease until the patient reaches a tetraplegic
condition. This limits the individual to alernative technologies.
Lobo-Prat et al. highlights speech, eye-, head-, and tongue
movements as alternative sources of interfacing [39]. Lip-
movements [40] or sip-and-puff control [41] have been also
considered for interfacing. Table I provides an overview of
recently developed interfaces that allow for some degree of
control (though rarely full control) of an ARM while using
only modalities available to an individual with tetraplegia (i.e.
with no motor functionality below the neck). It should be noted
that most interfaces have only been evaluated with healthy
participants (see ”evaluation” column in Table I), despite
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TABLE I
INTERFACES USED FOR ARM CONTROL

Control Modality Usability Full control Evaluation
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[10] 7 ÷ 3 3 3 3 3 3 3 0 1 1
[11] 7 ÷ 3 3 3 3 3 3 3 0 0 12
[12] 7 ÷ 3 3 3 3 3 3 ÷ 0 0 1
[13] 7 ÷ 3 3 3 3 3 3 3 0 0 10
[14] 7 ÷ 3 ÷ 3 ÷ 3 ? ÷ 0 0 1
[15] 7 ÷ 3 ÷ 3 3 3 3 ÷ 0 0 30
[16] 7 ÷ 3 ÷ 3 3 3 3 3 0 0 10
[17]? 7 ÷ 3 ÷ 3 3 ÷ ÷ ÷ 4 0 4
[18] 7 ÷ 3 ÷ 3 3 ÷ ÷ 3 0 0 12
[19] 7 ÷ 3 ÷ 3 ÷ 3 3 ÷ 0 0 16
[20] 7 ÷ 3 ÷ 3 ÷ ÷ ÷ ÷ 0 0 10
[21] 7 ÷ 3 ÷ 3 3 ÷ 3 ÷ 0 0 5
[22] 7 ÷ 3 ÷ 3 ÷ ÷ 3 ÷ 0 0 7
[23] 7 ÷ ? 3 ÷ 3 3 3 ÷ 0 0 11
[24] 7 ÷ ? 3 ÷ 3 3 3 ÷ 0 0 13
[25] 7 ÷ 3 3 3 3 ÷ ÷ ÷ 0 0 4
[26] 7 ÷ 3 3 3 ÷ ÷ 3 ÷ 0 0 11
[27] 7 ÷ 3 3 3 3 3 3 ÷ 0 0 5
[28] 7 ÷ ÷ 3 3 3 3 3 ÷ 0 0 15
[29] 7 ÷ ? 3 ÷ 3 3 3 ÷ 0 0 6
[30] 7 7 ÷ 3 3 ÷ 3 ÷ 3 ÷ 0 0 5
[31] 7 7 ÷ 3 3 ÷ 3 ÷ 3 ÷ 0 0 12
[32] 7 7 ÷ ? 3 ? 3 ÷ 3 ÷ 0 0 10
[33] 7 7 7J,H 3 3 3 3 3 3 3 ÷ 0 0 2
[34] 7 7 7J ÷ 3 3 3 3 ÷ 3 ÷ 0 0 3
[35] 7 7 ÷ 3 ÷ 3 3 3 3 ÷ 0 0 8
[36] 7 7 ÷ 3 3 3 3 ÷ 3 ÷ 0 0 15
[37] 7 7 ÷ 3 ÷ 3 3 3 3 ÷ 0 0 10
[38] 7 7H ÷ 3 3 ÷ 3 3 3 ÷ 0 0 3

This
work

7 3 3 3 3 3 3 3 3

7 7 3 3 3 3 3 3 3 3 3 0 10
7 3 3 ÷ 3 3 3 3 3

Existing literature of robot arm interfaces using modalities available to
individuals with tetraplegia. 7 : uses modality, 3: meets requirement, ÷: does
not meet requirement, ?: not reported. ?: This study did not use a robot arm
but a humanoid robot, but was kept in this table as it is evaluating a robot
with ALS users. J : Using jaw movements. H : Using head movements.

being designed for users with tetraplegia (such as individuals
with ALS or a spinal chord injury, SCI). Furthermore, very
few current interfacing systems provide at least 14 control
commands, that are necessary for controlling 7DoFs. When all
motor functions are eventually lost, a BCI is the only viable
option. These systems could utilize spontaneous brain-signals
generated through detection of movement imagery (MI) or
cognitive tasks, or externally evoked brain potentials [42], [43].

Though not included in Table I, invasive BCI technologies
have been used to provide continuous control of high DoF
ARMs or exoskeletons [44]–[48]. However, these technologies
require surgery and months of training for the user. Thus,
end users are more likely to adopt non-invasive wireless
electroencephalogram (EEG) systems [49]. For this reason, the
present study only evaluated non-invasive BCI technologies.

A non-invasive BCI is very limited in performance with
respect to peripheral interfacing or invasive BCIs. It has not

yet been possible to achieve full ARM-control using a non-
invasive BCI. State-of-the-art approaches to achieve this goal
depend on semi-automation of the robot and/or provide control
of fewer DoFs [18], [20]–[29], [39], [50].

BCIs can be designed to use either spontaneous signals
(self-generated by the user), evoked signals (generated by
external stimulation), or a combination of signals to construct
hybrid BCI systems. Hybrid BCI systems have been used for
positional control of quadcopters [51] and for control of three
joints of a robot arm [30]–[32]. Systems using only one type
of brain signal have also achieved some control of a robot
arm.

While spontaneous signals may be desirable as they do not
require an external stimulation, evoked potentials can usually
be decoded with shorter training and higher accuracy from
brain signals. Using a BCI based on evoked signals (steady
state visually evoked potentials (SSVEP)), Chen et al. almost
achieved full ARM-control [18]. However, the control was
built on a discrete-time method in which the selection of
a control action (such as forward) would make the robot
move forward for a fixed time interval (4s in the study).
With this approach, it was not possible to grasp objects
placed outside specific stop locations (for example, placed
3s of movement away). Han et al., who created a similar
discrete control interface, further highlight this issue as time-
consuming and exhausting for the user [21]. Indeed, state-
of-the-art manual BCI control using a discrete-time method
requires a relatively long time to achieve grasping. On average
the control by Chen et al. required on 10 minutes to grasp an
object placed 29 cm away from the initial position. While
excellent performing classifiers for evoked signals exists (e.g.
above 40 control actions classified at above 95% accuracy
within 1s of stimulation) [52]–[54], very few are designed for
online asynchronous and continuous control.

Full ARM control has also been achieved with eye-tracking
systems [16]. Several autonomous and semi-autonomous eye-
tracking control schemes have been proposed [14], [15],
[55]. However, the accuracy of eye-tracking may decreaser
for certain eye-types and/or because of disturbances caused
glasses or contact lenses [56]. Furthermore, while eye-tracking
can provide the system with a directional pointer, it lacks the
possibility of providing a go command (similar to a computer-
mouse without any buttons). It also requires the user’s visual
focus which may cause issues while controlling a robot arm.

Possibly, tongue control provides the best performance of
full control of an ARM [10], [11], [13] as it has provided
control much faster than other tetraplegia accessible modal-
ities. In a prior tongue control study, healthy individuals
performed pick-up tasks of an object placed more than 40 cm
away from the initial position within 40s [11]. Similarly, an
individual with tetraplegia managed to pick up objects within
just 70s [10]. Tongue has also been used to control upper-limb
exoskeletons [57] or wheelchairs [58], [59].

B. Multimodal Control Interfaces

Using a combination of eye-tracking and spontaneous BCI,
the semi-autonomous control of a 5-DoF arm, which included
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2 DoF direct controls, has been previously achieved [35]–
[37]. Similarly, eye movements have been combined with
shoulder and/head movements to improve control [33], [38].
Tongue control has also been used in multimodal interfaces,
but not for controlling an ARM. Johansen et al. combined
tongue control with myoelectric signal for improved prothesis
control [60]. Nam et al. controlled a humanoid robot using
combined tongue, eye, and jaw movement (measured using
EEG, electrooculography, and electromyography) [61].

Minati et al. reached limited control of a robot arm using
a combination of head movements, jaw clenching, eye move-
ments, and spontaneous brain signals. Uniquely, they devel-
oped four different interfaces by coupling different modalities.
While not being the focus of their study, this could potentially
be beneficial for users with ALS at it may allow a multimodal
framework where the user can select a preferred modality
combination based on their disease progression.

Similar multimodal control frameworks have previously
been suggested, but have not been used for continuous control
of a robot arm [62]–[64]. These frameworks do not directly
combine different modalities to improve control, they instead
make multiple modality control options available to the user.
This gives the individual user the possibility of selecting a
preferred control modality for a given task and/or time. This
concept of a user-tailored interface is especially beneficial
for users with ALS or other progressive diseases. However,
we believe that these systems should be further improved.
Instead of only allowing the users to select their preferred
control modality, we intend to let the user combine their
preferred number of control options from each modality in a
true multimodal control framework. We believe that this will
provide an improved user-tailored control system which can
also ease the transition between control modalities experienced
by the ALS user during disease progression.

C. Transition between Control Modalities

Each interface requires a training period, during which it
will not operate to its full capability. This is a significant
issue as ALS often progresses rapidly. Thus, the individuals
with ALS may never get fully comfortable with an interface
before it must be changed. Additional challenges are related to
economic and bureaucratic barriers associated with advanced
assistive technologies [65], [66]. All these reasons (worsening
performance, adaption to technology, and bureaucratic com-
plications) have been reported as common causes for users
to abandon self-help devices [67]. We propose a new concept
within multimodal control interfaces for users with ALS or
similar progressively paralyzing diseases, or diseases with
different stages, and thus with different needs for the users.
Instead of replacing the entire control modality when the
user no longer possesses the full motor functionality required
for its use, the interfacing system adapts to the user by
complementing the lost modality with a new one.

This approach prolongs the use of the original modality
while also training and preparing the user for the new modality,
which will eventually replace the original one. In this work,
we present a novel control framework with a focus on patients

Fig. 1. Control of a robotic arm using the proposed framework: Using
combination of the TCI and BCI, the user has direct access to all 7DoF
in the robotic arm.

in the later stages of spinal-onset ALS, as they may benefit
from an assistive robotic arm due to the limited movability of
their limbs. If the bulbar muscles (such as the tongue) are
still fully or partly functional, the high performing tongue
interface is attractive for control. As ALS will gradually
impact the patients’ bulbar function, which includes the tongue
motor functionality, the user must eventually turn towards
either eye-tracking or BCI. In this study we propose a novel
continuous BCI rather than eye-tracking, as it can also allow
some control if the eye movement is impaired. Thus, the
developed adaptive multimodal control framework will focus
on the optimal transition from controlling a robotic arm using
tongue movement towards using brain signals in order to
maintain a high degree of control effectiveness.

II. PROPOSED FRAMEWORK

We have designed and tested a hybrid tongue-brain interface
framework for full ARM-control which adapts to the users
reduced tongue functionality by complementing the tongue
computer interface (TCI) with a BCI as illustrated in Fig. 1.

The framework incorporated six sub-systems to allow for
adaptation to a decreasing tongue functionality (Fig 2) by
decreasing the number of TCI commands and increasing the
BCI commands in the sub-systems. For instance hybrid B used
eight tongue-based control-outputs, while hybrid E used only
one.

To allow for full ARM control, the control layouts should
all be designed to have at least 14 control actions. However,
we included two additional control actions to achieve a total
of 16 control actions in all layouts. The additional actions
were a go home and an exit system control command, which
we considered essential for the end-users. However, in these
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Fig. 2. Control of a robotic arm using the proposed framework. (a) Using
combination of the TCI and BCI, the user has direct access to 16 control
command, that can manually control all 7DoFs in the robotic arm. Six sub-
systems (A-F) were designed in which A uses only tongue signals, B-E uses
a combination of tongue and brain, and F uses only brain signals. (b) The
user could switch to to the control menu by selecting a mode and could then
move the robot by continuously activating a control command. They returned
to the mode-menu by executing an exit command.

experiments, the exit system command did nothing when acti-
vated. Fig. 2 shows an overview of the framework consisting

of six different sub-systems (A to F) and video S1 shows an
able-bodied participant using each of the six sub-systems.

A. Framework Design

The tongue control system was based on an adapted version
of the iTongue from the company TKS A/S (Nibe, Denmark)
[68], which is an intraoral wireless mouthpiece mounted at
the palate [69]–[71]. It contained 18 inductive coils (outlined
with white in Fig. 3(a)), which were each activated as a
small intraoral keyboard using an activation unit glued or
medically pierced to the tongue. The full TCI was designed
by allocating 16 of the 18 coils of the mouthpiece to directly
control the actions of the robotic arm. Thus, users a sufficient
tongue functionality to utilize the full TCI could control all
DoFs of the robotic arm directly without any mode switching.
Algorithm S1 presents the pseudo-code of the main-node
handling the full TCI ARM control.

However, without proper tongue functionality, the user will
experience difficulties in reaching and hitting the relatively
small keys on the intraoral keyboard. Therefore, the interface
was progressively adjusted by increasing the area of each key
and consequently decreasing the number of keys available on
the keyboard. This was conducted through the software, thus
not requiring new hardware. To accommodate the reduced
number of keys, we introduced a mode control in which the
control-modes were selected through a BCI. Algorithm S2
presents the pseudo-code of the main-node handling the hybrid
tongue-brain computer interface for ARM control.

We used SSVEP, which is a reliable and well-performing
control signal used in several existing BCI systems [72]. When
a user focused on a light blinking at a specified frequency,
the brain signals showed a higher power at the blinking
frequency in the visual cortex. By presenting several control
modes blinking with unique frequencies, the user could select
the desired action by attending the respective blinking light
(henceforward referred to as BCI target), which could be
classified through an EEG template matching. The user could
activate the visual stimuli by hitting anywhere on the TCI.
Then, after having classified the desired control mode using
the BCI, the user could activate the available control actions
within the control mode using the TCI.

Four tongue-brain hybrid sub-systems (hybrid B-E) were
designed with 2, 4, 8, or 16 modes selected using the BCI in

Fig. 3. Images of the TCI used in this study. (a) Surface area of the TCI with
the 18 inductive coils outlined by white lines, the front panel outlined by red
line and the back panel outlined by yellow line. (b-c) The TCI in braces made
of (b) dental two-component A-silicone soft putty used in these experiments
and (c) in the commercial custom-made metallic brace.
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the ”mode selection” menu, coupled with a respective 8, 4, 2,
or 1 control actions selected through the TCI in the ”control”
menu. Thereby, providing the user access to all 16 control
commands.

To control the robot using a hybrid system the user would
start in mode selection and issue the following sequential
steps: (1) By activating an arbitrary coil on the mouthpiece,
the user could activate the visual stimuli and select the
control mode through the BCI by focusing on the respective
stimuli. (2) The interface would then present the TCI layout
represented by the selected control mode in which the user
could send the control commands by continuously activating
the allocated areas of the mouthpiece. (3) Lastly, the user
could return to the control mode selection by issuing an exit
command (double-clicking anywhere on the mouthpiece with
the tongue mounted activation unit). The layout would then
return to showing the possible control modes as idle visual
stimuli which the user could re-activate and then select the
following step (1).

Similarly, the full BCI system was designed with a ”mode
selection” and a ”control” menu. However, both were con-
trolled through a BCI scheme. Algorithm S3 presents the
pseudo-code of the main-node handling the hybrid tongue-
brain computer interface for ARM control. In this case, the
mode-selection presented the 16 modes, in which each control
mode represented only one control action (similar to hybrid E).
However, in the full BCI all control modes blinked constantly
(whereas they were idle until activation by the TCI in hybrid
E). When the BCI detected the users mode selection the
interface shifted to the control menu. Here, the interface
showed the selected control action as a stimulus at the center of
the screen, a stimulus representing the opposing direction (i.e.
’backward’ if ’forward’ was chosen) to the right of the selected
control action, and an exit stimulus at the lower right corner
which would bring the user back to control mode selection. To
activate a control action in the full BCI the user was required
to focus on the desired control action, as the robot would
only move accordingly while the frequency power analysis
for the corresponding control action was above a threshold
(and bellow for all other control actions).

B. System Setup

A Lenovo ThinkPad T480 running Ubuntu 18.04 was used as
the central unit for the asynchronous proceedings of online
data processing of both TCI and BCI data, control of the
robotic arm, presentation of visual feedback to the user, and
data sampling, which was all conducted using Robotic Op-
erating System (ROS) [73]. Individual ROS-nodes were pro-
grammed using either Python3 or C++. The assistive robotic
arm used in this study was the Jaco®gen2 from Kinova®
[74] and it was controlled using a ROS package provided by
Kinova®.

C. Tongue-Computer Interface

The iTongue system was adapted to the application in this
study by changing the standard software processing the sensor
outputs to develop new sensor layouts, as shown in Fig. 2, and

to allow for a ROS-based tongue control of the robot. For this
study, we replaced the standard mounting braces with dental
two-component A-silicone soft putty (TopDent ImpressA) by
embedding the iTongue mouth-piece unit (MPU) in the putty
and forming it against the palate of the participant until it
solidified (after approximately 2 minutes). In addition, the
tongue piercing, used as an activation unit in the commercial
version, was replaced with a non-invasive activation unit glued
to the tongue as has been done in previous studies [11], [13].
The raw signals (the electrical potential measured over the
individual coils and filtered by an LC bandpass filter [71])
recorded from the MPU were wirelessly sent to a central
unit from which the signal was transmitted to a laptop via
a COM-port for processing. The weighted average of the
nearest neighbor algorithm was used to estimate the position
of the activation unit on the MPU surface as conducted by
Mohammadi et al. [75].

D. Brain-Computer Interface

The brain signals were recorded using eight ring electrodes
connected to an OpenBCI Cyton board [76] sampled at
1000Hz and wirelessly transmitted to a laptop using a WiFi
board. The OpenBCI board was chosen due to its low cost,
which we deemed important for an end-product which indi-
viduals with ALS may eventually wish to buy. Similarly, the
choice of only eight electrodes compared to the typical 64- or
128-electrode systems would reduce the necessary setup-time,
which is also an important factor for potential end-users [8].

Ground and reference electrodes were placed on the left
and right mastoid bone respectively. The eight electrodes
were placed on O1, Oz, O2, Po3, Poz, Po4, P5, and P6
according to the International 10-20 System with impedances
kept below 5k. The raw data were notch filtered at 50Hz
to reduce the powerline noise using a 2nd order Butterworth
filter. Further, the data was bandpass filtered between 7 and
17Hz, using a 2nd order Butterworth filter. A spatiotemporal
beamformer (STBF) based algorithm was used to classify the
attention to any of the predefined visual stimuli [77], [78].
The STBF utilized the periodic nature of SSVEP by splitting
the EEG into expected periods (i.e. segments of 0.1s for a
10Hz SSVEP signal), averaging the newest segments to reduce
noise, and applying calibrated spatial beamformer weights
over the channels to achieve an activation value for each BCI
target [77].

The recursive STBF (R-STBF) is a computationally im-
proved version of the STBF, and was chosen for this work
due to its relatively high performance at a low computational
cost [79]. It averages the segments recursively by applying
an exponentially weighted moving average [79] rather than an
equally-weighted average as used in earlier research [77], [80].
This reduced the computational cost and weighted the more
recent data higher to allow a faster response [79].

The STBF was calibrated to the individual user, day, and
sub-system. The calibration was conducted through a quick
training data-collection before the first run with a new sub-
system. In each of the sub-systems control modes were cued
to the user five times and then stimulated for 5s in a controlled
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Fig. 4. Experimental setup. (a) Graphical illustration of the important robot
positions during experiments. Robot end-effector starts in home position
P0 ([21, 26, 51]cm). Able-bodied participants grabbed the bottle placed in
position P1 ([8, 60, 0]cm) and poured water in the cup placed in position P2
([35, 31, 0]cm). Participants diagnosed with ALS grabbed the bottle placed
in P3 ([37, 46, 0]cm). (b-c) One of the participants with ALS during the
experiment.

randomized order. The participants controlled the pacing of the
cues and were allowed short breaks between cues. Depending
on the sub-system and the user the data collection time was
between a few minutes and 15 minutes.

The visual stimuli were programmed using the Pyglet
python library and displayed on a 24” monitor with a refresh
rate of 60Hz. The stimuli were programmed with a unique
frequency between 8-15.5 Hz and a unique phase. A photore-
sistor was placed on the corner of the monitor to synchronize
the EEG with a reference phase of the stimuli.

E. Experiments and Case Studies

Two evaluations of the framework were conducted within this
study: experiments with participants without disability and
case studies with participants diagnosed with ALS. The setup
illustrated in Fig. 4 was used for both evaluations. The ex-
periments with able-bodied participants provided performance
measures of the sub-systems while acting as pilot testing for
the case studies with participants with ALS. The research
procedures and protocols for both the experiments and case
studies were exempt from review board approval by the local
ethical committee of Region North Jutland.

1) Experiments with Participants without an ALS Diagno-
sis: These experiments were designed to provide performance
measures of the sub-systems while acting as pilot testing for
the case studies with participants with ALS. The experiments
were performed over three consecutive days. On each test
day, the participants tried the six sub-systems four times in a
controlled randomized order. The task was to control the ARM
from a home position, grasp a bottle, move it, and pour water
into a glass. The positioning of the equipment is illustrated in
Fig. 4(a).

2) Case Studies with Participants with an ALS Diagnosis:
These case studies were designed to provide proof-of-concept
of the framework with potential end users and to consider and
evaluate their potential feedback. The participants participated
in two days of trials. Test day 1 was used to introduce the
sub-systems to the participant in addition to identifying the
hybrid sub-system most suited for the participant. Test day 2
was used to evaluate the full TCI, the full BCI, and the best
suited hybrid sub-system. To reduce the cognitive load, the

participants with ALS performed a simpler task than the able-
bodied individuals: reaching and grasping a bottle (in position
P3 in Fig. 4(a)) followed by placing the robot in the home
position using the allocated ”home” button. They performed
this task three times with each of the evaluated sub-systems.

F. Statistics

IBM SPSS Statistics 27 was used as statistics software to eval-
uate potential statistical significant differences in the median
task completion times between the sub-systems and trial days
for the experiments with participants without ALS. The me-
dian task completion time was calculated as the median over
four successful trials conducted over a day of trials. A 2-way
repeated-measures analysis of variance (rmANOVA) was used
with the sub-system (six levels) and trial day (three levels) as
factors. A Greenhouse-Geisser correction was applied if the
assumption of sphericity was violated. Significant tests were
assumed when p<0.05 and were followed up with post hoc
analysis using Bonferroni correction.

III. RESULTS

A. Benchmarking with Participants without an ALS Diagnosis

Ten participants without an ALS diagnosis (five males, five
females, 27±5 years old) were recruited for this experiment.
The BCI classification performance is evaluated from the
training data and presented in Tab. S.I. The time between
the first and the last command issued was recorded and is
shown in Fig. 5(a). Data file S1 provides a full overview of
all task completion times. Task completion time significantly
decreased over the three test days for all sub-systems (F(2,
18) = 16.4, p < 0.001), indicating learning when using the
interfaces and robotic arm. The post-hoc analysis indicated
that day 3 achieved significantly faster task completion times
compared with day 2 (p=0.023) and day 1 (p=0.003). The
participants also achieved a significantly faster task completion
time on day 2 compared with day 1 (p=0.029). Further,
a significant difference was found across the sub-systems
(F(5,45) = 38.5, p<0.001). The full BCI had a significantly
higher task completion time compared with the opposing sub-
systems, while the full TCI had a significantly lower task
completion time compared with the opposing sub-systems
(258±74s in the last day for the BCI, 147±37, 141±34,
121±22, 113±42, and 86±16s for hybrid E, D, C, B, and the
full TCI respectively). This shows a stepwise increment in the
average task completion time of 32% when moving from the
full TCI to hybrid B. Further progression between sub-systems
led to an increase of 4-16% per step. Moving from hybrid E
to the full BCI caused an increase of 76%. If the individuals
would transition from the TCI to the BCI without the hybrid
sub-systems, the task completion time would increase by
200%. A closer investigation into the average time spent on
each task was conducted by separating the time into three
intervals: time associated with the control mode selection
menu, with the control selection menu, and with moving the
robot (Fig. 5(b)). Data file S2 provides the associated times for
all tasks. The participants spent more idle time within a control
mode when using the full BCI (130±59s) compared with the
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Fig. 5. Results from the tests with able-bodied participants. (a) Task
completion time for the successful trials using each of the six sub-systems, on
three consecutive days. (b) Mean time spent either selecting a control mode, or
being idle or active within a control mode for each for the successful trials.
(c) Average selection and error count per trial for the successful trials. (d)
Average number of minor, major, and technical errors per successful trial. (e)
NASA-TLX scores for the TCI, BCI, and four hybrid sub-systems reported
by the participants (scores between 0 and 100, where a lower number indicate
a better system).

other sub-systems (31±19, 31±10, 38±17, and 37±13s for
hybrid B to E, respectively). This time difference was caused
by the difficulty of activating the robot to move through the
BCI compared with the TCI. Similarly, the uncertainty using
the BCI signal occasionally caused the robot to overshoot,
thus requiring the user to spend additional time correcting
this issue. Therefore, the time spent moving the robot with
the full BCI was also longer than for the opposing sub-
systems (77±11s with the full BCI, while the robot only
moved for 59-61s with any of the hybrid sub-systems or
the full TCI). As measures of real-time system accuracy, we
introduced enter and exit errors. The enter errors estimated
the number of incorrect control mode selections (when the

user exited a control mode without performing control within
it to then later perform control in another control mode).
The exit errors estimated the number of incorrect exit mode
commands (when the users would exit a control mode that
would later be the control mode in which they performed the
next control). The number of correct control mode selections
compared with the two error types is shown in Fig. 5(c). Data
file S3 presents the error counts for each trial. The full TCI
is not represented in this analysis as it had only one control
mode. The hybrid sub-systems had a decreasing quantity of
exit errors as the quantity of TCI control inputs decreased:
hybrid B led to 2.65±3.13 errors/trial on the third day and
hybrid E to 0.73±1.18 errors/trial. The increasing error rate
suggests that the higher complexity of TCI usage with the early
hybrid sub-systems led to a higher false-positive detection rate
of double-clicks within the TCI. Furthermore, the full BCI
(which used a visual stimulus as an exit command) had even
fewer exit errors (0.60±0.94 errors/trial on the third day),
which indicates that the exit stimulus detection used within
the full BCI carried a lower false-positive rate compared to
the TCI double-clicks.

When the number of control modes increased, so did the
number of enter errors, with hybrid B having 0.78±0.99
errors/trial and hybrid E 4.60±6.37 errors/trial on the third day.
The full BCI had fewer enter errors (1.53±2.24 errors/trial on
the third day) compared with hybrid E, while it had a similar
rate as hybrid (1.63±2.12 errors/trial on the third day). This
may be caused by the design of the control modes within
each of these sub-systems as hybrid E only provided control
of one command within the control mode, while the full BCI
provided control of two commands, similar to hybrid D.

Control errors also occurred throughout the trials. These
were categorized as minor, major, or technical errors. Minor
errors were errors that caused an imperfect trial, without
resulting in an unsuccessful trial (such as spilling water and
accidentally hitting home which moved the robot to the initial
position). Major and technical errors were errors that would
terminate the current trial, which would then be retried im-
mediately. Major errors were errors caused by the participants
(such as tipping the bottle or the glass). Technical errors were
software glitches or the glued-on tongue piercing unit falling
off. The frequency of the control errors (errors per successful
trial) is shown in Fig. 5(d). Data file S4 presents the control
errors for each participant. The rate of user-caused control
errors (major- and minor errors) decreased over the three test
days. These errors occurred at a much higher rate for the BCI
(0.325 minor and 0.2 major errors per successful trial on day
3), compared with the TCI (0.05 minor and 0.0 major errors
per successful trial on day 3) and the hybrid sub-systems
(with hybrid D having the highest error rate of 0.1 minor
and 0.025 major errors per successful trial on day 3). This
was presumably caused by the accurate time-continuous signal
provided by the TCI, which allowed the participant to both
focus on the robot while moving it and stopping it with a
short delay. The BCI required that the participant had visual
focus on the stimuli for the robot to move, thus removing
some attention and feedback from the robot’s moving position
and surroundings. Furthermore, a delay between the intention
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TABLE II
PARTICIPANT INFORMATION

ALSFR-Ra

ID Sexb Age MSSc MSDd B. S. R.
C1 M 57 20 3 12/12 7/24 12/12
C2 M 74 40 27 12/12 12/24 12/12
C3 F 73 58 42 0/12 1/24 2/12

a ALS-Functional Rating Revised scores separated into Bulbar (B), Spinal (S),
and Respiratory (R) scores. A maximum score (i.e. 12/12 or 24/24) indicate
no symptoms. b M = male, F = female. c MSS = month since first symptoms.
d MSD = month since diagnosis.

TABLE III
EXPERIMENTAL DATA FOR CASE STUDIES

Task Completion
Time [s]

Control
Errors [-] NASA-TLX Scoresa [-]
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C1 A 34 60 37 44 0 1 0 2 1 5 1 4 5
B 55 36 30 40 0 0 0 2 1 5.5 2.5 5 5
C 186 262 112 187 0 0 0 3.5 6.5 5 2 5.5 5.5
F 275 353 318 315 0 0 0 8 10 6 5 6 6

C2 A 87 128 84 100 1 0 1 3.5 1 1 5 5 1
B 115 204 88 136 0 0 0 7 7.5 1 1 5 1
F 183 218 225 208 0 1 0 4 5 1 6 4 2

C3 F - - - - - - - 2 2 5 5 2 9
a NASA Task Load Index Scores reported on scale from 1 to 10, with a lower
score indicating a better system and where the best score in each category is
highlighted with bold.

of stopping the robot and measuring this from the BCI was
also observed causing the robot to occasionally overshoot. On
the third test day, the participants were asked to answer a
NASA Task Load Index (NASA-TLX) questionnaire [62] after
completing the final trial with each sub-system. The scores
were rated using a visual analog scale score from 0-100, with
100 indicating a very high and 0 indicating very low for all
scores except performance, where 0 indicate ”very good” and
100 indicate ”very poor”. Fig. 5(e) shows the reported scores
which can also be found in Data file S5. The TCI and hybrid
sub-systems achieved very similar scores, while the scores for
the BCI indicated that it required a higher effort to control
while achieving worse performance. The BCI was also the
sub-system with the highest temporal and mental workload.
However, it achieved the lowest score for the physical load.

B. Case Studies with ALS Diagnosed Participants

Following the tests with able-bodied participants, case stud-
ies were conducted with potential end users as a proof-of-
concept. The hybrid sub-systems were slightly modified to
overcome the challenges observed in the tests with able-bodied
participants. The biggest changes in the systems were: (1)
The double click used in the hybrid sub-systems was replaced
with an exit stimulus similar to the one used in the BCI. (2)
The hybrid sub-systems utilized only the front area of the
TCI (red area in Fig. 3(a)) as some able-bodied participants
reported difficulties in reaching the back area (yellow area
in Fig. 3(a)). The system was tested over two days by three

individuals diagnosed with ALS. Table II reports the scores on
the ALS Functional Rating Revised (ALS-FR-R) questionnaire
(reported on test day 1) by a caregiver to the individual. The
scores have been separated into bulbar, spinal, and respiratory
scores, as proposed by Rooney et al. [81]. The NASA-TLX
questionnaire was reported on test day 2 after completing the
last trial for each of the tested sub-systems. The scores were
given verbally by the participant as a value between 1 and 10.
Table III reports the NASA-TLX scores, control errors, and
task completion times for the trials on day 2.

The first participant, C1, was a 57-year old male who had
been diagnosed with spinal-onset ALS three months before
the experiment. He was severely paralyzed with limited motor
function in his right hand and forearm but had no noticeable
speaking difficulty. He was capable of holding a cup and
drinking using a straw as well as feeding himself with some
difficulties. On test day 1, he experienced issues reaching the
lower buttons of the TCI (outlined with a yellow line in Fig.
3(a)). His preferred sub- system on day 1 was hybrid B as it
utilized only the top part of the TCI without having too many
visual stimuli. Hybrid B, along with hybrid C, the full TCI and
full BCI were tested on day 2. Video S2 shows C1 using these
sub-systems during the trials on day 1. From these tests, C1
reported the full TCI as his favorite sub-system followed by
hybrid B with which he achieved a slightly lower task comple-
tion time (40.2±10.2s against 43.8±11.4s for the full TCI) but
made one major error (tipping the bottle). Using the full BCI,
he achieved the slowest task completion time of 315±32s.
Indeed, he also reported the full BCI as his least favorite sub-
system since the continuous visual stimuli caused fatigue and
a high cognitive load. Surprisingly, he also reported the full
BCI as the sub-system with the highest physical requirements
in the NASA-TLX questionnaire. Further questioning revealed
that this was due to his use of bifocal glasses that required him
to move the head to utilize the different lenses. Similar to the
able- bodied participants, he further negatively noted the lack
of feedback on the robot position when controlling it using
the full BCI.

The second participant, C2, was a 74-year-old male diag-
nosed with progressive muscular atrophy two years before the
experiment. Similar to C1, he had no noticeable speaking diffi-
culty. He had full motor functionality of both arms and hands,
but with some difficulties, and he experienced fatigue during
prolonged use. He also had some functionality in his legs
but was not capable of walking or standing unsupported. On
both test days, C2 reported discomfort when the mouthpiece
unit for the TCI (Fig. 4(a)) as well as some slight discomfort
while using it (as the TCI was used with the bigger putty
based retainer in our study than the standard dental retainer
shown in Fig. 4(a)). For this reason, he selected the full
BCI as his favorite sub-system despite having a higher task
completion time of 208±19s (against 136±50s and 100±20s
for the hybrid and full TCI, respectively). Moreover, he also
made a major error (tipping the bottle) using the full BCI.
C2 reported having an issue with visual depth sensing, which
could also explain the higher task completion times compared
with C1.

The third participant, C3, was a 73-year-old female diag-
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nosed with ALS 3.5 years before the experiment. C3 had no
remaining bulbar functionality, communicating only through
gaze-tracking, and was fed through a percutaneous endoscopic
gastrostomy. As evaluations showed no tongue functionality
only experiments using the full BCI were performed. On the
first test day, she successfully performed a trial with full BCI
control in 414s, showing the ability of the interface to adapt
to a severely-impaired individual by switching to complete
brain control. However, on the second test day, C3 could
not fully complete the task. She managed to move the robot-
gripper close to the bottle (12cm Euclidian distance, P=[30;
50; 8.5]cm) in 534s, but she did not manage the grasp and
the trial was terminated to avoid fatigue. During the interview
following the experiments, C3 expressed her frustration that
she was unable to succeed with the task on the second test
day and noted that the constant visual stimuli caused fatigue.
Further investigations using a 5-fold cross-validation of the
BCI training data showed that she achieved the best offline
classification performance out of the three ALS participants as
can be seen in Tab. S.II. Her unsuccessful online performance
may have been caused by fatigue or a lack of training with
the robot. Despite the failure in completing a full task on the
second day, it is remarkable that the interface allowed full
control of the robot and a successful task on the first day, with
almost no training. This proves the feasibility of the interface
also for individuals in the late stage of ALS. However, it
is evident that longer training is needed for individuals with
severe motor impairments.

IV. DISCUSSION

This study presents a novel control interface framework that
utilizes a combination of a TCI and BCI to allow direct control
of a robot for individuals with late-stage ALS. While we tested
the framework with a robotic arm, it could also be interfaced
with other robotic devices, such as a wheelchair or an ex-
oskeleton. Similarly, the framework can easily be coupled with
both autonomous and semi-autonomous systems which can
improve the task completion time significantly [82]. However,
we recommend including a direct-control option for situations
in which the autonomy may fail. As a direct control system
requires a time-continuous asynchronous control signal, the
TCI was shown as an excellent asset. A single TCI signal
(as used in hybrid E) can provide the control interface with a
fast and precise detection of when the robot should move or
stop, while also allowing the user to have visual attention to
the robot and potential obstacles rather than a visual stimulus.
This resulted in significantly better performance than the full
BCI. The BCI presented in this study is a state-of-the-art full
ARM control with relatively high performance. In previous
studies, 12 able-bodied participants used an average of 10.65
± 2.45 minutes to reach and grab an object located 29 cm
from the initial position [18]. In this study the ten able-bodied
participants grabbed an object located 60 cm from the initial
position, moved it to a secondary location 41cm away, and
then proceeded with pouring water with an average of 5.82 ±
2.06 minutes on the first day and 4.30 ± 1.23 minutes on the
third day. Nevertheless, improvements could be made.

To the reduce the need for a high-end computer to handle
the online processing nodes, the BCI classifier was chosen
for its relatively good performance at low computational costs
[79]. However, other classifiers may achieve an even better per-
formance but will likely also require longer training sessions
and more electrodes. Similarly, alternative visually evoked
potentials could be considered; such as the less fatiguing P300
or the higher performing code modulated visually evoked
potential. This would be relatively simple to implement, as
the chosen classifier has previously been shown sufficiently
versatile to classify these signal types [78].

The most commonly reported issue with the BCI was the
requirement of attending a visual stimulus to make the robot
move, thus not allowing the user to observe the robot while
it moved. To solve this, visual feedback could be included on
the screen along with the stimulus. This would allow the user
to observe both the stimulus and robot concurrently. Other
BCI signals, such as movement-related potentials could be
implemented to act as the movement-pedal when a TCI can
no longer provide this. Movement-related potentials are also
generated when imagining or performing tongue movements,
and could provide the users with an intuitive replacement for
the TCI [83], [84]. These signals could also be used if the
individuals reach a complete locked-in stage, in which the
loss of gaze functionality could prove to be impactful on
the SSVEP based BCI performance (as a gaze-independent
SSVEP or P300 BCI has significantly lower performance [85]–
[87]).

It might be beneficial to progressively replace the SSVEP
based signal with the new type, similar to how this work pro-
gressively replaced the TCI signals with SSVEP based signals.
This allows the users to achieve training for future signal types
while utilizing the remaining signals with higher performance
[88]. We observed a big impact of training over just three
days of usage for both the TCI, hybrids, and BCI, and expect
this to improve further with long-term usage. Long-term usage
would also offer a large potential for further improvement by
co-adaptation of the user and machine learning algorithms.
This study utilized a relatively simple SSVEP classification
algorithm to optimize computational power and to reduce the
need for collection of training data. However, long-term data-
collection may allow better performing algorithms without
requiring longer calibration times.

We utilized a TCI based on iTongue as this system has
previously proved capable of directly and continuously con-
trolling a robotic arm using this system [10], [11], [13]. In
this study, the adapted iTongue generally outperformed the
BCI and the hybrids, as expected. The adapted version of
the TCI (Fig. 4(b)) had a considerably larger size than the
commercial iTongue (Fig. 4(c)) and used a worse performing
activation unit to avoid an invasive medical procedure. Further,
a software-defined double-click-based control mode switch of
the TCI was used with the healthy individuals, which resulted
in some errors. These changes may have had a negative impact
on the tongue mobility and contribute to the satisfaction in the
TLX score of some of the participants.

In trials with both able-bodied participants and participants
with ALS, the full BCI had both the poorest performance
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while also being reported as the most mentally demanding
sub-system. The able-bodied participants reported the full BCI
as the least physically demanding, while two participants with
ALS reported it as the most physically demanding. We believe
this was due to impaired vision and limited training of the
participants. The two participants (C1 and C2) suffered from
vision impairment, which required frequent head movements
for navigating between the 16 stimuli. C3 had corrected to
normal vision and reported the full BCI as a low physically
demanding system. Moreover, the able-bodied participants
received more training with the full BCI before reporting
the NASA-TLX scores. This ensured familiarization with the
system and thus the able-bodied participants had an easier
time searching for their control command, which is among the
most physically demanding tasks in this sub-system. One of
the participants with ALS (C2) preferred the full BCI, despite
performing better with the full TCI, while C1 preferred a
hybrid system on test day 1 but the full TCI on test day 2.
Consequently, the optimal sub-system should also be selected
based on the individual user preferences on a task-to-task and
day-to-day basis. C3 was unable to utilize a tongue control
interface at her stage of the disease and could not use the
hybrid version of the interface and thus experienced less
training with the robotic arm, possibly giving her a steeper
learning curve. Yet, she managed to move the robot in both
sessions, and on the first day, she completed the reaching and
grasping task proving the feasibility of the full BCI system.

For both the able-bodied and the ALS participants, the
experiments underlined the importance of hybrid sub-systems
and of including high performing signals (such as TCI signals)
when the user has the motor functionality capable of using
them. The results showed an increase in the average task
completion times between the full TCI and the full BCI in
the range of 200%. This indicates a major loss of robot usage
efficiency if no hybrid sub-system is available to allow a
gradual change from the TCI to the BCI when the full TCI
can no longer be efficiently used. The hybrid sub-systems
presented in this study allowed for a step wise increase
between 4-32% in the average task completion time from the
full TCI system until the last hybrid sub-system, allowing the
user to sustain a higher degree of functionality through the
robot for a longer time.

V. CONCLUSION

As the requirements for motor functionality depend both on
the users disease, stage, and preference, the control modalities
should be flexible and allow a personally tailored maximiza-
tion of the performance. Our framework is the first step
towards a new control interface methodology in which the
technology evolves and adapts to the users progressive disease
rather than requiring the user to progress with entirely new
technologies. It allowed for a 4-32% stepwise decrease in task
completion time instead of a nearly 200% decrease when no
adaptation was provided. Thus, the proposed new framework
will both reduce the workload, sustain performance, and
thereby likely improve the quality of life for severely paralyzed
individuals.
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SUPPLEMENTARY MATERIALS

Algorithm S1 Control using the tongue interfaces
Present control selection on GUI
while Run do

Check TCI
if TCI is active then

Send TCI command to robot
else if Robot is moving then

Stop robot
end if

end while

Algorithm S2 Control using the hybrid tongue-brain interfaces
Present mode-selection on GUI
while Run do

Check TCI for any activity
if TCI is active then

Start visual stimuli on GUI
repeat

Check BCI for control mode selection
until Control mode classified
Present control mode on GUI
repeat

Check TCI for control command
if Control command is found then

Send command to robot
else if Robot is moving then

Stop robot
end if

until exit command
Present mode-selection on GUI

end if
end while

Algorithm S3 Control using the brain interface
Present mode-selection on GUI, start visual stimuli
while Run do

repeat
Check BCI for control mode selection

until Control mode classified
Present control mode on GUI, start visual stimuli
repeat

Check BCI for control command
if Control command is classified then

Send control command to robot
else if Robot is moving then

Stop robot
end if

until Exit command detected
Present mode-selection on GUI, start visual stimuli

end while

TABLE S.I
OFFLINE BCI PERFORMANCE FOR HEALTHY PARTICIPANTS

ID D
ay

A
T

[s
]

T
PR

[%
]

FP
R

[%
]

FN
R

[%
]

ID D
ay

A
T

[s
]

T
PR

[%
]

FP
R

[%
]

FN
R

[%
]

1 1 0.86 95.0 0.3 4.7 6 1 1.63 86.3 0.8 12.9
2 0.87 97.4 0.3 2.4 2 1.60 86.4 1.1 12.5
3 0.82 98.3 0.0 1.7 3 1.50 91.8 1.5 6.8

2 1 0.85 96.7 0.4 2.9 7 1 1.58 89.4 0.2 10.3
2 0.84 95.9 0.2 4.9 2 1.27 94.8 0.3 4.9
3 0.88 94.3 0.0 5.6 3 1.14 96.7 0.3 3.0

3 1 0.89 96.3 0.0 3.7 8 1 1.41 75.7 2.6 21.7
2 0.80 96.7 0.0 3.3 2 1.08 95.8 0.1 4.1
3 0.77 93.3 0.0 6.7 3 1.09 97.9 0.0 2.1

4 1 0.95 89.9 0.1 10.0 9 1 0.97 97.3 0.0 2.7
2 1.02 91.1 0.8 8.0 2 0.87 96.0 0.1 3.9
3 1.01 89.0 0.6 10.4 3 1.33 96.9 0.1 3.0

5 1 1.08 89.3 0.5 10.2 10 1 1.05 95.1 0.0 4.9
2 1.13 71.8 1.6 26.6 2 0.87 98.9 0.0 1.1
3 1.08 84.0 0.4 15.6 3 1.05 96.9 0.0 3.1

The offline evaluated BCI performance based on training data for the full
16-class BCI. The the average activation time (AT) show the time before an
activation is detected. The average true positive rate (TPR), the average false
positive rate (FPR), and the average false negative rate (FNR) show the rate
of activation after the AT.

TABLE S.II
OFFLINE BCI PERFORMANCE FOR PARTICIPANTS WITH ALS

ID D
ay
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[s
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T
PR

[%
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R
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[%
]

C1 1 1.34 93.9 0.6 5.5
2 1.80 68.5 3.5 28.0

C2 1 1.49 62.6 9.6 27.8
2 1.43 72.7 3.3 24.0

C3 1 1.47 94.4 0.5 5.2
2 1.14 94.7 0.1 5.2

The offline evaluated BCI performance based on training data for the full
16-class BCI. The the average activation time (AT) show the time before an
activation is detected. The average true positive rate (TPR), the average false
positive rate (FPR), and the average false negative rate (FNR) show the rate
of activation after the AT.


