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   Abstract: Air pollution has become a significant 

health, environmental and economic problem 

worldwide. The conventional approach of deploying 

fixed high-end air quality monitoring stations provides 

accurate measurements but can be expensive to deploy 

and maintain. As a result, the stations are typically 

deployed in a few strategic locations with various 

spatial interpolation or prediction models to estimate 

the air quality values from unsampled points. Recently, 

drive-by air quality sensing has emerged as a popular 

approach due to its dynamic nature, high spatial coverage, and low operational costs while providing high-resolution 

data. At the same time, drive-by sensing has introduced a range of novel research challenges in terms of spatial and 

temporal coverage, mobile sensor calibration, and deployment strategies.  This paper provides a systematic review and 

analysis of the recent work in this area, focussing on vehicular platforms, deployment strategies, primary challenges, 

and promising research directions. We have also devised a taxonomy for drive-by air pollution sensing systems after 

investigating the various challenges and components. 

 

Index Terms—Drive-by sensing, Internet of things (IoT), spatiotemporal coverage, low-cost sensor (LCS). 

 

I.  Introduction 

Air pollution has emerged as a global concern due to the rapid 

increase in urbanization and industrialization, causing severe 

health issues such as respiratory disorders and cardiovascular 

diseases and can increase the mortality risk [1] [2][3]. Air 

pollution sources, such as emissions from burning fossil fuels 

for transportation, power generation, and heating, are 

dispersed over a large area. The conventional approach of 

deploying fixed high-end air quality monitoring stations is 

expensive due to high equipment and maintenance costs; 

therefore, they are typically deployed in fewer numbers [4] 

[5]. Spatial interpolation models are then used to estimate the 

air quality values from unsampled points [5].  

 

Recently, drive-by sensing has emerged as a popular 

approach for air quality monitoring due to its dynamic nature, 

extensive spatial coverage, and reduced operational costs 

while providing high-resolution data [6][7]. Different vehicles 

equipped with low-cost sensors have been proposed as mobile 

platforms for air quality monitoring. Messier et al. [8], used 

data from sensor-equipped Google Street View cars for 

mapping air quality in the Greater London area. Biondi, et al. 

[9], used sensors deployed on buses to acquire air quality data 

providing a high-resolution air quality map. Gómez-Suárez et 

al. [10], mounted a low-cost device with optical and 

electrochemical sensors on bicycles to monitor air quality in 

urban environments. 

 

At the same time, drive-by sensing has introduced a range 

of novel research challenges in terms of sensor deployment 

[11][12], spatiotemporal coverage [13], data collection 

strategies [14][15][16], calibration models [10] [17], and data 

analysis [18][19]. For example, the predictable nature of bus 

routes and schedules presents new opportunities that could be 

exploited for optimizing spatial coverage.  Hence, strategies 

have been proposed to maximize spatial coverage with a 

limited number of sensors [20]. Similarly, calibration models 

can be adapted to the mobility and specifics of public transport 

due to certain public transit types having predefined and 

overlapping routes. 

 

Due to various advantages of deploying a drive-by air 

pollution monitoring system, developing a sustainable 

approach that is affordable and reliable system is an important 

task. Communication and sensing technologies, and drive-by 

sensing platform requirements must be analyzed in-depth to 

acquire sensible air pollution data. We offer an analysis of the 

air quality monitoring technologies and drive-by sensing 

platforms, a summary of the selected articles, an investigation 

of the primary challenges, an outline of promising future 

research directions, improve the deployment strategy, and 

devised a taxonomy for drive-by air pollution sensing systems 

after investigating the various challenges and components. 

 

 

The rest of the paper is structured as follows; Section II 

describes the challenges facing wireless sensor accuracy and 

calibration, sensor communication, and power consumption in 

a dynamic sensing environment. We also present various air 

pollutant types and provide their description in Table form. 
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Section III discusses the benefits of employing vehicular 

platforms as sensor nodes and their implementation protocols. 

Furthermore, describes their limitations and review prior 

related work. We will also describe deployment strategies 

literature to overcome the challenges in Section II and 

Section III. Finally, Section IV, summarize the work giving 

our final thoughts. 

 

II.  AIR POLLUTANTS, STANDARDS, AND SENSORS 

A. Air Pollutants 

Common air pollutants identified by researchers, namely 

oxides of sulphur (SOx), oxides of nitrogen (NOx), carbon 

monoxide (CO), carbon dioxide (CO2), ozone (O3), fine 

particulate matter (e.g., PM10 and PM2.5) and VOCs [21]. 

Artificial sources include emissions from transportation, 

industrial processes (e.g., factories, power generation, etc.), 

and land use, such as agriculture and urban development [22]. 

Transportation-related air pollutants include oxides of nitrogen 

(NOx), carbon monoxide (CO), hydrocarbons, and fine 

particulate matter, which are produced by combustion and 

incomplete combustion of fuel in traffic engines [23]. 

B. Air Pollutants Concentration Standards 

The air quality index (AQI) is a numerical index developed 

to indicate current air pollution levels, specify the impact on 

public health, and provide cautionary statements [30]. 

Governments and agencies have set limits on air pollutants to 

identify their risk factor. To illustrate these differences, we 

have provided air pollutant concentration limits for three 

agencies (see Table 2). The air pollution data is reported as 

averaging time in terms of hourly, annual, or peak season data, 

as shown in Table 2. 

C. Air Quality Index (AQI) 

AQI is for public awareness and recommendations. 

Different agencies have AQI values and levels, and to 

illustrate these differences, see Table 3. For calculating the 

AQI levels, air pollutants concentration data is used; for 

example, US EPA introduced a linear interpolation equation 

for calculating AQI levels [33]. 

D. Low-Cost Sensor Technologies 

Different low-cost sensors widely used for detecting air 

pollutants are electrochemical gas sensors, semiconductor or 

metal oxide gas sensors, non-dispersive infrared (NDIR), and 

PM sensors. These sensors are affordable, have adequate 

accuracy and light enough to be portable, and are sensitive to a 

specific type of air pollutant.  

 

1. Electrochemical Sensors 

Electrochemical gas sensors contain electrodes immersed in 

an electrolyte medium (gel form) which are isolated using a 

membrane [35], and the oxidation between the electrodes 

causes current to flow, creating a potential difference which is 

then measured [36]. Electrochemical gas sensors have 

advantages are simple and easy to manufacture fast response 

time, are less affected by environmental factors such as 

TABLE I 

ILLUSTRATION OF A VARIETY OF AIR POLLUTANTS 

Air Pollutants Sources Description 
Health Related 

Issues 

Particulate 

Matter (PM) 

[24] 

Chemical reactions, 

building sites, 

combustion of fuel, 

fires, etc 

PM2.5= 2.5µm 

diameter, 

PM10= 10µm 

diameter 

Cardiovascular 

and respiratory 

diseases 

Sulphur dioxide 

(SO2) [25] [26] 

Combustion of material 

or fuel that contains 

sulphur 

Colorless has an 

odor (irritates) 

Respiratory 

related issues 

Nitrogen 

dioxide (NO2) 

Combustion, road 

traffic, and power 

generation [25] 

Colorless, 

acidic, highly 

corrosive, and 

has an odor [26] 

Respiratory 

infection, 

asthma, and 

chronic lung 

disease [26] 

Ozone (O3) 

[26] 

Combustion, road 

traffic, bushfires, 

industrial power 

generation 

Colorless, highly 

reactive, and has 

an odor 

Causes cardiac 

and respiratory-

related issues 

Carbon 

monoxide (CO)  

Product of incomplete 

combustion of fuel, 

cars, engines, heating 

stoves, etc. [27] 

Colorless, 

odorless, and 

non-irritating 

gas [26] 

Causes hypoxia 

(reduces oxygen 

in the body) [26] 

Volatile 

Organic 

Compounds 

(VOCs) 

Traffic roadside, 

factories, indoor 

emission sources, 

chemical processes, 

fuel burning, etc. [28] 

Different gasses 

examples 1,3-

butadiene, 

benzene, 

styrene, etc. [28] 

Respiratory, 

cardio, and 

nervous-related 

issues, and organ 

damage. [29] 

Table description: The Table shows a comparison of various common air 

pollutants. 

TABLE II 
DIFFERENT STANDARDS OF VARIOUS AIR POLLUTANTS 

Air 

Pollutants 

Averaging 

period 

Agencies 

United States 

Environmental 

Protection 

Agency (EPA) 

[21] 

European 

Commission 

(EC) [31] 

World 

Health 

Organization 

(WHO) [32] 

PM2.5 
24 hours 35 μg/m3 - 15 μg/m3 

Annual 12 μg/m3  25 µg/m3 5 μg/m3 

PM10 
24 hours 150 μg/m3 50 µg/m3 45 μg/m3 

Annually - 40 µg/m3 15 μg/m3 

Carbon 

Monoxide 

(CO) 

1 hour 35ppm  - - 

8 hours 9ppm  10 mg/m3  - 

24 hours - - 4 mg/m3 

Ozone (O3) 

8 hours 0.070 ppm 120 µg/m3 100 μg/m3 

Peak 

Season 
- - 60 μg/m3 

Nitrogen 

dioxide 

(NO2) 

1 hour 100 ppb 200 µg/m3 - 

24 hours - - 25 μg/m3 

Annually 53 ppb 40 µg/m3 10 μg/m3 

Sulphur 

dioxide 

(SO2) 

1 hour - 350 µg/m3 - 

24 hours - 125 µg/m3 40 μg/m3 

3 months 0.15 μg/m3  - - 

Table 3: Ppm unit = parts per million by volume, unit ppb = parts per billion 
by volume, and unit µg/m3 = micrograms per cubic meter of air.  

  

TABLE III 

AIR QUALITY INDEXES OF DEFRA AND US EPA, COMPARISON 

Air Pollution 

Banding 

(DEFRA) [34] 

Values 

Levels of 

Concentration (US 

EPA) [33] 

Values of 

Index 

Low 1-3 Good 0-50 

Moderate 4-6 Moderate 51-100 

High 7-9 
Unhealthy for sensitive 

groups 
101-150 

Very High 10 

Unhealthy 151-200 

Very Unhealthy 201-300 

Hazardous 301-higher 

Table description: Two air quality indices are compared to illustrate the 

differences in standards. Each range represents different air quality levels, and 
based on them, air quality descriptions and health risk advisories are provided.  



 

 

temperature and pressure, and require less power to operate 

[37]. Electrochemical sensor measurement accuracy can be 

reduced due to cross-sensitivity from other gases, as the 

electrical changes when sensing target air pollutant can be 

similar to other gases; this problem can be avoided by using a 

supplementary electrode [38]. 

 

2. Semiconductor or metal oxide sensors 

Semiconductor or metal oxide gas sensors contain a surface 

layer of one or more metal oxides, a sensing chip, and a heater 

for heating the membrane; when the metal oxide reacts with 

the target gas, the conductivity increases, which is then 

measured by the sensing chip [39].  Advantages include fast-

response time, long-term stability and lifetime, and adequate 

sensitivity [40]. Semiconductor gas sensors suffer from 

interference from other gas compositions in the surrounding 

atmosphere, temperature fluctuation, and humidity change 

[41]. Sensor conductivity response is non-linear concerning 

the target air pollutant [42]. The selectivity problem can be 

solved using various strategies. For example, physical and 

chemical gas filters delay or prevent the interfering gas from 

reaching the sensor surface [43]. 

 

3. Non-dispersive infrared (NDIR) sensors 

Non-dispersive infrared (NDIR) emits IR radiation, and 

based on the absorption characteristics; the target gas can be 

identified [44]. NDIR sensor components include an IR 

source, a sample chamber or gas cell, an optical or light filter, 

and an IR detector [44]. NDIR sensors measurements are more 

accurate due to their robustness, good selectivity, and long 

lifetime [45] [46]. However, readings accuracy due to their 

high detection limit, spectral interference, and interference 

caused by humidity and other gas require addressing [47]. 

Interference from humidity and other target gasses can be 

reduced using filters, and sensor accuracy can be improved by 

improving gas chambers, IR detectors, IR emitter sources, and 

optical filters [47]. 

 

4. Optical particulate-matter (PM) sensors 

Optical PM sensors use the light scattering method; the 

laser light is scattered by the particles in the sampled air, 

which is collected at a certain degree by a photodetector, 

which allows measurement of the particle’s size and 

concentration [48]. The sensor also includes a set of focusing 

lenses, and a fan allows airflow with particles through the 

chamber [49]. Optical PM sensor is popular due to their low 

power consumption, low cost, and quick response [48]. 

However, the sensor’s accuracy can be affected by non-target 

particles (creating noise), interference from ambient sources, 

reliability of the parts used, and factors affecting airflow [50]. 

 

E. Data Transmission Technologies 

An efficient data transmission method is essential, 

especially when the application or system requires real-time 

monitoring. Several communications protocols are used to 

transfer air quality data for analysis or to communicate 

between sensors (e.g., during mobile sensor calibration). 

Typical sensory data communication technologies include 

Bluetooth, Wi-Fi, LPWAN, and cellular networks (e.g., 4G, 

LTE, etc.). The continuous movement of mobile sensor nodes 

makes the network topography dynamic and can cause 

breakage in their communication links [51]. Good 

connectivity with high data transfer capacity is essential to 

prevent high data latency which creates long delays in data 

transfer.  

 

A cellular network high capacity allows more tasks to be 

assigned, provides a larger coverage area, and reduces 

interference from other signals. This makes it a sufficient 

mode for transferring sensory data. A mobile wireless sensor 

node entering an area with highly dense WLAN networks can 

create an overlapping basic service set (OBSS) problem [52]. 

OBSS creates interference issues such as the deadlock effect 

and link suppression in a highly dense WLAN, reducing the 

overall communication performance [53]. Opportunistic 

routing can increase sensor network efficiency, throughput, 

reliability increase the networks lifespan [54]. 

 

Work described in [16], where a proposal for offloading 

protocol aiming to reduce 4G costs while maintaining data 

latency by investigating an opportunistic communication 

model in which air quality data is transferred via a 4G network 

or Wi-Fi to adjacent devices deployed along the road. 

Alternatively, deployment of vehicle-to-vehicle (V2V) and 

vehicle-to-infrastructure (V2I) architecture can improve drive-

by sensor networks. Infrastructure in the V2I can be a type of 

road-side unit (RSU) which can be placed in convenient 

locations along the mobile sensor node route [55]. These 

platforms can be used as a wireless multi-hop network in 

which sensory data can be transferred from vehicle-to-vehicle 

(V2V) to vehicle-to-infrastructure (V2I) or vehicle-to-network 

(V2N) [56]. (See figure 1). This can reduce cost and power 

consumption while providing low data latency. 

 

F. Multi-hop Calibration of Mobile Sensors 

Errors from internal sources, such as temporal drift, and 

external sources, such as changes in environmental conditions 

(e.g., temperature and humidity), present a major challenge for 

low-cost sensors [57]. Therefore, calibration is the process of 

identifying and correcting systematic bias in sensor readings. 

 
Fig.1. Illustrates Vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) 

communication and vehicle-to-network (V2N). 



 

 

[58]. The dynamic nature of drive-by air quality sensing 

makes it difficult to calibrate in laboratories as it will suspend 

operations. Multi-hop calibration has become a promising 

approach to calibrate deployed mobile air quality sensors. The 

approach utilizes rendezvous to calibrate recurring mobile 

sensors with recently calibrated mobile sensors [59]. 

  

Rendezvous situation requires two or more sensors to in the 

same spatial and temporal vicinity, measuring the same 

phenomena [60]. Multi-hop calibration allows frequent 

calibration in a large-scale mobile sensor deployment [59]. 

This approach requires fewer reference-grade sensors for 

calibrating un-calibrated mobile sensors, reducing deployment 

costs. Preventing sensor error accumulation over multiple 

hops in large-scale mobile sensor networks is a challenge. 

High-traffic conditions and bias behaviour of drivers could 

prevent or delay rendezvous between calibrated and un-

calibrated mobile sensor resulting in missing a hop causing 

severe error accumulation. 

 

 At point of rendezvous adequate communication 

technology providing high speed and uninterrupted data 

transfer between mobile sensors is essential. The driving 

factors behind selecting appropriate communication protocol 

between mobile sensors for calibration could be cost, 

communication range, and power consumption. Although 

Bluetooth are simpler, consume less power and are less 

expensive. however, they have short-range and Wi-Fi gateway 

and cellular network provide a large coverage area and can be 

used for remote operations [61]. Figure 2 illustrates the multi-

hope calibration of mobile sensors, where a few mobile 

sensors are calibrated by static reference-grade sensors after 

meeting a rendezvous point. The re-calibrated mobile sensors 

calibrate the remaining mobile sensors. 

III.  DRIVE-BY SENSING PLATFORM 

A. Public Transit 

Public transportation or transit is a mass transport system 

within the urban area and is used by the public, typically 

following scheduled routes and timings. Some public transport 

modes are available in a significant number covering the large 

urban area. We will describe three types of public transit 

modes city buses, taxis, and trains or trams. 

 

1. City Bus 

As mobile sensing vehicles, buses have received 

considerable attention for their availability in significant 

numbers, high-spatial coverage, and reliable operations [62]. 

Bus transport has predefined routes and schedules that are 

typically available publicly, which makes their trajectory 

predictable [63]. City buses repeat the same route multiple 

times throughout the day, providing high temporal resolution. 

Bus routes have overlapping routes, which can result in 

redundant data collection. The overlapping nature of bus 

routes can be used for cross-checking individual bus readings 

and mutual sensor calibration. Bus transit’s pre-defined routes 

and schedules make their mobility less flexible, and sensing 

campaigns can only be done along fixed routes. 

 

Equipping an entire fleet of buses with sensors increases 

deployment and operations costs [20]. Significant work was 

dedicated to maximizing spatial or spatiotemporal coverage 

with a limited number of vehicles for drive-by-sensing [64]. 

Ali, et al. [20], analyzed the real bus route dataset and 

proposed an approach that selects an optimal subset of bus 

routes to increase spatial coverage. In works [63] [65], where 

optimal bus set numbers were selected by analyzing the 

historical trajectories of buses to achieve maximum spatial-

temporal coverage. Using the bus as a sensing platform 

introduces a range of other interesting problems, such as 

multi-hop calibration of bus-mounted sensors [66], and 

optimal data transmission. 

 

2. Trains and trams 

Trains and trams also have predefined routes and schedule 

with predictable trajectories and repeat their routes throughout 

the day, providing high temporal resolution. Their operations 

are reliable, and they have separate infrastructure; therefore, 

no urban traffic-related delays provide continuous sampling. 

Trains and trams also follow fixed route crossing areas along 

the route, which creates a spatial bias. For example, trains 

New York City subway and London Tube are subterranean. 

They will only provide air quality data for underground areas 

(tunnels and stations) if deployed with air quality sensors.  

 

The OpenSense project deployed in Switzerland placed 

sensors on public transportation, trams in Zurich, and buses in 

Lausanne for monitoring air quality in real-time [67]. 

Deploying supplementary vehicles and sensors equipped with 

trams and trains can solve the spatial bias issue. 

 

3. Taxi 

The taxi fleet covers most urban areas, and their routes are 

more flexible. In sufficient numbers, they can cover most 

urban areas with high-resolution sensing in an ideal situation. 

Taxis do create a spatial bias as they tend to concentrate 

around areas with high people activity (e.g., shopping areas, 

airports, etc.), and their behavior is partially irregular [68]. At 

the same time, taxi mobility also depends on the road-traffic 

situations, taxi drivers’ routing decisions who normally opt for 

quicker routes, and the client’s routing requests making taxi 

trajectories random and unpredictable [69]. This random 

mobility leaves some parts of an urban region un-sampled or 

less-sampled, creating sparse data collection and data 

coverage time-variation problems [70]. 

 

 
Fig.2. Illustrates the multi-hop calibration of mobile sensors (M1—5) by static 

reference grade sensors (S1) after rendezvous (R1—5).  



 

 

Taxis’ random mobility issue is a considerable challenge in 

relation to spatial and temporal coverage.  Xu et al. [70], 

designed an adaptive hybrid model-enabled sensing system 

(HMSS) to achieve optimal sensing coverage quality and fine-

grained air pollution estimation to address the challenge of 

sparse and time-varying data coverage. Around 53.5 million 

data samples were collected in 14 days using 47 portable air 

pollution monitoring sensor devices for system performance 

assessment. They were deployed in two cities to conduct both 

controlled and uncontrolled tests. An alternative approach to 

overcome the taxi’s mobility issues is to equip sensors 

onboard taxis and supplementary vehicles. 

 

B. Municipal Transport 

Apart from mass transit for public use, there are other 

transportation services in urban areas. These service transports 

are typically used for maintenance purposes, such as dump 

trucks for solid waste transportation, vans for deliveries, 

ambulance patient transport service, etc. Spatial coverage 

depends mostly on the type of public service vehicle; police 

patrol vehicles provide good coverage, while emergency 

vehicles such as fire trucks and ambulances do not, as they are 

only operational in emergency situations. Delivery vans cover 

most of the commercial and residential areas and their routes. 

Public service vehicles have biased behavior, and their routes 

are not predefined and depend on the driver’s decision. Their 

operations are not continuous, as when their services are 

completed, their operations are also suspended. Their low 

number provides low spatial coverage and leaves large gaps in 

sensing data.  

 

Work described in [71], proposed a context-aware locally 

adapted deep forest (CLADF) model where NO2 measurement 

collected from low-cost sensors equipped on 17 postal vans in 

Antwerp, Belgium, was taken for conducting extensive 

validation experiments. Their sampling routes were relatively 

random, and the sampling campaign is generally conducted 

from 6:00 to 23:00 on weekdays and Saturdays. During the 

daytime, the sampling intervals were 10 seconds, and at night-

time, 10 minutes when the vans were parked. 

 

C. Private Transport 

Private transportation, as opposed to public transit, refers to 

the type of transportation for personal or individual use that is 

not available for public use. There are several private vehicles 

or conveyances for air quality sensor placement. 

 

1. Dedicated Vehicles 

Private transportation is more flexible as the routes are not 

predefined or fixed, and dedicated private vehicles can be 

modified to suit sensing requirements. For example, google 

street view cars which are dedicated and modified vehicles 

also used for air pollution monitoring, in works like [8] [72] 

[73]. Other vehicle types can also be used, such as work in 

[74], deployed low-cost sensor device on the laboratory van 

through the cable hole on the vehicle’s roof for monitoring 

urban air pollutants. With dedicated vehicles, air quality 

sensing operations can have fewer time constraints, extensive 

spatial coverage, and diverse manageable movement.  

 

Deploying a dedicated vehicular sensing platform increases 

deployment and maintenance costs. Dedicated vehicles also 

require a dedicated operator (driver), e.g., cars, vans, and 

bicycles. Deploying dedicated air quality monitoring vehicles 

in a significant number is a challenge due to their high 

deployment costs. Deploying sensors on less expensive 

vehicles, such as bicycles, UAVs, etc., can lower the overall 

costs. 

 

2. Personal Vehicles 

Personal vehicles, including cars, SUVs, bicycles, etc., have 

flexible movement, provide adequate spatial and temporal 

resolution, and have low-cost deployments and operations. 

Personal vehicles are used and owned by private individuals, 

and routes and schedules are dependent on the owner’s 

behavior. This behavior creates a spatial bias and can create 

random vehicle mobility. Deploying personal vehicles for air 

quality sensing creates several challenges, such as bias 

movements and adequate providing spatiotemporal coverage. 

Sensor-equipped personal vehicles in large numbers could 

provide high-spatiotemporal coverage.  

 

Gómez-Suárez, et al. [10], researchers mounted the low-

cost sensor on bicycles for monitoring air quality in urban 

environments. Wesseling, et al. [75], used measurements from 

500 sensors mounted on bicycles in Utrecht, the Netherlands, 

to estimate the PM2.5 levels that the cyclists are typically 

exposed to. The HazeWatch project described in [76], low-

cost gas sensors equipped cars to collect air pollution 

concentrations (e.g., CO, NO2, and O3) data for analysis in 

Sydney. 

 

3. Un-manned Ariel Vehicles (UAV) 

Unmanned aerial vehicles (UAV) are flexible, low-cost 

vehicle, pathway is managed by an on ground controller. 

Vehicles on ground with flexible routing and schedule 

movement is still limited to the road paths and tracks, however 

UAVs have not such limitations. They have no road traffic 

related issues and can travel to their destination directly or 

taking paths that are required providing data from hotspots. 

UAVs are better suited for targets air quality monitoring such 

as work described in [77], where air pollutants data was 

collected using UAVs from landfill sites in real-time. UAVs 

can also be used for high altitude air quality sensing and areas 

or locations that are hazardous or dangerous to human well-

being. 

 

Measurements from sensors deployed on UAV or drone can 

be affected by the wind generated from the rotors [78]. This 

problem has been addressed in work [79], by analysing the 

structure of a UAV. Another problem is the communication 

range of the UAV and the controller. Once out of range the 

controller will lose control. UAVs limited deployment and 

difficulties measuring ground level air quality levels create a 

challenging environment. In Figure 3, we illustrate a  

taxonomy that categorizes the main components of drive-by 

air pollution sensing systems. 



 

 

  

IV.  CONCLUSION AND FUTURE WORK 

 

Drive-by air pollution monitoring has gained significant 

attention over recent years. Due to mobility, a relatively small 

number of sensor devices can monitor air pollution over vast 

geographical urban areas. However, a number of challenges 

need to be resolved in terms of deployment strategies, 

calibration, communication, and other issues. 

 

In this review paper, we analyzed various solutions to these 

problems. We first presented a summary of major air 

pollutants, sensor types to detect them, and relevant important 

air pollution standards. We then analyzed the relevant work on 

mobile air pollution monitoring categorized by major urban 

transport modalities, such as buses, taxis, and utility vehicles. 

We highlighted the benefits and limitations of each transport 

mode and the challenges and lessons learned in those projects. 

This is followed by a review of relevant work on calibration 

and data communication for drive-by air monitoring. Our 

review shows that there are currently various solutions at 

analytical, data analysis and practical deployment levels. 

 
 

Nevertheless, a number of open problems exist, in particular 

related to calibration of mobile low-cost sensors, data 

communication, and robustness of route planning and 

deployment strategies to traffic congestion. We hope that the 

review will help in future research toward more robust, 

accurate, and secure drive-by air pollution monitoring 

systems. 
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